
More eBooks @ http://www.free-ebooks-library.com

Programming
Microsoft® ASP.NET 4

Dino Esposito

Table of Contents
Acknowledgments. xvii

Introduction .xix
Who Should Read This Book? . xx
System Requirements . xx
Code Samples .xxi
Errata & Book Support .xxi
We Want to Hear from You . xxii
Stay in Touch . xxii

The ASP.NET Runtime Environment

ASP.NET Web Forms Today . 3
The Age of Reason of ASP.NET Web Forms . 4

The Original Strengths . 4
Today’s Perceived Weaknesses . 8
How Much Is the Framework and How Much Is It You?. 11

The AJAX Revolution . 14
Moving Away from Classic ASP.NET. 15
AJAX as a Built-in Feature of the Web. 19

ASP.NET of the Future . 20
ASP.NET MVC. 21
ASP.NET Web Pages . 25

Summary. 26

ASP.NET and IIS . 27
The Web Server Environment . 28

A Brief History of ASP.NET and IIS . 28
The Journey of an HTTP Request in IIS . 31
Some New Features in IIS 7.5 . 37

Deploying ASP.NET Applications . 39
XCopy Deployment for Web Sites . 40
Packaging Files and Settings. 43
Site Precompilation. 52
Configuring IIS for ASP.NET Applications . 55
Application Warm-up and Preloading . 59

ASP.NET Configuration . 63
The ASP.NET Configuration Hierarchy. 63

Configuration Files . 64
The <location> Section . 68
The <system.web> Section . 71
Other Top-Level Sections. 105

Managing Configuration Data . 110
Using the Configuration API . 110
Encrypting a Section . 113

Summary. 117

HTTP Handlers, Modules, and Routing . 119
Writing HTTP Handlers . 121

The IHttpHandler Interface . 121
The Picture Viewer Handler. 128
Serving Images More Effectively . 133
Advanced HTTP Handler Programming . 141

Writing HTTP Modules. 149
The IHttpModule Interface . 149
A Custom HTTP Module. 151
Examining a Real-World HTTP Module. 154

URL Routing . 156
The URL Routing Engine . 157
Routing in Web Forms . 160

Summary. 165

ASP.NET Pages and
Server Controls

Anatomy of an ASP.NET Page . 169
Invoking a Page. 170

The Runtime Machinery. 170
Processing the Request . 174
The Processing Directives of a Page . 179

The Page Class . 190
Properties of the Page Class . 191
Methods of the Page Class . 194
Events of the Page Class. 198
The Eventing Model . 199
Asynchronous Pages. 201

The Page Life Cycle . 209
Page Setup . 209
Handling the Postback . 212
Page Finalization . 214

Summary. 215

ASP.NET Core Server Controls . 217
Generalities of ASP.NET Server Controls . 218

Properties of the Control Class . 218
Methods of the Control Class . 228
Events of the Control Class . 229
Other Features . 230

HTML Controls. 235
Generalities of HTML Controls . 236
HTML Container Controls . 239
HTML Input Controls . 246
The HtmlImage Control . 252

Web Controls . 253
Generalities of Web Controls . 253
Core Web Controls . 256
Miscellaneous Web Controls. 262

Summary. 268

Working with the Page . 269
Dealing with Errors in ASP.NET Pages . 269

Basics of Exception Handling . 270
Basics of Page Error Handling. 272
Mapping Errors to Pages . 278
Error Reporting . 283

Page Personalization . 285
Creating the User Profile . 285
Interacting with the Page . 292
Profile Providers . 300

Page Localization . 303
Making Resources Localizable . 304
Resources and Cultures . 308

Adding Resources to Pages . 312
Using Script Files . 312
Using Cascading Style Sheets and Images . 315

Summary. 317

Page Composition and Usability . 319
Page Composition Checklist . 319

Working with Master Pages . 320
Writing a Content Page . 323
Processing Master and Content Pages . 329
Programming the Master Page. 333
Styling ASP.NET Pages . 336

Page Usability Checklist. 344
Cross-Browser Rendering . 344
Search Engine Optimization . 348
Site Navigation . 351
Configuring the Site Map . 357
Testing the Page . 361

Summary. 364

ASP.NET Input Forms. 365
Programming with Forms . 365

The HtmlForm Class . 366
Multiple Forms. 368
Cross-Page Postings . 374

Validation Controls . 379
Generalities of Validation Controls . 379
Gallery of Controls . 382
Special Capabilities . 387

Working with Wizards . 397
An Overview of the Wizard Control. 397
Adding Steps to a Wizard . 402
Navigating Through the Wizard. 405

Summary. 409

Data Binding. 411
Foundation of the Data Binding Model . 411

Feasible Data Sources. 412
Data-Binding Properties . 415

Data-Bound Controls . 421
List Controls . 421
Iterative Controls. 427
View Controls. 432

Data-Binding Expressions . 434
Simple Data Binding . 434
The DataBinder Class . 436

Managing Tables of Data. 438
The GridView’s Object Model . 439
Binding Data to the Grid . 443
Working with the GridView. 451

Data Source Components . 456
Internals of Data Source Controls . 456
The ObjectDataSource Control . 459

Summary. 469

The ListView Control . 471
The ListView Control. 471

The ListView Object Model . 472
Defining the Layout of the List . 479
Building a Tabular Layout . 480
Building a Flow Layout . 485
Building a Tiled Layout . 487
Styling the List . 493

Working with the ListView Control . 496
In-Place Editing . 496
Conducting the Update . 499
Inserting New Data Items . 501
Selecting an Item . 505
Paging the List of Items . 507

Summary. 511

Custom Controls . 513
Extending Existing Controls . 514

Choosing a Base Class. 514
A Richer HyperLink Control . 515

Building Controls from Scratch . 518
Base Class and Interfaces . 518
Choosing a Rendering Style . 520
The SimpleGaugeBar Control . 522
Rendering the SimpleGaugeBar Control . 527

Building a Data-Bound Control . 533
Key Features. 533
The GaugeBar Control . 535

Building a Composite Templated Control. 543
Generalities of Composite Data-Bound Controls 544
The BarChart Control . 547
Adding Template Support . 556

Summary. 561

Design of the Application

Principles of Software Design . 565
The Big Ball of Mud . 566

Reasons for the Mud . 566

Alarming Symptoms . 567
Universal Software Principles . 569

Cohesion and Coupling . 569
Separation of Concerns . 571

SOLID Principles . 573
The Single Responsibility Principle . 573
The Open/Closed Principle . 575
Liskov’s Substitution Principle. 576
The Interface Segregation Principle . 579
The Dependency Inversion Principle . 580

Tools for Dependency Injection . 583
Managed Extensibility Framework at a Glance 584
Unity at a Glance . 587

Summary. 591

Layers of an Application . 593
A Multitiered Architecture . 594

The Overall Design . 594
Methodologies . 595

The Business Layer . 596
Design Patterns for the BLL. 596
The Application Logic. 602

The Data Access Layer . 605
Implementation of a DAL . 605
Interfacing the DAL. 608
Using an Object/Relational Mapper . 610
Beyond Classic Databases . 613

Summary. 614

The Model-View-Presenter Pattern . 615
Patterns for the Presentation Layer . 615

The MVC Pattern . 616
The MVP Pattern . 619
The MVVM Pattern . 621

Implementing Model View Presenter . 623
Abstracting the View . 624
Creating the Presenter . 626
Navigation . 632

Testability in Web Forms with MVP. 636
Writing Testable Code . 637
Testing a Presenter Class . 639

Summary. 642

Infrastructure of the Application

The HTTP Request Context . 645
Initialization of the Application . 645

Properties of the HttpApplication Class . 645
Application Modules . 646
Methods of the HttpApplication Class. 647
Events of the HttpApplication Class . 648

The global.asax File. 651
Compiling global.asax . 652

Syntax of global.asax . 653
The HttpContext Class . 656

Properties of the HttpContext Class. 656
Methods of the HttpContext Class . 658

The Server Object . 660
Properties of the HttpServerUtility Class . 660
Methods of the HttpServerUtility Class . 660

The HttpResponse Object . 663
Properties of the HttpResponse Class . 664
Methods of the HttpResponse Class. 667

The HttpRequest Object. 670
Properties of the HttpRequest Class . 670
Methods of the HttpRequest Class . 673

Summary. 674

ASP.NET State Management . 675
The Application’s State. 676

Properties of the HttpApplicationState Class . 676
Methods of the HttpApplicationState Class . 677
State Synchronization. 678
Tradeoffs of Application State . 679

The Session’s State . 680
The Session-State HTTP Module. 680
Properties of the HttpSessionState Class. 685
Methods of the HttpSessionState Class . 686

Working with a Session’s State . 686
Identifying a Session. 687
Lifetime of a Session. 693
Persist Session Data to Remote Servers . 695
Persist Session Data to SQL Server . 699

Customizing Session State Management . 704
Building a Custom Session State Provider . 704
Generating a Custom Session ID . 708

The View State of a Page . 710
The StateBag Class . 711
Common Issues with View State. 712
Programming the View State . 715

Summary. 720

ASP.NET Caching . 721
Caching Application Data . 721

The Cache Class . 722
Working with the ASP.NET Cache . 725
Practical Issues. 732
Designing a Custom Dependency . 737
A Cache Dependency for XML Data. 739
SQL Server Cache Dependency. 743

Distributed Cache . 744
Features of a Distributed Cache . 745
AppFabric Caching Services . 747
Other Solutions . 753

Caching ASP.NET Pages . 755
ASP.NET and the Browser Cache. 756
Making ASP.NET Pages Cacheable . 758
The HttpCachePolicy Class. 763
Caching Multiple Versions of a Page . 765

Caching Portions of ASP.NET Pages. 768
Advanced Caching Features . 774

Summary. 777

ASP.NET Security . 779
 Where the Threats Come From . 779
The ASP.NET Security Context . 781

Who Really Runs My ASP.NET Application? . 781
Changing the Identity of the ASP.NET Process 784
The Trust Level of ASP.NET Applications. 786
ASP.NET Authentication Methods . 789

Using Forms Authentication . 791
Forms Authentication Control Flow. 792
The FormsAuthentication Class . 796
Configuration of Forms Authentication . 798
Advanced Forms Authentication Features . 801

The Membership and Role Management API . 806
The Membership Class . 807
The Membership Provider . 812
Managing Roles. 817

Quick Tour of Claims-Based Identity . 821
Claims-Based Identity. 822
Using Claims in ASP.NET Applications . 824

Security-Related Controls . 825
The Login Control . 826
The LoginName Control. 828
The LoginStatus Control. 829
The LoginView Control . 830
The PasswordRecovery Control. 832
The ChangePassword Control . 833
The CreateUserWizard Control . 834

Summary. 835

The Client Side

Ajax Programming. 839
The Ajax Infrastructure . 840

The Hidden Engine of Ajax . 840
JavaScript and Ajax . 845

Partial Rendering in ASP.NET . 851
The ScriptManager Control . 852
The UpdatePanel Control. 860

Considerations Regarding Partial Rendering . 865
Configuring for Conditional Refresh . 866
Giving Feedback to the User. 870
The Ins and Outs of Partial Rendering. 876

REST and Ajax . 879
Scriptable Services . 880
JSON Payloads . 890
JavaScript Client Code . 893

Summary. 897

jQuery Programming . 899
Power to the Client . 899

Programming within the Browser . 900
The Gist of jQuery . 903

Working with jQuery . 905
Detecting DOM Readiness. 906
Wrapped Sets. 908
Operating on a Wrapped Set . 915
Manipulating the DOM . 920
The jQuery Cache . 923
Ajax Capabilities . 925
Cross-Domain Calls . 929

Summary. 932

Index . 933

About the Author. 965

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2011 by Dino Esposito

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

Library of Congress Control Number: 2011920853
ISBN: 978-0-7356-4338-3

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. For further infor mation about
international editions, contact your local Microsoft Corporation office or contact Microsoft Press International
directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments to mspinput@
microsoft.com.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
e-mail address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or
distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly by
this book.

Acquisitions Editor: Devon Musgrave
Developmental Editor: Devon Musgrave
Project Editor: Roger LeBlanc
Editorial Production: Waypoint Press
Technical Reviewer: Scott Galloway
Cover: Tom Draper Design

Body Part No. X17-45994

http://www.microsoft.com/mspress
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/

To Silvia, with love

 v

Contents at a Glance

Part I The ASP.NET Runtime Environment
 1 ASP.NET Web Forms Today . 3
 2 ASP.NET and IIS . 27
 3 ASP.NET Configuration. 63
 4 HTTP Handlers, Modules, and Routing . 119

Part II ASP.NET Pages and Server Controls
 5 Anatomy of an ASP.NET Page . 169
 6 ASP.NET Core Server Controls . 217
 7 Working with the Page . 269
 8 Page Composition and Usability. 319
 9 ASP.NET Input Forms . 365
 10 Data Binding . 411
 11 The ListView Control. 471
 12 Custom Controls . 513

Part III Design of the Application
 13 Principles of Software Design . 565
 14 Layers of an Application . 593
 15 The Model-View-Presenter Pattern . 615

Part IV Infrastructure of the Application
 16 The HTTP Request Context . 645
 17 ASP.NET State Management . 675
 18 ASP.NET Caching . 721
 19 ASP.NET Security . 779

Part V The Client Side
 20 Ajax Programming . 839
 21 jQuery Programming . 899

 vii

Table of Contents
Acknowledgments . xvii

Introduction .xix

Part I The ASP.NET Runtime Environment
 1 ASP.NET Web Forms Today . 3

The Age of Reason of ASP.NET Web Forms . 4
The Original Strengths . 4
Today’s Perceived Weaknesses . 8
How Much Is the Framework and How Much Is It You?. 11

The AJAX Revolution . 14
Moving Away from Classic ASP.NET. 15
AJAX as a Built-in Feature of the Web. 19

ASP.NET of the Future . 20
ASP.NET MVC. 21
ASP.NET Web Pages . 25

Summary. 26

 2 ASP.NET and IIS . 27
The Web Server Environment . 28

A Brief History of ASP.NET and IIS . 28
The Journey of an HTTP Request in IIS . 31
Some New Features in IIS 7.5 . 37

Deploying ASP.NET Applications . 39
XCopy Deployment for Web Sites . 40
Packaging Files and Settings. 43
Site Precompilation. 52
Configuring IIS for ASP.NET Applications . 55
Application Warm-up and Preloading . 59

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

http://www.microsoft.com/learning/booksurvey/

viii Table of Contents

 3 ASP.NET Configuration. 63
The ASP.NET Configuration Hierarchy. 63

Configuration Files . 64
The <location> Section . 68
The <system.web> Section . 71
Other Top-Level Sections. 105

Managing Configuration Data . 110
Using the Configuration API . 110
Encrypting a Section . 113

Summary. 117

 4 HTTP Handlers, Modules, and Routing . 119
Writing HTTP Handlers . 121

The IHttpHandler Interface . 121
The Picture Viewer Handler. 128
Serving Images More Effectively . 133
Advanced HTTP Handler Programming . 141

Writing HTTP Modules. 149
The IHttpModule Interface . 149
A Custom HTTP Module. 151
Examining a Real-World HTTP Module. 154

URL Routing . 156
The URL Routing Engine . 157
Routing in Web Forms . 160

Summary. 165

Part II ASP.NET Pages and Server Controls
 5 Anatomy of an ASP.NET Page . 169

Invoking a Page. 170
The Runtime Machinery. 170
Processing the Request . 174
The Processing Directives of a Page . 179

The Page Class . 190
Properties of the Page Class . 191
Methods of the Page Class . 194
Events of the Page Class. 198
The Eventing Model . 199
Asynchronous Pages. 201

 Table of Contents ix

The Page Life Cycle . 209
Page Setup . 209
Handling the Postback . 212
Page Finalization . 214

Summary. 215

 6 ASP.NET Core Server Controls . 217
Generalities of ASP.NET Server Controls . 218

Properties of the Control Class . 218
Methods of the Control Class . 228
Events of the Control Class . 229
Other Features . 230

HTML Controls. 235
Generalities of HTML Controls . 236
HTML Container Controls . 239
HTML Input Controls . 246
The HtmlImage Control . 252

Web Controls . 253
Generalities of Web Controls . 253
Core Web Controls . 256
Miscellaneous Web Controls. 262

Summary. 268

 7 Working with the Page . 269
Dealing with Errors in ASP.NET Pages . 269

Basics of Exception Handling . 270
Basics of Page Error Handling. 272
Mapping Errors to Pages . 278
Error Reporting . 283

Page Personalization . 285
Creating the User Profile . 285
Interacting with the Page . 292
Profile Providers . 300

Page Localization . 303
Making Resources Localizable . 304
Resources and Cultures . 308

Adding Resources to Pages . 312
Using Script Files . 312
Using Cascading Style Sheets and Images . 315

Summary. 317

x Table of Contents

 8 Page Composition and Usability. 319
Page Composition Checklist . 319

Working with Master Pages . 320
Writing a Content Page . 323
Processing Master and Content Pages . 329
Programming the Master Page. 333
Styling ASP.NET Pages . 336

Page Usability Checklist. 344
Cross-Browser Rendering . 344
Search Engine Optimization . 348
Site Navigation . 351
Configuring the Site Map . 357
Testing the Page . 361

Summary. 364

 9 ASP.NET Input Forms . 365
Programming with Forms . 365

The HtmlForm Class . 366
Multiple Forms. 368
Cross-Page Postings . 374

Validation Controls . 379
Generalities of Validation Controls . 379
Gallery of Controls . 382
Special Capabilities . 387

Working with Wizards . 397
An Overview of the Wizard Control. 397
Adding Steps to a Wizard . 402
Navigating Through the Wizard. 405

Summary. 409

 10 Data Binding . 411
Foundation of the Data Binding Model . 411

Feasible Data Sources. 412
Data-Binding Properties . 415

Data-Bound Controls . 421
List Controls . 421
Iterative Controls. 427
View Controls. 432

Data-Binding Expressions . 434

 Table of Contents xi

Simple Data Binding . 434
The DataBinder Class . 436

Managing Tables of Data. 438
The GridView’s Object Model . 439
Binding Data to the Grid . 443
Working with the GridView. 451

Data Source Components . 456
Internals of Data Source Controls . 456
The ObjectDataSource Control . 459

Summary. 469

 11 The ListView Control. 471
The ListView Control. 471

The ListView Object Model . 472
Defining the Layout of the List . 479
Building a Tabular Layout . 480
Building a Flow Layout . 485
Building a Tiled Layout . 487
Styling the List . 493

Working with the ListView Control . 496
In-Place Editing . 496
Conducting the Update . 499
Inserting New Data Items . 501
Selecting an Item . 505
Paging the List of Items . 507

Summary. 511

 12 Custom Controls . 513
Extending Existing Controls . 514

Choosing a Base Class. 514
A Richer HyperLink Control . 515

Building Controls from Scratch . 518
Base Class and Interfaces . 518
Choosing a Rendering Style . 520
The SimpleGaugeBar Control . 522
Rendering the SimpleGaugeBar Control . 527

Building a Data-Bound Control . 533
Key Features. 533
The GaugeBar Control . 535

xii Table of Contents

Building a Composite Templated Control. 543
Generalities of Composite Data-Bound Controls 544
The BarChart Control . 547
Adding Template Support . 556

Summary. 561

Part III Design of the Application
 13 Principles of Software Design . 565

The Big Ball of Mud . 566
Reasons for the Mud . 566
Alarming Symptoms . 567

Universal Software Principles . 569
Cohesion and Coupling . 569
Separation of Concerns . 571

SOLID Principles . 573
The Single Responsibility Principle . 573
The Open/Closed Principle . 575
Liskov’s Substitution Principle. 576
The Interface Segregation Principle . 579
The Dependency Inversion Principle . 580

Tools for Dependency Injection . 583
Managed Extensibility Framework at a Glance 584
Unity at a Glance . 587

Summary. 591

 14 Layers of an Application . 593
A Multitiered Architecture . 594

The Overall Design . 594
Methodologies . 595

The Business Layer . 596
Design Patterns for the BLL. 596
The Application Logic. 602

The Data Access Layer . 605
Implementation of a DAL . 605
Interfacing the DAL. 608
Using an Object/Relational Mapper . 610
Beyond Classic Databases . 613

Summary. 614

 Table of Contents xiii

 15 The Model-View-Presenter Pattern . 615
Patterns for the Presentation Layer . 615

The MVC Pattern . 616
The MVP Pattern . 619
The MVVM Pattern . 621

Implementing Model View Presenter . 623
Abstracting the View . 624
Creating the Presenter . 626
Navigation . 632

Testability in Web Forms with MVP. 636
Writing Testable Code . 637
Testing a Presenter Class . 639

Summary. 642

Part IV Infrastructure of the Application
 16 The HTTP Request Context . 645

Initialization of the Application . 645
Properties of the HttpApplication Class . 645
Application Modules . 646
Methods of the HttpApplication Class. 647
Events of the HttpApplication Class . 648

The global.asax File. 651
Compiling global.asax . 652
Syntax of global.asax . 653

The HttpContext Class . 656
Properties of the HttpContext Class. 656
Methods of the HttpContext Class . 658

The Server Object . 660
Properties of the HttpServerUtility Class . 660
Methods of the HttpServerUtility Class . 660

The HttpResponse Object . 663
Properties of the HttpResponse Class . 664
Methods of the HttpResponse Class. 667

The HttpRequest Object. 670
Properties of the HttpRequest Class . 670
Methods of the HttpRequest Class . 673

Summary. 674

xiv Table of Contents

 17 ASP.NET State Management . 675
The Application’s State. 676

Properties of the HttpApplicationState Class . 676
Methods of the HttpApplicationState Class . 677
State Synchronization. 678
Tradeoffs of Application State . 679

The Session’s State . 680
The Session-State HTTP Module. 680
Properties of the HttpSessionState Class. 685
Methods of the HttpSessionState Class . 686

Working with a Session’s State . 686
Identifying a Session. 687
Lifetime of a Session. 693
Persist Session Data to Remote Servers . 695
Persist Session Data to SQL Server . 699

Customizing Session State Management . 704
Building a Custom Session State Provider . 704
Generating a Custom Session ID . 708

The View State of a Page . 710
The StateBag Class . 711
Common Issues with View State. 712
Programming the View State . 715

Summary. 720

 18 ASP.NET Caching . 721
Caching Application Data . 721

The Cache Class . 722
Working with the ASP.NET Cache . 725
Practical Issues. 732
Designing a Custom Dependency . 737
A Cache Dependency for XML Data. 739
SQL Server Cache Dependency. 743

Distributed Cache . 744
Features of a Distributed Cache . 745
AppFabric Caching Services . 747
Other Solutions . 753

Caching ASP.NET Pages . 755
ASP.NET and the Browser Cache. 756

 Table of Contents xv

Making ASP.NET Pages Cacheable . 758
The HttpCachePolicy Class. 763
Caching Multiple Versions of a Page . 765
Caching Portions of ASP.NET Pages. 768
Advanced Caching Features . 774

Summary. 777

 19 ASP.NET Security . 779
 Where the Threats Come From . 779
The ASP.NET Security Context . 781

Who Really Runs My ASP.NET Application? . 781
Changing the Identity of the ASP.NET Process 784
The Trust Level of ASP.NET Applications. 786
ASP.NET Authentication Methods . 789

Using Forms Authentication . 791
Forms Authentication Control Flow. 792
The FormsAuthentication Class . 796
Configuration of Forms Authentication . 798
Advanced Forms Authentication Features . 801

The Membership and Role Management API . 806
The Membership Class . 807
The Membership Provider . 812
Managing Roles. 817

Quick Tour of Claims-Based Identity . 821
Claims-Based Identity. 822
Using Claims in ASP.NET Applications . 824

Security-Related Controls . 825
The Login Control . 826
The LoginName Control. 828
The LoginStatus Control. 829
The LoginView Control . 830
The PasswordRecovery Control. 832
The ChangePassword Control . 833
The CreateUserWizard Control . 834

Summary. 835

xvi Table of Contents

Part V The Client Side
 20 Ajax Programming . 839

The Ajax Infrastructure . 840
The Hidden Engine of Ajax . 840
JavaScript and Ajax . 845

Partial Rendering in ASP.NET . 851
The ScriptManager Control . 852
The UpdatePanel Control. 860

Considerations Regarding Partial Rendering . 865
Configuring for Conditional Refresh . 866
Giving Feedback to the User. 870
The Ins and Outs of Partial Rendering. 876

REST and Ajax . 879
Scriptable Services . 880
JSON Payloads . 890
JavaScript Client Code . 893

Summary. 897

 21 jQuery Programming . 899
Power to the Client . 899

Programming within the Browser . 900
The Gist of jQuery . 903

Working with jQuery . 905
Detecting DOM Readiness. 906
Wrapped Sets. 908
Operating on a Wrapped Set . 915
Manipulating the DOM . 920
The jQuery Cache . 923
Ajax Capabilities . 925
Cross-Domain Calls . 929

Summary. 932

 Index . 933

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

http://www.microsoft.com/learning/booksurvey/

 xvii

Acknowledgments
As is usual for a book, the cover of this book shows only the name of the author, but in no
way can an author produce a book all alone. In fact, a large ensemble of people made this
book happen. First, I want to thank Devon Musgrave for developing the idea and scheduling
new books for me to author at an amazingly quick pace for the next two years!

Next comes Roger LeBlanc, whom I’ve had the pleasure to have as a copy editor on previous
books of mine—including the first edition of this Programming ASP.NET book (Microsoft
Press, 2003). This time, Roger assisted me almost every day—not just as the copy editor,
but also as the development manager. I dare to say that as my English gets a little bit better
 every year, the amount of copy editing required does not amount to much for a diligent
 editor like Roger. So he decided to take on extra tasks.

In the middle of this project, I had to take a short break to have back surgery. The surgery
increased the number of lengths I could swim and improved my tennis game, especially
the penetration of my first serve and my top-spin backhand, but it put a temporary stop to
my progress on the book. As a result, Roger and I had to work very hard to get the book
 completed on a very tight schedule.

Steve Sagman handled the production end of the book—things like layout, art, indexing,
proofreading, prepping files for printing, as well as the overall project management. Here,
too, the tight schedule required a greater effort than usual. Steve put in long days as well as
weekends to keep everything on track and to ensure this edition equals or exceeds the high
standards of previous editions.

Scott Galloway took the responsibility of ensuring that this book contains no huge technical
mistakes or silly statements. As a technical reviewer, Scott provided me with valuable insights,
especially about the rationale of some design decisions in ASP.NET. Likewise, he helped me
understand the growing importance JavaScript (and unobtrusive JavaScript) has today for
Web developers. Finally, Scott woke me up to the benefits of Twitter, as tweeting was often
the quickest way to get advice or reply to him.

To all of you, I owe a monumental “Thank you” for being so kind, patient, and accurate.
Working with you is a privilege and a pleasure, and it makes me a better author each time.
And I still have a long line of books to author.

My final words are for Silvia, Francesco, and Michela, who wait for me and keep me busy.
But I’m happy only when I’m busy.

—Dino

 xix

Introduction
In the fall of 2004, at a popular software conference I realized how all major component
vendors were advertising their ASP.NET products using a new word—Ajax. Only a few weeks
later, a brand new module in my popular ASP.NET master class made its debut—using Ajax
to improve the user experience. At its core, Ajax is a little thing and fairly old too—as I
 presented the engine of it (XmlHttpRequest) to a C++ audience at TechEd 2000, only four
weeks before the public announcement of the .NET platform.

As emphatic as it may sound, that crazy little thing called Ajax changed the way we approach
Web development. Ajax triggered a chain reaction in the world of the Web. Ajax truly repre-
sents paradigm shift for Web applications. And, as the history of science proves, a paradigm
shift always has a deep impact, especially in scenarios that were previously stable and con-
solidated. We are now really close to the day we will be able to say “the Web” without feeling
the need to specify whether it contains Ajax or not. Just the Web—which has a rich client
component, a made-to-measure layer of HTTP endpoints to call, and interchangeable styles.

Like it or not, the more we take the Ajax route, the more we move away from ASP.NET
Web Forms. In the end, it’s just like getting older. Until recently, Web Forms was a fantastic
 platform for Web development. The Web, however, is now going in a direction that Web
Forms can’t serve in the same stellar manner.

No, you didn’t pick up the wrong book, and you also did not pick up the wrong technology
for your project.

It’s not yet time to cease ASP.NET Web Forms development. However, it’s already time for
you to pay a lot more attention to aspects of Web development that Web Forms specifically
and deliberately shielded you from for a decade—CSS, JavaScript, and HTML markup.

In my ASP.NET master class, I have a lab in which I first show how to display a data-bound
grid of records with cells that trigger an Ajax call if clicked. I do that in exactly the way one
would do it—as an ASP.NET developer. Next, I challenge attendees to rewrite it without inline
script and style settings. And yes—a bit perversely—I also tell anyone who knows jQuery
not to use it. The result is usually a thoughtful and insightful experience, and the code I
come up with gets better every time. ASP.NET Web Forms is not dead, no matter what
ASP.NET MVC—the twin technology—can become. But it’s showing signs of age. As a
 developer, you need to recognize that and revive it through robust injections of patterns,
JavaScript and jQuery code, and Ajax features.

In this book, I left out some of the classic topics you found in earlier versions, such as
ADO.NET and even LINQ-to-SQL. I also reduced the number of pages devoted to controls.
I brought in more coverage of ASP.NET underpinnings, ASP.NET configuration, jQuery, and
 patterns and design principles. Frankly, not a lot has changed in ASP.NET since version 2.0.

xx Introduction

Because of space constraints, I didn’t cover some rather advanced aspects of ASP.NET
 customization, such as expression builders, custom providers, and page parsers. For coverage
of those items, my older book Programming Microsoft ASP.NET 2.0 Applications: Advanced
Topics (Microsoft Press, 2006) is still a valid reference in spite of the name, which targets the
2.0 platform. The new part of this book on principles of software design is a compendium
of another pretty successful book of mine (actually coauthored with Andrea Saltarello)—
Microsoft .NET: Architecting Applications for the Enterprise (Microsoft Press, 2008).

Who Should Read This Book?
This is not a book for novice developers and doesn’t provide a step-by-step guide on how
to design and code Web pages. So the book is not appropriate if you have only a faint idea
about ASP.NET and expect the book to get you started with it quickly and effectively. Once
you have grabbed hold of ASP.NET basic tasks and features and need to consolidate them,
you enter the realm of this book.

You won’t find screen shots here illustrating Microsoft Visual Studio wizards, nor any
 mention of options to select or unselect to get a certain behavior from your code. Of course,
this doesn’t mean that I hate Visual Studio or that I’m not recommending Visual Studio
for developing ASP.NET applications. Visual Studio is a great tool to use to write ASP.NET
 applications but, judged from an ASP.NET perspective, it is only a tool. This book, instead, is
all about the ASP.NET core technology.

I do recommend this book to developers who have knowledge of the basic steps required to
build simple ASP.NET pages and easily manage the fundamentals of Web development. This
book is not a collection of recipes for cooking good (or just functional) ASP.NET code. This
book begins where recipes end. It explains to you the how-it-works, what-you-can-do, and
why-you-should-or-should-not aspects of ASP.NET. Beginners need not apply, even though
this book is a useful and persistent reference to keep on the desk.

System Requirements
You’ll need the following hardware and software to build and run the code samples for
this book:

■ Microsoft Windows 7, Microsoft Windows Vista, Microsoft Windows XP with Service
Pack 2, Microsoft Windows Server 2003 with Service Pack 1, or Microsoft Windows
2000 with Service Pack 4.

■ Any version of Microsoft Visual Studio 2010.

 Introduction xxi

■ Internet Information Services (IIS) is not strictly required, but it is helpful for testing
sample applications in a realistic runtime environment.

■ Microsoft SQL Server 2005 Express (included with Visual Studio 2008) or Microsoft SQL
Server 2005, as well as any newer versions.

■ The Northwind database of Microsoft SQL Server 2000 is used in most examples in this
book to demonstrate data-access techniques throughout the book.

■ 766-MHz Pentium or compatible processor (1.5-GHz Pentium recommended).

■ 256 MB RAM (512 MB or more recommended).

■ Video (800 x 600 or higher resolution) monitor with at least 256 colors (1024 x 768 High
Color 16-bit recommended).

■ CD-ROM or DVD-ROM drive.

■ Microsoft Mouse or compatible pointing device.

Code Samples
All of the code samples discussed in this book can be downloaded from the book’s
 Companion Content page accessible via following address:

http://go.microsoft.com/fwlink/?Linkid=209772

Errata & Book Support
We’ve made every effort to ensure the accuracy of this book and its companion content. If
you do find an error, please report it on our Microsoft Press site at oreilly.com:

 1. Go to http://microsoftpress.oreilly.com.

 2. In the Search box, enter the book’s ISBN or title.

 3. Select your book from the search results.

 4. On the book’s catalog page, under the cover image, you’ll see a list of links.

 5. Click View/Submit Errata.

You’ll find additional information and services for your book on its catalog page. If you need
additional support, please e-mail Microsoft Press Book Support at mspinput@microsoft.com.

Please note that product support for Microsoft software is not offered through the
addresses above.

http://go.microsoft.com/fwlink/?Linkid=209772
http://microsoftpress.oreilly.com
mailto:mspinput@microsoft.com

xxii Introduction

We Want to Hear from You
At Microsoft Press, your satisfaction is our top priority, and your feedback our most
 valuable asset. Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey.

The survey is short, and we read every one of your comments and ideas. Thanks in advance
for your input!

Stay in Touch
Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress.

http://www.microsoft.com/learning/booksurvey
http://twitter.com/MicrosoftPress

Programming Microsoft® ASP.NET 4

 1

Part I

The ASP.NET Runtime
Environment

In this part:
Chapter 1: ASP.NET Web Forms Today . 3
Chapter 2: ASP.NET and IIS . 27
Chapter 3: ASP.NET Configuration . 63
Chapter 4: HTTP Handlers, Modules, and Routing . 119

 3

Chapter 1

ASP.NET Web Forms Today
Inspiration is wonderful when it happens, but the writer must develop an approach
for the rest of the time. The wait is simply too long.

—Leonard Bernstein

In its early years, the Web pushed an unusual programming model and a set of programming
tools and languages that were unknown or unfamiliar to the majority of programmers.
Anybody who tried to build even a trivial Web site in the 1990s had to come to grips with
the HTML syntax and at least the simplest JavaScript commands and objects. That required
developing a brand new skill set, which forced people to neglect other, perhaps more
 productive, activities.

The code and user interface of Web pages—sometimes referred to as the markup mix—
had to be written manually in the past decade. And this created a sort of trench separating
 die-hard C/C++/Java programmers from freaky Web developers. And a growing number
of developers using Microsoft Visual Basic were left sitting in the middle and, in some way,
were kept from taking a decisive step in either direction—whether it was toward C++ server
 programming or client Web programming.

Microsoft scored a remarkable victory in the Web industry with the introduction of the
ASP.NET platform back in 2001. ASP.NET opened the doors of Web development to a huge
number of professionals and contributed to changing the development model of Web ap-
plications. ASP.NET wasn’t alone in producing this effort. ASP.NET followed up the progress
made by at least a couple of earlier technologies: classic Active Server Pages (ASP) and Java
Server Pages (JSP).

So ASP.NET was a success and, more importantly, it has been adopted for nearly any new
Web project that has been started in the past decade when targeting the Microsoft platform.
Today, ASP.NET is unanimously considered a stable, mature, and highly productive platform
for Web development.

Microsoft significantly improved and refined ASP.NET along the way. Today ASP.NET includes
a number of extensibility points that weren’t part of it in the beginning. It also offers a rich
platform for AJAX development, and built-in controls have been adapted to better support
cascading style sheet (CSS) and XHTML requirements.

For a long time, “ASP.NET” just referred to applications written using the Web Forms program-
ming model. More specifically, we could say that ASP.NET refers to the underlying platform
and runtime environment whereas “Web Forms” refers to how you create your pages and
 applications. For about a decade, the two terms mostly were used interchangeably.

4 Part I The ASP.NET Runtime Environment

A decade is a lot of time, however, especially in the software world. An alternative framework
for Web development—ASP.NET MVC—is available these days, and it’s growing and matur-
ing quickly. Is ASP.NET Web Forms still an excellent option for companies developing Web
applications? Is the Web Forms model the best model possible? Should we look around for
an alternative approach?

While the present book is all about architecting Web applications for the ASP.NET 4 platform
and using the Web Forms model, this first chapter offers an annotated overview of the Web
Forms model and attempts to outline future developments of Web frameworks for the
Microsoft platform.

Note In this book (and other works of mine), you might sometimes find the term “classic
ASP.NET” used to refer to ASP.NET applications written according to the Web Forms
 programming model. The term is analogous to “classic ASP,” which is often used to distinguish
the Active Server Pages technology from ASP.NET Web Forms.

The Age of Reason of ASP.NET Web Forms
ASP.NET was devised in the late 1990s as a way to improve on the current best practices
defined by ASP developers. Many of these practices were engineered and baked into a new
framework. Even better, the framework was perfectly integrated with the emerging Rapid
Application Development (RAD) model that was largely responsible for the success of Visual
Basic.

At the time, RAD was coming out as a lightweight, and often more effective, alternative to
object-oriented programming (OOP). With a RAD approach supported by visual designers
and editors, nearly everybody could quickly and easily prototype, demonstrate, and test an
application in a matter of minutes. There was no need for the extra complexity and analysis
work required by more theoretical (and bothersome?) approaches like object-oriented design
and programming. “You don’t need object-orientation and software principles to write good
and effective software on time”—that was the payoff offered by the advertising campaign
promoting RAD about a decade ago.

The Original Strengths
The ASP.NET Web Forms model was originally devised to bring the power of RAD to the
world of the Web. Hence, the quest for productivity was the primary driving force behind
most of the features that still represent the major characteristics and pillars of ASP.NET.

There are three pillars to the Web Forms model: page postbacks, view state, and server
 controls. They work together according to the model depicted in Figure 1-1.

 Chapter 1 ASP.NET Web Forms Today 5

http://

Initialize page
controls

Apply view state

Process posted data HTML rendering

New view state

Postback event

Web server

FIGURE 1-1 The Web Forms model in action.

Each HTTP request that hits the Web server and is mapped to the ASP.NET runtime goes
through a number of stages centered on the processing of the postback event. The postback
event is the main action that the user expects out of her request.

First, the request is processed to extract preparatory information for the successive postback
action. Information includes the state of controls that altogether will produce the final
HTML for the page. Following the postback, the HTML response is arranged for the browser,
 including the new state of controls to be used upon the next request.

All of the server-side steps are wrapped up together according to the definition of the
Page Controller pattern. In light of this, each request is seen as processed by a control-
ler entity ultimately responsible for outputting an HTML page. The page controller entity
is implemented as a class that fires a few events in the developer’s code, thus giving the
 developer a way to interact with the request and influence the final output.

To better understand the sense of the Web Forms model and the reasons for its success, look
at the following code snippet:

void Button1_Click(Object sender, EventArgs args)
{
 Label1.Text = TextBox1.Text;
}

Defined in a Web Forms class, the Button1_Click function represents the handler of a
postback event. When the user clicks the HTML element with a matching ID (in this case,
Button1), a request occurs that is resolved by running the code just shown. If it weren’t
for the stateless nature of the Web protocols, this would be like the standard event-driven
 programming model that many of us used (and enjoyed) in the early Visual Basic days of the
late 1990s.

In the body of the handler method, you can access in a direct manner any other page
 elements and set its state accordingly as if you were just touching on the user interface.

http://Initialize
http://Initialize

6 Part I The ASP.NET Runtime Environment

Interestingly enough, though, the preceding code runs on the Web server and needs a bit
of extra work to mediate between the client HTML and the server environment. But it works,
and it is easy—extraordinarily easy—to understand and apply.

Page Postbacks
An ASP.NET page is based on a single form component that contains all of the input
 elements the user can interact with. The form can also contain submission elements such as
buttons or links.

A form submission sends the content of the current form to a server URL—by default, the
same URL of the current page. The action of posting content back to the same page is known
as the postback action. In ASP.NET, the page submits any content of its unique form to itself.
In other words, the page is a constituent block of the application and contains both a visual
interface and some logic to process user gestures.

The click on a submit button or a link instructs the browser to request a new instance of the
same page from the Web server. In doing so, the browser also uploads any content available
in the (single) page’s form. On the server, the ASP.NET runtime engine processes the request
and ends up executing some code. The following code shows the link between the button
component and the handler code to run:

<asp:Button runat="server" ID="Button1" OnClick="Button1_Click" />

The running code is the server-side handler of the original client-side event. From within the
handler, the developer can update the user interface by modifying the state of the server
controls, as already shown and as reiterated here:

public void Button1_Click(object sender, EventArgs args)
{
 // Sets the label to display the content of the text box
 Label1.Text = "The textbox contains: " + TextBox1.Text;
}

At the time the handler code runs, any server controls on the page have been updated to
hold exactly the state they had during the last request to the page, plus any modifications
resulting from posted data. Such stateful behavior is largely expected in a desktop scenario;
in ASP.NET, however, it requires the magic of page postbacks.

The View State
The view state is a dictionary that ASP.NET pages use to persist the state of their child
 controls across postbacks. The view state plays an essential role in the implementation of the
postback model. No statefulness would be possible in ASP.NET without the view state.

 Chapter 1 ASP.NET Web Forms Today 7

Before ASP.NET, in classic, VBScript-based ASP, developers frequently used hidden fields to
track critical values across two successive requests. This approach was necessary when mul-
tiple HTML forms were used in the page. Posting from one would, in fact, reset any values in
the fields within the other. To make up for this behavior, the values to track were stored in a
hidden field and employed to programmatically initialize fields during the rendering of the
page.

The view state is just an engineered and extended version of this common trick. The view
state is a unique (and encoded) hidden field that stores a dictionary of values for all controls
in the (unique) form of an ASP.NET page.

By default, each page control saves its entire state—all of its property values—to the view
state. In an average-sized page, the view state takes up a few dozen KBs of extra data. This
data is downloaded to the client and uploaded to the server with every request for the page.
However, it is never used (and should not be used) on the client. The size of the view state
has been significantly reduced over the years, but today the view state is still perceived as
something that has a heavy impact on bandwidth.

It is definitely possible to write pages that minimize the use of the view state for a shorter
download, but the view state remains a fundamental piece of the ASP.NET Web Forms
 architecture. To eliminate the view state from ASP.NET, a significant redesign of the
 platform would be required.

ASP.NET 4 introduces new features that deliver to developers more control over the size of
the view state without compromising any page functionality.

Server Controls
Server controls are central to the ASP.NET Web Forms model. The output of an ASP.NET page
is defined using a mix of HTML literals and markup for ASP.NET server controls. A server con-
trol is a component with a public interface that can be configured using markup tags, child
tags, and attributes. Each server control is characterized by a unique ID and is fully identified
by that.

In the ASP.NET page markup, the difference between a server control and a plain HTML
 literal string is the presence of the runat attribute. Anything in the source devoid of the
runat attribute is treated as literal HTML and is emitted to the output response stream as is.
Anything flagged with the runat attribute is identified as a server control.

Server controls shield developers from the actual generation of HTML and JavaScript code.
Programming a server control is as easy as setting properties on a reusable component.
When processed, though, the server control emits HTML. In the end, programming server
controls is a way of writing HTML markup without knowing much about its unique syntax
and feature set.

8 Part I The ASP.NET Runtime Environment

Server controls consume view state information and implement postback events. In addition,
server controls are responsible for producing markup and do that without strictly requiring
strong HTML skills on your end.

Today’s Perceived Weaknesses
In the beginning of ASP.NET Web Forms, requiring very limited exposure to HTML and
JavaScript was definitely a plus. However, the bold advent of AJAX in the middle of the past
decade modified the perspective of Web applications and, more importantly, significantly
changed user expectations of them. As a result, much more interaction and responsiveness
are required.

To increase the degree of responsiveness of Web applications, you can increase the amount
of script code that runs within the browser only when a given page is being displayed. This
simple fact raised the need for developers to gain much more control over the actual markup
being sent out.

More Control over HTML
To code AJAX features, developers need to make clear and reliable assumptions about the
structure of the Document Object Model (DOM) displayed within the browser. It turns out
that smart black boxes, which are what ASP.NET server controls were initially conceived as,
are no longer ideal tools to build Web pages.

Developers need to be sure about the layout of the HTML being output; likewise, developers
need to control the ID of some internal elements being inserted into the resulting DOM. The
adoption of the Web model in a large area of the industry and the public sector has resulted
in the creation of applications with a potential audience of a few million people—not neces-
sarily power users, perhaps users with disabilities, and not necessarily users equipped with
the latest version of a given browser. And still developers are tasked with ensuring that all of
this heterogeneous audience has the best experience and a common interface.

As you can see, the advent of AJAX brought about the complete turnaround of one of the
ASP.NET pillars. Originally designed to favor independence from HTML, ASP.NET is now asked
to favor a programming model that heralds total control over HTML. As you’ll see in the rest
of the book, although this is far from being a mission-impossible task, it requires you to pay
much more attention to how you configure controls and design pages. It also requires you,
on your own, to attain a lot more awareness of the capabilities of the platform.

 Chapter 1 ASP.NET Web Forms Today 9

Separation Between Processing and Rendering
ASP.NET made the Web really simple to work with and made every developer a lot more
 productive. To achieve this result, ASP.NET was designed to be UI focused. All you do as a
page developer is author pages and the code that runs behind the page.

The page gets input; the page posts back; the page determines the output for the browser.
The underlying model leads you to perceive any requests simply as a way to generate HTML
through a page. The page entity dwarfs anything else; you don’t really see any correspon-
dence between a request and a subsequent server action. All you see is an incoming HTTP
request and a server page object that takes care of it and returns HTML.

In this model, there’s no clear separation between the phase of processing the request to
grab raw data to be incorporated in the response (for example, a list of records to be dis-
played in a grid) and the phase of formatting the raw data into an eye-catching, nice-looking
layout.

Again, you’ll see in the rest of the book that achieving separation between processing and
rendering is definitely possible in ASP.NET Web Forms and is not at all a mission-impossible
task. However, it requires that you pay a lot more attention and have more discipline when
it comes to writing pages and the code behind pages. Figure 1-2 extends the schema of
Figure 1-1 and provides a more detailed view of the page-based pattern used to process
 requests in ASP.NET Web Forms. (I’ll return in a moment to the Page Controller pattern.)

http://

Initialize page
controls

Apply view state

Process posted data

HTML rendering

New view state

Postback event

Web server

HTML
page

FIGURE 1-2 ASP.NET request processing and HTML rendering.

http://Initialize
http://Initialize

10 Part I The ASP.NET Runtime Environment

The entire processing of an HTTP request is done by progressively updating the state of the
server controls the page is made of. At the end of the cycle, the current state of controls is
flushed to the response output stream and carried to the browser. The entire cycle is based
on the idea of building a page, not performing an action and showing its results.

For years, this aspect of Web Forms was just accepted for what it was, with no special com-
plaints and some praises. Today, the growing complexity of the business logic of applications
built on top of the ASP.NET platform raises the need for unit tests and static analysis that are
harder to set up in a runtime environment strongly focused on the plain UI.

Again what was a huge winning point in the beginning is now slowly turning into a significant
weakness.

Lightweight Pages
The view state is a fundamental element of the ASP.NET puzzle because it allows for the
simulated statefulness of the Web Forms model. Many developers who recently embraced
ASP.NET MVC—the alternate framework for ASP.NET development fully integrated in Visual
Studio 2010—still find it hard to understand that each view can have shared data that must
be refilled even though nothing in the request processing happened to modify it. More
simply, it is the lack of view state that keeps any UI element (grids, drop-down lists, and text
boxes) empty until explicitly filled on each and every request.

The view state has always been a controversial feature of ASP.NET. Starting with ASP.NET
2.0 (some five years ago), however, Microsoft introduced significant changes to the internal
implementation of the view state and reduced the average size of the view state hidden field
by a good 40 percent.

The view state is functional only to an application model extensively based on server controls
and using server controls extensively to generate HTML. At a time when architects ques-
tion the applicability of the classic ASP.NET model to their applications and look for more
client-side interaction, separation of concerns (SoC), and control over the markup, the view
state feature—a pillar of ASP.NET—is not that significant. Hence, it is now, more than ever,
 perceived as deadweight to get rid of.

Important More and more applications require pages rich with client code that limit the
 number of postbacks and replace many postbacks with AJAX calls. In this context, Web Forms
can be adapted—maybe even to a great degree—but the approach has some architectural
 limitations that must be known and taken into account. These limitations are not necessarily
something that would make you lean toward an alternate framework such as ASP.NET MVC, but
they also are not something a good architect can blissfully ignore.

 Chapter 1 ASP.NET Web Forms Today 11

How Much Is the Framework and How Much Is It You?
Introduced a decade ago, ASP.NET Web Forms has evolved and has been improved over the
years. Its flexible design allowed for a lot of changes and improvements to be made, and the
framework is still effective and productive. Although the design of the ASP.NET framework
was inspired by a totally different set of principles and priorities than the ones you would
 apply today, most of the alleged limitations of ASP.NET that I’ve outlined so far (heavyweight
pages, limited control over markup, lack of testability) can still be largely worked out,
smoothed over, and integrated to serve up an effective solution. This is to say that the advent
of a new framework such as ASP.NET MVC doesn’t necessarily mean that ASP.NET Web Forms
(and, with it, your existing skills) are out of place. There’s always a strong reason for new
things (frameworks in this regard) to be developed, but understanding needs, features, and
capabilities is still the only proven way of dealing with hard decisions and architecture.

ASP.NET Web Forms is designed around the Page Controller pattern. Let’s find out a bit more
about the pattern and what you can do to limit some of its current downsides.

The Page Controller Pattern
The ASP.NET Web Forms model resolves an incoming request by dispatching the request to
an HTTP handler component. (An HTTP handler component is simply a class that implements
the IHttpHandler interface.) According to the ASP.NET Web Forms model, the HTTP handler
is expected to return HTML for the browser. (You’ll find out more about HTTP handlers in
Chapter 4, “HTTP Handlers, Modules, and Routing.”) The way in which the HTML for the
browser is prepared is strongly oriented to the creation of a Web page. The pattern behind
this approach is the Page Controller pattern.

The pattern envisions the processing of a request as a task that goes through a number of
steps, such as instantiating the page, initializing the page, restoring the page’s state, updat-
ing the page, rendering the page, and unloading the page. Some of these steps have been
rendered in Figure 1-2, and all of them will be discussed in detail in Chapter 2, “ASP.NET
and IIS,” and in Chapter 3.

In the implementation of the pattern, you start from a base page class and define a strategy
to process the request—the page life cycle. In the implementation of the page life cycle,
you come up with an interface of virtual methods and events that derived pages will have to
override and handle. (See Figure 1-3.)

12 Part I The ASP.NET Runtime Environment

IHttpHandler

void ProcessRequest
{

}

Postback PreRenderLoadInit Unload

System.Web.UI.Page

Your code-behind class

Life Cycle

Implementation

public Default : System.Web.UI.Page
{

}

FIGURE 1-3 The internal page life cycle exposed to user code via page controller classes.

Derived page classes are known as code-behind classes in ASP.NET jargon. Writing an
ASP.NET page ultimately means writing a code-behind class plus adding a description of the
user interface you expect for it. The code-behind class is the repository of any logic you need
to serve any possible requests that can be originated by the input elements in the page. A
code-behind class derives from a system class—the System.Web.UI.Page class.

Taken individually, a code-behind class is simply the “controller” object responsible for
 processing a given request. In the context of an application, on the other hand, it can lead
you to building a small hierarchy of classes, as shown in Figure 1-4.

 Chapter 1 ASP.NET Web Forms Today 13

Dynamically created page class
(ASP.filename_aspx)

Code-behind class
(YourApp.YourPage)

Custom hierarchy of controller class
(YourApp.YourController)

Page controller class
(System.Web.UI.Page)

Application
(mandatory)

Application
(optional)

Framework

Runtime

FIGURE 1-4 A sample hierarchy of classes.

Your code-behind class can inherit from the system base class or from intermediate classes
with a richer behavior. Developers can extend the hierarchy shown in the figure at will.
Especially in large applications, you might find it useful to create intermediate page classes to
model complex views and to fulfill sophisticated navigation rules. Building a custom hierarchy
of page classes means placing custom classes in between the page controller and the actual
code-behind class.

The ultimate reason for having a custom hierarchy of pages is to customize the page con-
troller, with the purpose of exposing a tailor-made life cycle to developers. An intermediate
class, in fact, will incorporate portions of common application behavior and expose specific
new events and overridable methods to developers.

Revisiting the Page Controller Pattern
Today the main focus of Web architectures is more oriented toward the action rather than
the concrete result. This is essentially because of a paradigm shift that generalized the use of
the Web tool—it’s no longer just a way to get HTML pages but is a lower level producer of
data with its own (variable) representation.

14 Part I The ASP.NET Runtime Environment

To serve the needs of the new Web, you probably don’t need all the thick abstraction layer
that purposely was added on top of the Web Forms model ten years ago with the precise
goal of simplifying the production of the sole conceivable output—the HTML page.

A framework like ASP.NET MVC—even though it is built on the same runtime environment
as ASP.NET Web Forms—will always adhere more closely than ASP.NET Web Forms to the
new paradigm. It’s a matter of structure, skeleton, and posture; it’s not a matter of gesture
or behavior. However, there’s some room for teams of developers to revisit the Web Forms
model and change its posture to achieve benefits in terms of both testability and separation
of concerns.

Revisiting the Page Controller pattern today means essentially taking into account design
patterns that privilege separation of concerns between involved parts of the system. This
probably doesn’t mean that you can rearrange the entire page life cycle—you need a new
framework for that similar to ASP.NET MVC—but you can restructure some portions of
the page life cycle to isolate portions of code as distinct components that are testable and
 writable in isolation.

For example, revisiting the Page Controller pattern means applying the Model View
Presenter (MVP) pattern to decouple the implementation of the postback mechanism with
the subsequent rendering of the view. We’ll get back to this topic in Chapter 15, “The Model-
View-Presenter Pattern.”

In the end, in the second decade of the 2000s ASP.NET Web Forms is approaching an archi-
tectural dead end. On one hand, it is recommended that you do not unconsciously ignore
newer frameworks (for example, ASP.NET MVC); on the other hand, however, Web Forms is
still highly effective, mature, and functional and certainly doesn’t prevent you from achieving
great results.

Whether you’re considering shifting to ASP.NET MVC or sticking to Web Forms, it is essential
that you reconsider the design and architecture of your views and pages. The classic Page
Controller pattern is getting obsolete and needs solutions to make it more testable and
layered. An effective Web Forms application today needs separation of concerns, interface-
based programming, and cohesive components. No framework will give you that free of
charge, but with Web Forms you need a great deal of awareness and commitment.

The AJAX Revolution
Like it or not, the Web is changing, and this time it is changing for developers and architects.
In the evolution of software, we first observe a spark of genius triggering an innovative pro-
cess and the teaching of new tricks and new ways of doing things. In this case, it was the
spark of AJAX and the need to build effective and rich user experiences. Next, developers

 Chapter 1 ASP.NET Web Forms Today 15

start generalizing and abstracting things to make them reusable and easy to replicate
 repeatedly in a variety of scenarios. When this happens, we have a paradigm shift.

Today we are moving away from many of the ideas and pillars of Web Forms. It’s not a
 process that has a well-known and defined completion date yet, but nobody doubts that
such a day is in our near future.

The spark of AJAX was just the realization that we can place out-of-band requests, bypass the
classic browser machinery, and gain total control of the request and subsequent response. Is
this just a little, geeky detail? Maybe, but this little detail triggered a huge transformational
process—an entire paradigm shift—whose results will be clear and definitive only in a few
years. That’s my guess, at least. Let’s briefly consider what paradigm shifts are and what they
mean (and have meant) to humans throughout history.

Moving Away from Classic ASP.NET
As drastic as it might sound, the Web revolutionized the concept of an application. Now
AJAX is revolutionizing the concept of a Web application. The Web will always remain
 separate from the desktop, but Web applications are going to enter a new age.

What’s a Paradigm Shift?
According to Wikipedia, a paradigm shift describes a change in most of the basic
 assumptions within the ruling theory of a science. The shift creates a break and clearly
 contrasts with the current ideas and approaches. A paradigm shift is a long process that
 begins naturally when enough significant limitations and anomalies have been found within
the current state of the art in a discipline.

At this point, new ideas are tried—often ideas that were considered years before and then
discarded. The community proceeds by trial and error, experimenting and trying to come
to general conclusions. Inevitably, a paradigm shift puts the discipline into a state of crisis.
(This is the term used by Thomas Kuhn, who coined the term paradigm shift and formalized
these concepts.) The state of crisis manifests itself through a number of attempts to change,
each presented as possibly definitive but that hardly work for everybody, at least in the
 original form.

The impact of a paradigm shift is particularly deep in areas that appear to be stable and
mature. A great example of a paradigm shift is the changes in physics at the beginning of
the twentieth century. Before the advent of Einstein’s theory of relativity, physics was unani-
mously considered to be a largely worked-out system. The theory of relativity he formulated
in 1905 changed everything in the field, but it was only about three decades later that the
process of redefining the fundamentals of physics was completed. For more information, pay
a visit to http://en.wikipedia.org/wiki/Paradigm_shift. It’s definitely illuminating reading.

http://en.wikipedia.org/wiki/Paradigm_shift

16 Part I The ASP.NET Runtime Environment

So now, how does this apply to ASP.NET and AJAX?

The AJAX Paradigm Shift
Even though we tend to date the advent of AJAX around the 2004, one of the core tools of
AJAX—the XmlHttpRequest object—is much older. In the late 1990s, we already had all the
technologies we are using today to set up AJAX solutions. For a number of reasons, the idea
of using JavaScript, the HTML DOM, and the XmlHttpRequest object to update pages asyn-
chronously was discarded for most applications, even though Outlook Web Access and a
number of niche applications continued using it.

It was tried again in the early 2000s, and this time it really stuck.

Like physics in the early twentieth century, ASP.NET Web Forms was a stable and mature
 platform when AJAX experiments started. In the beginning, it was simply a matter of spicing
up some pages with a piece of JavaScript code and downloading raw data from an HTTP
endpoint. However, it is one thing to download a number or a string and refresh the small
portion of the user interface that contains it, but it’s quite another to download a collection
of data objects to repopulate a grid. And what if you intend to post the content of a form
and then update a large section of the current view?

The underlying machinery and tools remain the same, but the way in which they are
 organized, exposed to developers, and consumed requires a lot of thinking and perhaps a
brand new application model.

In particular, the advent of AJAX raised the need for developers to embed more JavaScript
code in HTML pages. The JavaScript code, however, has to deal with HTML DOM elements,
each of which is commonly identified with a unique ID. In an ASP.NET Web Forms application,
it’s the set of server controls defined in a page that ultimately determines the structure of the
HTML DOM and the ID of the constituent elements.

To support AJAX deeply and effectively, Web Forms developers have to dig out some of the
internal details of the server control black boxes. In doing so, developers attack one of the
pillars of the Web Forms model. The more AJAX you want, the more control you need over
HTML; the more control over HTML you want, the more you are mining the foundation of
ASP.NET Web Forms.

But there’s more than just this.

The Data-for-Data Model
For years, the Web worked around a Pages-for-Forms model. It was just fine in the
 beginning of the Web age when pages contained little more than formatted text, hyperlinks,
and maybe some images. The success of the Web has prompted users to ask for increasingly

 Chapter 1 ASP.NET Web Forms Today 17

more powerful features, and it has led developers and designers to create more sophisticated
services and graphics. As a result, today’s pages are heavy and cumbersome. (See Figure 1-5.)

Browser

<html>..
</html>

CSS

HTTP request

FIGURE 1-5 A page sends out the content of an HTML form and receives an HTML page.

Given the current architecture of Web applications, each user action requires a complete
 redraw of the page. Subsequently, heavier pages render out slowly and produce a good
deal of flickering. Projected to the whole set of pages in a large, portal-like application, this
 mechanism is perfect for causing great frustration to the poor end user.

AJAX just broke this model up. A request might or might not post a form and request an
 entire page. More often, an HTTP request might just pass raw data and request raw data—an
overall simplification of the interaction model. (See Figure 1-6.)

Browser

HTTP request

HTTP response

FIGURE 1-6 HTML elements fire out-of-band calls passing raw data and getting raw data, not necessarily
HTML pages.

ASP.NET Web Forms was created to receive forms and return pages. It is difficult to turn it
into a model that fully supports the Data-for-Data model of AJAX. Web Forms hides a lot of
its machinery and offers a higher level view of the Web operation than many demand today.

This fact can’t be ignored when making architectural decisions about which platform to use
for a given Web project.

18 Part I The ASP.NET Runtime Environment

It’s not relevant whether Web Forms was designed in the wrong or right way. It was right for
the time it was designed. The advent of AJAX created different business conditions; in these
conditions, Web Forms is not necessarily the ideal framework.

But is there any ideal ASP.NET framework out there?

What Web Do We Want for Developers?
A decade ago, we just wanted applications deployed through the Web. And Web Forms
worked just fine to satisfy us. Later on, we wanted richer applications that were quicker and
smoother to use and more responsive. And a good set of AJAX capabilities added to Web
applications made us happier as end users.

What about developers?

We probably completed the step of understanding what kind of Web applications we want to
serve to our users. We don’t yet have an effective set of developer tools to make the creation
of modern Web applications quick, easy, and productive—in one word, effective. So we’re
in search of the perfect framework. Developers need to build user interfaces to be served
and consumed over the Web and within a Web browser. Such a framework must simplify a
 number of common tasks. Here’s a list of the capabilities we expect:

■ The user interface must be dynamic and adjust itself as the user interacts. This means,
for example, hiding or showing panels and buttons as the user makes a choice.

■ The user interface must be responsive and perform quick cross-checks on data
 displayed, and it must perform remote validation whenever possible and required.

■ It should be possible to start a remote operation and update the current view even with
a new user interface if necessary.

■ It should be possible to display dialog boxes on top of the existing pages.

■ It should be possible to request data for remote application-specific endpoints.

In terms of technologies, we definitely need a rich client infrastructure, a simple controller
component to parse HTTP requests and dispatch commands to the back end, and we need a
layered architecture to keep business tasks separate from presentation and data access.

The development team is directly responsible for the architecture and for adding as many
layers as they think are necessary. The framework, on the other hand, should simplify the
other aspects and provide smooth integration between client and server code and naturally
and effectively process the incoming requests. We don’t yet have the perfect framework. It
will probably take a couple more years for this to materialize. But we see all around signs of
libraries and tools being consolidated.

The family of jQuery libraries (including the jQuery UI library and various plug-ins) seems to
be the catalyst for dynamic user interfaces; ASP.NET MVC seems to be the simpler framework

 Chapter 1 ASP.NET Web Forms Today 19

to start with and to build new made-to-measure abstractions. Abstraction is still important
because it’s only via abstraction that you build productivity.

Whatever emerges as the ideal ASP.NET framework for the next decade, my guess is that
it will build on jQuery and most of the principles and solutions in ASP.NET MVC. ASP.NET
Web Forms today is in the middle of a transition. It is neither the future nor the past. It can
be adapted and still be effective. It requires an awareness of the changes, in business and
 subsequently architecture, we are experiencing.

AJAX as a Built-in Feature of the Web
The biggest challenge of ASP.NET development today is unifying the programming model,
which is currently split in two: ASP.NET Web Forms on one side and ASP.NET MVC on the
other side. The biggest challenge of Web development in general, though, is removing the
label “AJAX” from the term “Web.”

Because it started such a huge paradigm shift, AJAX can’t simply be considered an umbrella
term to refer to a specific set of software capabilities. AJAX today is a constituent part of
the Web. We would like to be able to write the next generation of Web applications using a
framework in which AJAX is just part of the deal. You might be asked to configure it once,
and then enjoy it free of charge and without any additional cost of writing specific code.

As a built-in feature of a Web framework, AJAX requires you to have an API to code against
that just does AJAX without needing developers to think about it. ASP.NET offered a com-
mon and familiar programming model for writing Web applications, and this was one of the
keys to its rapid adoption. Before ASP.NET, there were various ways of writing Web applica-
tions and different tools. You had to choose the tool beforehand and adapt to its vision of
the Web. Today with AJAX, we are experiencing something similar. You have an AJAX API
in ASP.NET Web Forms based on a technology known as partial rendering; you have the
possibility of defining ASP.NET endpoints and exposing them as Web services; you have
similar technologies in ASP.NET MVC; you have direct scripting via jQuery and a bunch of
other JavaScript libraries. We don’t have yet a unique (and updated) model for doing Web
 development with AJAX in it. AJAX changed the Web; now we want a framework for writing
Web applications with AJAX built inside.

Selective Updates
Basically, there are two ways in which you can incorporate AJAX into a Web framework. I like
to refer to them as selective updates and direct scripting.

You perform a selective update when you execute a server action and then return a chunk
of HTML to selectively update the current view. This approach descends from the HTML
Message AJAX pattern as summarized at http://ajaxpatterns.org. The trick is all in bypassing

http://ajaxpatterns.org

20 Part I The ASP.NET Runtime Environment

the browser when a request—form post or hyperlink—has to be submitted. You place a
script interceptor at the DOM level (for example, a handler for the Form DOM object submit
event), capture the ongoing request, cancel the operation, and replace it with your own
asynchronous implementation. When a response is received, it is assumed to be HTML and
integrated into the current DOM at a given location.

An ASP.NET framework that fully supports the Selective Update model will specify details for
how the script interceptor has to be defined and for how the current view has to be modified.
In ASP.NET Web Forms, the Selective Update model is implemented via partial rendering. In
ASP.NET MVC, it comes through the services of the AJAX HTML helper.

Direct Scripting
Direct scripting is plain JavaScript code through which you connect to a remote endpoint to
send and receive data. You likely rely on a rich JavaScript framework (for example, jQuery)
and use the JSON format to move complex data around.

In my opinion, the Direct Scripting model is good for little things that can improve a feature
of the user interface. I don’t see the Direct Scripting model growing to become the reference
pattern for AJAX applications. To be effective, direct scripting requires an ad hoc architecture
and a new set of standards. Rich Internet Application (RIA) services and open protocols such
as Open Data (oData) and Open Authorization (oAuth) are coming out, but direct scripting
remains an option for a subset of sites and applications.

I wouldn’t pick up direct scripting as the solution for a unified programming model that
 accommodates the server-side Web and the client-side Web. Why not? With direct script-
ing, you are indissolubly bound to JavaScript and HTML. This is certainly great for some
 applications, but not for all.

To achieve direct scripting capabilities, today you have to look in the direction of the jQuery
library and its plug-ins. I’ll cover jQuery in Chapter 21, “jQuery.”

ASP.NET of the Future
ASP.NET 4 is the latest release of the ASP.NET framework that has seen the light in the same
timeframe as Visual Studio 2010. As expected, ASP.NET 4 comes with a number of improve-
ments mostly in the area of controlling the markup served by controls. You also find in
ASP.NET 4 a richer caching API, routing support, further extensions of the provider model,
and a few new server controls.

If you try to weigh out the new features in the framework, you probably find enough to
 justify a new release, but not necessarily a fundamental release in the history of the product.
Why is this so?

 Chapter 1 ASP.NET Web Forms Today 21

As mentioned, ASP.NET as we’ve known it for a decade is really approaching an architectural
dead end. There’s not much else that can be added to the Web Forms model; likewise, there
are a few aspects of it that sound a bit obsolete today, but changing them would require a
significant redesign of the system. From here, the following question arises: What will be the
ASP.NET of the future?

Will it be just a further improved version of ASP.NET MVC? Will it be Web Forms with some
built-in infrastructure that makes it easier to write testable and layered code? If I look into the
future of ASP.NET, I see big two challenges:

■ Having AJAX on board without calling for it

■ One ASP.NET platform that offers testability, simplicity, layering, control, styling, AJAX,
and productivity

Nothing is in sight yet at the moment that handles both challenges. So we’re left with using
ASP.NET Web Forms the best we can and exploring alternatives. The entire book is devoted
to examining ways to write smarter and better ASP.NET Web Forms code. For now, let’s
 briefly explore two alternatives.

ASP.NET MVC
With version 2 released at the same time as ASP.NET 4 (and version 3 released by the time
you read this book), ASP.NET MVC is a good candidate to find a place in the sun in the
ASP.NET arena. As clearly stated by Microsoft, ASP.NET MVC is not the successor to Web
Forms. It is rather a fully fledged, and fully qualified, alternative to Web Forms. Each
 framework has its own set of peculiarities. At the end of the day, it is difficult, and also kind of
pointless, to try to decide objectively which one is better.

Choosing between ASP.NET Web Forms and ASP.NET MVC is essentially a matter of personal
preference, skills, and of course, customer requirements. As an architect or developer, how-
ever, it is essential that you understand the structural differences between the frameworks so
that you can make a thoughtful decision.

ASP.NET MVC Highlights
ASP.NET MVC is a completely new framework for building ASP.NET applications, designed
from the ground up with SoC and testability in mind. With ASP.NET MVC you rediscover the
good old taste of the Web—stateless behavior, full control over every single bit of HTML,
and total script and CSS freedom.

Processing the request and generating the HTML for the browser are distinct steps and
 involve distinct components—the controller and the view. The controller gets the request and
decides about the action to take. The controller grabs the raw response and communicates it
to the view engine for the actual writing onto the browser’s output stream.

22 Part I The ASP.NET Runtime Environment

In ASP.NET MVC, there’s no dependency on ASPX physical server files. ASPX files might still
be part of your project, but they now serve as plain HTML templates that the default view
engine uses as a template for creating the HTML response for the browser. When you author
an ASP.NET MVC application, you reason in terms of controllers and actions. Each request
must be mapped to a pair made by a controller and an action. Executing the action pro-
duces data; the view engine gets raw data and a template and produces the final markup
(or whatever else it is expected to produce, such as JSON or JavaScript). Figure 1-7 shows the
sequence of steps that characterize a typical ASP.NET MVC request.

Browser MVC
HTTP Handler Controller Model View

POST

new

Invoke action

Invoke method

view_Data

Lookup view

Render(view_Data)

HTML response

FIGURE 1-7 The sequence diagram for an ASP.NET MVC request.

A Runtime for Two
The runtime environment that supports an ASP.NET MVC application is largely the same as
in ASP.NET Web Forms, but the request cycle is simpler and more direct. An essential part of
the Web Forms model, the page life cycle, is now just an optional implementation detail in
ASP.NET MVC. Figure 1-8 compares the run time stack for Web Forms and ASP.NET MVC.

 Chapter 1 ASP.NET Web Forms Today 23

Controller Factory

Method Execution

View Engine

Page Class

Page Life Cycle
(preliminaries)

Postback Event

Page Life Cycle
(finalization)

Updating Controls

ASP.NET
MVC

Web
Forms

(Mapped)
Page HTTP Handler

IIS

ASP.NET HTTP Runtime

Browser

MVC HTTP Handler

Response Output Stream

FIGURE 1-8 The run-time stack of ASP.NET MVC and Web Forms.

As you can see, the run-time stack of ASP.NET MVC is simpler and the difference is due to the
lack of a page life cycle. As mentioned earlier, the page life cycle and the entire thick abstrac-
tion layer built by Web Forms saves the developer a lot of work.

ASP.NET MVC is closer to the metal, and this has its own side effects. If you need to maintain
state, that is up to you. For example, you can store it into Session or Cache, or you can even
create, guess what, your own tailor-made, view state–like infrastructure. In the end, the sim-
plicity of ASP.NET MVC is due to different architectural choices rather than to some overhead
in the design of the Web Forms model.

So ASP.NET MVC brings to the table a clean design with a neat separation of concerns, a
leaner run-time stack, full control over HTML, an unparalleled level of extensibility, and a
working environment that enables, not penalizes, test-driven development (TDD).

ASP.NET Web Forms and ASP.NET MVC applications can go hand in hand and live side by
side in the same process space. The runtime environment must be configured to host an
ASP.NET MVC application. This means installing a routing module that intercepts requests at
the gate and decides how they are to be processed. An ASP.NET MVC application lists one
or more URL patterns it will accept. Requests whose URL matches any defined patterns are

24 Part I The ASP.NET Runtime Environment

processed as ASP.NET MVC requests, while others are left to the standard processing engine
of Web Forms.

Control over Markup
Just like with Web Forms, what some perceive as a clear strength of ASP.NET MVC, others
may see as a weakness. ASP.NET MVC doesn’t offer server controls of its own and also se-
verely limits the use of classic ASP.NET server controls. Even though you describe the view of
an ASP.NET MVC page via ASPX markup, you can’t embed in it server controls that handle
postbacks. In other words, you are allowed to use a DataGrid if your goal is creating a table
of records, but your code will receive an exception if the DataGrid is configured to allow
 paging, sorting, or inline editing.

To gain full control over HTML, JavaScript, and CSS, ASP.NET MVC requires that you write
Web elements manually, one byte after the next. This means that, for the most part, you are
responsible for writing every single or <table> tag you need. In ASP.NET MVC, there’s
no sort of component model to help you with the generation of HTML. As of today, HTML
helpers and perhaps user controls are the only tools you can leverage to write HTML more
quickly. Overall, some developers might see ASP.NET MVC as taking a whole step backward
in terms of usability and productivity.

Adding visual components to ASP.NET MVC is not impossible per se; it is just arguably what
most users of the framework really want. My opinion is that keeping any form of markup
 abstraction far away from ASP.NET MVC is OK as long as you intend to have two distinct
frameworks for ASP.NET development. But I do hope that we move soon to a new frame-
work that unifies the Web Forms and ASP.NET MVC models. In this new framework, if it ever
 arrives, I do expect some markup abstraction as the only way to increase productivity and
have people move to it.

ASP.NET MVC and Simplicity
Simplicity is a characteristic that is often associated with ASP.NET MVC. If you look at
Figure 1-8, you can hardly contest the point—ASP.NET MVC is architecturally simpler than
Web Forms because the sequence of steps to process a request follows closely the rules of
the underlying protocols, with no abstractions created by the framework.

This is a correct statement, but it is a bit incomplete. ASP.NET MVC processes a request
through an action and passes return values to a view engine. In doing so, though, ASP.NET
MVC offers a number of free services that you might or might not need. For example, when a
form posts its content, the framework attempts to bind posted data to the formal parameters
of the action method in charge of serving the request. There’s a lot of reflection involved in
this approach, and some work is done that might not strictly be needed. Can you opt out of
this model binding, and how easy is it to do so?

This is the point that shows why ASP.NET MVC targets simplicity in a much more effective
way than Web Forms.

 Chapter 1 ASP.NET Web Forms Today 25

In ASP.NET MVC, opting out of a built-in feature simply requires that you use a different
 coding convention. There’s nothing to disable and no closure to crack open to get a differ-
ent behavior. Any complexity in ASP.NET MVC is built in a bottom-up manner, by compos-
ing layers of code one on top of the other. At any time, you can step back and remove the
 topmost layer to replace it or simply do without it.

In Web Forms, opting out of any built-in feature is much harder because the framework was
deliberately built around them in a top-down manner. You can still create HTML-based pages
in Web Forms, but it will be significantly hard and counterintuitive. To alter the default be-
havior of Web Forms, you have to resort to tricks or override methods. In ASP.NET MVC, you
just change your programming style or simply replace the component.

ASP.NET Web Pages
ASP.NET Web Forms was relatively easy to embrace for developers and software
 professionals. ASP.NET MVC requires a bit of extra work and doesn’t really lend itself to
 being learned and discovered on a trial-and-error basis. So how high is the barrier to get into
the world of ASP.NET?

ASP.NET Web Pages offers a new approach. ASP.NET Web Pages is not a framework aimed at
professional developers, but still it is part of the ASP.NET platform and will be updated in the
future. Let’s find out more.

Small, Simple, and Seamless
ASP.NET Web Pages targets an audience of Web developers who are involved in very simple
projects either because they’re not software specialists or because the site to create is ex-
tremely simple indeed. This audience would benefit from even further simplicity such as a
single page model and a simplified way of writing code and the view. ASP.NET Web Pages
comes with a new IDE called WebMatrix and a simplified version of IIS, aptly named IIS
Express. WebMatrix, in particular, wraps up server code, markup, and database tables in a
new designer environment that makes it a snap to write pages and publish them to a site.

Code and View Together
With ASP.NET Web Pages, you write pages using a mixed syntax that incorporates both
markup and code, but in a way that is a bit cleaner than today with either Web Forms or
ASP.NET MVC code blocks. By using the @xxx syntax, where xxx is a built-in object, you can
insert in the markup some dynamically calculated value and also use those components to
emit ad hoc markup. Here’s an example:

<body>
 Today is @DateTime.Now
</body>

mailto:@DateTime.Now

26 Part I The ASP.NET Runtime Environment

Such objects are more similar to ASP.NET MVC HTML helpers than to Web Forms controls,
and they represent dynamic code you can interact with in a single environment while
 building the output you expect.

Note The syntax supported by ASP.NET Web Pages (formerly codenamed Razor) is the new
 default language for defining views in ASP.NET MVC 3.

Summary
ASP.NET Web Forms is the Microsoft premier platform for Web applications. It was originally
designed a decade ago to fit as closely as possible the skills and needs of the average
 developer of the time. Ten years ago, the typical developer was either a former C/C++/
Java developer or an early adopter of HTML willing to do fancier things that JavaScript could
just not support. In the middle, there was the Visual Basic developer, accustomed to RAD
 programming and slowly absorbing the basic concepts of object-oriented programming.
ASP.NET Web Forms was designed for these developers. And it worked great for several
years. Now, however, it is showing some clear signs of age.

The advent of AJAX revolutionized the perception of a Web application and sparked a
 paradigm shift—a long process that we have probably gone through for no more than 70
percent of its natural length. Web Forms is really close to its architectural end. If you lead
a team of developers, and if your business is based on ASP.NET and Web applications, you
should make sure that the framework of choice will take you just where you want and do it
comfortably enough.

In the past years, the number of Web applications (including simple sites) has grown beyond
imagination. As a developer, you might be asked to design and build anything from a
simple site with just a small collection of data-driven pages up to the Web front end of an
enterprise-class application, where scalability, extensibility, and customization are high on the
priority list.

Is Web Forms up to the task? Sure it is, but you should consider that the conventional way of
working of Web Forms doesn’t lend itself very well to creating testable code, mockable views,
and layers. Web Forms is essentially UI focused and highly optimized for the RAD paradigm.
I recommend that you seriously consider alternatives such as ASP.NET MVC or a new set of
patterns and practices to make the most of the Web Forms framework.

To learn about ASP.NET MVC, I recommend an earlier book of mine, Programming Microsoft
ASP.NET MVC (Microsoft Press, 2010). The rest of this book focuses instead on how to make
the most of Web Forms today.

 27

Chapter 2

ASP.NET and IIS
As a general rule, the most successful man in life is the man who has the
best information.

—Benjamin Disraeli

Any Web application is hosted within a Web server; for ASP.NET applications, the Web
server uses typically Microsoft Internet Information Services (IIS). A Web server is primarily
a server application that can be contacted using a bunch of Internet protocols, such as HTTP,
File Transfer Protocol (FTP), and Simple Mail Transfer Protocol (SMTP). IIS—the Web server
 included with the Microsoft Windows operating system—is no exception.

A Web server such as IIS spends most of its time listening to a variety of ports, including
port 80, which is where HTTP packets are usually forwarded. The Web server captures incom-
ing requests and processes them in some way. The details of how that happens depend on
both the programming interface of the Web server and the functionalities of the additional
components installed on the server.

These components altogether form the runtime environment of ASP.NET and are collectively
responsible for processing an incoming HTTP request to produce some response for the
 client browser. Note that this ASP.NET runtime machinery is the same for both ASP.NET Web
Forms and ASP.NET MVC. Among other things, this means that classic ASP.NET pages and
ASP.NET MVC resources can be hosted side by side in the same application.

In this chapter, I’ll first review the architecture and application model of the ASP.NET runtime
environment and then explain the work it does to serve a request. In the second part of the
chapter, I’ll discuss tools and techniques to publish and administer ASP.NET applications
hosted on an IIS Web server.

Note Any Web framework needs a Web server for applications to stay online, and ASP.NET
is no exception. ASP.NET works very well with IIS—the Microsoft Web server—and very few
 attempts have been made to run ASP.NET applications outside the Microsoft stack of server
products. Furthermore, many of these attempts are just experiments, if not just toy projects.
Overall, because IIS is so tightly integrated with ASP.NET, it does not make much sense to look
around for an alternate Web server.

With this said, however, note that with the proper set of add-on modules you can also make
ASP.NET run on other Web servers, such as Apache. In particular, for Apache the mod_mono
module is used to run ASP.NET applications. The mod_mono module runs within an Apache
 process and forwards all ASP.NET requests to an external Mono process that actually hosts
your ASP.NET application. For more information, pay a visit to http://www.mono-project.com/
Mod_mono.

http://www.mono-project.com/

28 Part I The ASP.NET Runtime Environment

The Web Server Environment
At the dawn of ASP.NET planning, IIS and the ASP.NET framework were supposed to be a
tightly integrated environment sharing the same logic for processing incoming requests. In
this regard, ASP.NET was expected to be the specialist capable of handling page requests
through port 80, whereas IIS was envisioned as the general-purpose Web server capable of
serving any other type of requests on a number of predefined ports.

This is more or less what we have today with the latest IIS 7.5 and Microsoft Windows Server
2008 R2; it took a while to get there though.

A Brief History of ASP.NET and IIS
Back in 2002, ASP.NET 1.0 was a self-contained, brand new runtime environment bolted onto
IIS 5.0. With the simultaneous release of ASP.NET 1.1 and IIS 6.0, the Web development and
server platforms have gotten closer and started sharing some services, such as process re-
cycling and output caching. The advent of ASP.NET 2.0 and newer versions hasn’t changed
anything, but the release of IIS 7.0 with Windows Server 2008 signaled the definitive fusion
of the ASP.NET and IIS programming models.

Let’s step back and review the key changes in the IIS architecture and the architecture’s
 interaction with ASP.NET applications.

The Standalone ASP.NET Worker Process
Originally, the ASP.NET and IIS teams started together, but at some point the respective
deadlines and needs created a fork in the road. So ASP.NET 1.0 couldn’t rely on the planned
support from IIS and had to ship its own worker process. Figure 2-1 shows the runtime
 architecture as of Windows 2000 and IIS 5.0.

Browser

IIS 5.0

inetinfo.exe

aspnet_asapi.dll

aspnet_wp.exe

HTTP Pipeline

CLR

HttpApplicationHttpRuntime

ASP.NET
worker
process

named
pipe

HTTP

FIGURE 2-1 ASP.NET requests processed by a separate worker process outside IIS.

Captured by the IIS executable listening on port 80, an HTTP request was mapped to an IIS
extension (named aspnet_isapi.dll) and then forwarded by this component to the ASP.NET
worker process via a named pipe. As a result, the request had to go through a double-stage

 Chapter 2 ASP.NET and IIS 29

pipeline: the IIS pipeline first and the ASP.NET runtime pipeline next. The ASP.NET developer
had little control over preliminary steps (including authentication) performed at the IIS gate
and could gain control over the request only after the request had been assigned to the
ASP.NET worker process. The ASP.NET worker process was responsible for loading an instance
of the Common Language Runtime (CLR) in process and triggering the familiar request
life cycle, including application startup, forms authentication, state management, output
 caching, page compilation, and so forth.

The IIS Native Worker Process
With Windows Server 2003 and IIS 6.0, Microsoft redesigned the architecture of the Web
server to achieve more isolation between applications. IIS 6.0 comes with a predefined
 executable that serves as the worker process for a bunch of installed applications sharing the
same application pool. Application pools are an abstraction you use to group multiple Web
applications under the same instance of an IIS native worker process, named w3wp.exe.

IIS 6.0 incorporates a new HTTP protocol stack (http.sys) running in kernel mode that
 captures HTTP requests and forwards them to the worker process. The worker processes use
the protocol stack to receive requests and send responses. (See Figure 2-2.)

Application Pool

Browser

IIS 6.0

www
serviceht

tp
.sy

s

w3wp.exe

HTTP Pipeline

CLR
aspnet_asapi.dll

HttpApplicationHttpRuntimeStatic

ASP.NET
HTTP

FIGURE 2-2 The worker process isolation mode of IIS 6.0.

An ad hoc service—the WWW publishing service—connects client requests with hosted sites
and applications. The WWW service knows how to deal with static requests (for example,
images and HTML pages), as well as ASP and ASP.NET requests. For ASP.NET requests, the
WWW service forwards the request to the worker process handling the application pool
where the target application is hosted.

The IIS worker process loads the aspnet_isapi.dll—a classic IIS extension module—and lets it
deal with the CLR and the default ASP.NET request life cycle.

30 Part I The ASP.NET Runtime Environment

A Shared Pipeline of Components
Before IIS 7, you had essentially two distinct runtime environments: one within the IIS process
and one within the application pool of any hosted ASP.NET application. The two runtime
environments had different capabilities and programming models. Only resources mapped
to the ASP.NET ISAPI extension were subjected to the ASP.NET runtime environment; all the
others were processed within the simpler IIS machinery.

With IIS 7, instead, you get a new IIS runtime environment nearly identical to that of
ASP.NET. When this runtime environment is enabled, ASP.NET requests are authenticated and
preprocessed at the IIS level and use the classic managed ASP.NET runtime environment (the
environment centered on the managed HttpRuntime object) only to produce the response.
Figure 2-3 shows the model that basically takes the ASP.NET pipeline out of the CLR closed
environment and expands it at the IIS level.

IIS 7.0

w3wp.exe

Browser

www
serviceht

tp
.sy

s

Authentication

Output Caching

Execute Handler

Response Generation

IIS Messaging Pipeline

HTTP
Handler

CLR

Application Pool

Static/Non-static
HTTP

ASP.NET

FIGURE 2-3 The unified architecture of IIS 7 that offers an integrated pipeline for processing HTTP requests.

An incoming request is still captured by the kernel-level HTTP stack and queued to the target
application pool via the WWW service. The difference now is that whatever request hits IIS is
forwarded run through the unified pipeline within the application pool. Application services
such as authentication, output caching, state management, and logging are centralized and
no longer limited to requests mapped to ASP.NET. In this way, you can, for example, also
 subject HTML pages or JPEG images to forms authentication without having to first map
them to an ASP.NET-specific extension.

Note that in IIS 7, the unified architecture is optional and can be disabled through the IIS
Manager tool, as shown in Figure 2-4. The Integrated Pipeline mode, however, is the default
working mode for new application pools. In the rest of the chapter, I’ll assume application
pools are configured in Integrated Pipeline mode unless otherwise specified.

 Chapter 2 ASP.NET and IIS 31

FIGURE 2-4 Configuring the application pool Integrated Pipeline mode in IIS 7.

The Journey of an HTTP Request in IIS
To make sense of the IIS architecture, let’s go through the steps of the typical journey of
HTTP requests that hit an ASP.NET application.

Any HTTP request that knocks at the IIS door is queued to the application pool that the
 target application belongs to. The worker process picks up the request and forwards it to the
application. The details of what happens next depend on the IIS 7 pipeline mode—Classic
or Integrated Pipeline. (IIS 7 configured to work in Classic mode behaves according to the
model of its predecessor, IIS 6.)

In IIS 7.0 running in Integrated Pipeline mode, no explicit handoff of the request from IIS to
ASP.NET ever occurs. The runtime environment is unified and each request goes through
only one chain of events.

32 Part I The ASP.NET Runtime Environment

Events in the Request Life Cycle
The following list of events is fired within the IIS messaging pipeline. Handlers for these
events can be written through managed code both in the form of HTTP modules (as
 discussed in Chapter 4, “HTTP Handlers, Modules, and Routing”) and code snippets in
global.asax. Events are fired in the following sequence:

 1. BeginRequest The ASP.NET HTTP pipeline begins to work on the request. For the first
request ever in the lifetime of the application instance, this event reaches the applica-
tion after Application_Start.

 2. AuthenticateRequest The request is being authenticated. ASP.NET and IIS integrated
authentication modules subscribe to this event and attempt to produce an identity.
If no authentication module produced an authenticated user, an internal default au-
thentication module is invoked to produce an identity for the unauthenticated user.
This is done for the sake of consistency so that code doesn’t need to worry about null
identities.

 3. PostAuthenticateRequest The request has been authenticated. All the information
available is stored in the HttpContext’s User property at this time.

 4. AuthorizeRequest The request authorization is about to occur. This event is commonly
handled by application code to perform custom authorization based on business logic
or other application requirements.

 5. PostAuthorizeRequest The request has been authorized.

 6. ResolveRequestCache The runtime environment verifies whether returning a
 previously cached page can resolve the request. If a valid cached representation is
found, the request is served from the cache and the request is short-circuited, calling
only any registered EndRequest handlers. ASP.NET Output Cache and the new IIS 7.0
Output Cache both feature “execute now” capabilities.

 7. PostResolveRequestCache The request can’t be served from the cache, and the
 procedure continues. An HTTP handler corresponding to the requested URL is created
at this point. If the requested resource is an .aspx page, an instance of a page class is
created.

 8. MapRequestHandler The event is fired to determine the request handler.

 9. PostMapRequestHandler The event fires when the HTTP handler corresponding to the
requested URL has been successfully created.

 10. AcquireRequestState The module that hooks up this event is willing to retrieve any
state information for the request. A number of factors are relevant here: the handler
must support session state in some form, and there must be a valid session ID.

 Chapter 2 ASP.NET and IIS 33

 11. PostAcquireRequestState The state information (such as Application or Session) has
been acquired. The state information is stored in the HttpContext’s related properties
at this time.

 12. PreRequestHandlerExecute This event is fired immediately prior to executing the
 handler for a given request.

 13. ExecuteRequestHandler At this point, the handler does its job and generates the
 output for the client.

 14. PostRequestHandlerExecute When this event fires, the selected HTTP handler has
completed and generated the response text.

 15. ReleaseRequestState This event is raised when the handler releases its state
 information and prepares to shut down. This event is used by the session state module
to update the dirty session state if necessary.

 16. PostReleaseRequestState The state, as modified by the page execution, has been
persisted.

 17. UpdateRequestCache The runtime environment determines whether the generated
output, now also properly filtered by registered modules, should be cached to be
 reused with upcoming identical requests.

 18. PostUpdateRequestCache The page has been saved to the output cache if it was
 configured to do so.

 19. LogRequest The event indicates that the runtime is ready to log the results of the
 request. Logging is guaranteed to execute even if errors occur.

 20. PostLogRequest The request has been logged.

 21. EndRequest This event fires as the final step of the pipeline. At this point, the
 response is known and made available to other modules that might add compression
or encryption, or perform any other manipulation.

Another pair of events can occur during the request, but in a nondeterministic order. They
are PreSendRequestHeaders and PreSendRequestContent. The PreSendRequestHeaders event
informs the HttpApplication object in charge of the request that HTTP headers are about to
be sent. The PreSendRequestContent event tells the HttpApplication object in charge of the
request that the response body is about to be sent. Both these events normally fire after
EndRequest, but not always. For example, if buffering is turned off, the event gets fired as
soon as some content is going to be sent to the client.

Speaking of nondeterministic application events, it must be said that a third nondeterministic
event is, of course, Error.

Let’s delve deeper into the mechanics of ASP.NET request processing.

34 Part I The ASP.NET Runtime Environment

Note Technically, most of the IIS pipeline events are exposed as events of the ASP.NET
HttpApplication class. A significant exception is ExecuteRequestHandler. You find this event in the
IIS messaging pipeline, but you won’t find an easy way to subscribe to it from within ASP.NET
code. Internally, the ASP.NET runtime subscribes to this event to receive notification of when an
ASP.NET request needs to produce its output. This happens when using unmanaged code that is
not publicly available to developers. If you want to control how an incoming request is executed
by IIS, you have to resort to Win32 ISAPI filters. If you want to control how an ASP.NET request is
executed, you don’t need the IIS ExecuteRequestHandler event, because a simpler HTTP handler
will do the job.

ASP.NET Request Processing in Integrated Pipeline Mode
In an integrated pipeline, an ASP.NET request is like any other request except that, at some
point, it yields to a sort of simplified ASP.NET runtime environment that now just prepares
the HTTP context, maps the HTTP handler, and generates the response.

When the application pool that contains an ASP.NET application running in Integrated
Pipeline mode is initialized, it hosts ASP.NET in the worker process and gives ASP.NET a
chance to register a set of built-in HTTP modules and handlers for the IIS pipeline events.
This guarantees, for example, that Forms authentication, session state, and output caching
work as expected in ASP.NET. At the same time, the ASP.NET runtime also subscribes to re-
ceive notification of when an ASP.NET request needs processing.

In between the PreRequestHandlerExecute and PostRequestHandlerExecute events, IIS hands
an ASP.NET request to some code in the ASP.NET runtime environment for actual processing.
Hosted in the IIS worker process, the ASP.NET environment is governed by a new class—the
ApplicationManager class. This class is responsible for creating and managing any needed
AppDomains to run the various ASP.NET applications located in the same pool. During the
initialization, the ApplicationManager class invokes a specific PipelineRuntime object, which
ultimately registers a handler for the ExecuteRequestHandler.

This ASP.NET internal handler is called back by IIS whenever an ASP.NET request needs to be
processed. The handler invokes a new static method on the HttpRuntime object that kicks in
to take care of the request notification. The method retrieves the HTTP handler in charge of
the request, prepares the HTTP context for the request, and invokes the HTTP handler’s pub-
lic interface. Figure 2-5 offers a graphical view of the steps involved.

 Chapter 2 ASP.NET and IIS 35

CLR
Anonymous FormsWindowsBasic

ISAPI ExtensionsStatic FileCGI

ASPXASP

CompressionLog

ApplicationManager

HttpApplication

Building HTTP Context

Execute HTTP Handler

HTTP
Request

Authentication

Request Handling

Output

FIGURE 2-5 How the IIS 7 integrated pipeline processes an ASP.NET request.

Building a Response for the Request
Each ASP.NET request is mapped to a special component known as the HTTP handler. The
ASP.NET runtime uses a built-in algorithm to figure out the HTTP handler in charge of a given
ASP.NET request.

In Web Forms, this algorithm is based on the URL of the requested page. You have a different
HTTP handler for each page requested. If you requested, say, page.aspx, the HTTP handler is
a class named ASP.page_aspx that inherits from the code-behind class you specified in your
source code. The first time the request is made this class doesn’t exist in the AppDomain. If
the class does not exist, the source code for the class is obtained by parsing the ASPX markup
and then it’s compiled in memory and loaded directly into the AppDomain. Successive
 requests then can be served by the existing instance.

36 Part I The ASP.NET Runtime Environment

An HTTP handler is a managed class that implements the IHttpHandler interface, as shown in
the following code snippet. The body of the ProcessRequest method ultimately determines
the response for the request.

public interface IHttpHandler
{
 void ProcessRequest(HttpContext context);
 bool IsReusable { get; }
}

The base class for Web Forms pages—the System.Web.UI.Page class—is simply a class
that provides an extremely sophisticated implementation of the IHttpHandler interface,
which basically turns out to be a full implementation of the Page Controller pattern. The
ProcessRequest method of the System.Web.UI.Page class consumes posted data, view state,
and server controls to produce the resulting HTML for the client. Needless to say, the Page
class assumes that your request is for an HTML page as described by the content available in
a server ASPX file.

For individual requests, or for a logically defined group of requests, within an application you
can define an alternate handler class that employs different logic to generate the response.
This alternate HTTP handler can be mapped to a particular URL, and it doesn’t have to point
necessarily to an existing server resource. Ultimately, this is just what ASP.NET MVC does.

Note As you’ll see in Chapter 4, ASP.NET Web Forms supports URL routing, which essentially
 allows you to map an incoming URL to a specific ASPX page. The standard algorithm for
 mapping URLs to HTTP handler classes as described here only works if you’re not using Web
Forms URL routing.

Adding Your Own Code to the Pipeline
As mentioned, you can write your own handlers for many of the request life-cycle events
 listed earlier in the chapter. You can do that by writing a managed HTTP module or by add-
ing code to the global.asax file of your ASP.NET application. Let’s briefly consider what it
takes to extend the global.asax file. Here’s a piece of code that shows what you end up with:

protected void Application_PostAuthenticateRequest()
{
 // Your code here
}

You use the Application_Xxx notation to define a handler for the Xxx event fired at the
 application level. For example, the code snippet gives you a chance to run some custom code
after the request has been authenticated. These handlers affect your application only.

 Chapter 2 ASP.NET and IIS 37

As you’ll see in much more detail in Chapter 4, a managed HTTP module is a class that
 implements a specific interface—the IHttpModule interface. In its startup code, the HTTP
module programmatically registers as the handler for one or more of the request events.
Next, you register the module with the application and just wait for it to kick in for each and
every application request.

Note that the HTTP module can be registered in two ways: via the configuration file of the
application (web.config) or administratively through the IIS Manager tool. Mappings set
 directly within IIS Manager are stored in the applicationHost.config file.

In IIS Manager, you select the Modules applet and then bring up the dialog box shown in
Figure 2-6 to add a new module by specifying its unique name and, of course, the type.

FIGURE 2-6 Adding a new HTTP module in IIS Manager.

An HTTP module can operate on both ASP.NET managed and native requests. A native
 request is intended as a request that doesn’t strictly require the ASP.NET runtime machinery
to be served successfully. The canonical example of a native request is a JPEG image or a
static HTML page.

Some New Features in IIS 7.5
Recently, IIS 7 has been further refined to better serve the needs of Web developers and site
administrators. Here’s a quick list of new features you might want to take advantage of to
improve the performance and effectiveness of ASP.NET applications.

Note that the list is not exhaustive and is mostly meant to serve the needs of members of an
ASP.NET development team rather than site administrators. For example, IIS 7.5 incorporates
a number of administrator-level extensions that have been released along the way as add-
ons to IIS 7, such as the Application Request Routing and the URL Rewrite Module. The for-
mer is a routing module that forwards HTTP requests to content servers based on predefined
settings to ensure proper balancing of traffic. The latter is a highly configurable module to
block, redirect, and rewrite incoming requests.

38 Part I The ASP.NET Runtime Environment

For developers, features like application warm-up and hardened security are perhaps more
attractive.

Autostarting Web Applications
It comes as no surprise that some Web applications might take a while to get up and running
and ready to serve the first request. Application restarts happen for a number of reasons,
and sometimes they’re beyond the explicit control of the site administrators. (I’ll get back to
application restarts in a moment.)

If the application needs to perform expensive initialization tasks before serving the first
 request, every restart is a performance hit. The user all of a sudden experiences significant
delays and can’t easily figure out why. There are no fancy ways to solve the issue; in the end,
all you need to do is keep your application awake and “distribute” the time it takes to initial-
ize your application across its entire uptime. This might mean, for example, that if your ap-
plication requires lengthy database processing, you ensure that data is cached in a location
that’s faster to access than the database itself. Some effective solutions in this regard have
been arranged using an always running Windows service. All the service does is periodically
refresh a cache of data for the Web application to access from within the Application_Start
event handler in global.asax.

ASP.NET 4 and IIS 7.5 on Windows Server 2008 R2 offer an integrated solution to this
 relatively frequent issue. A new feature named autostart provides a controlled approach for
starting up an application pool and initializing the ASP.NET application before the application
can accept HTTP requests.

You edit the configuration file of IIS to inform IIS of your intentions and then provide your
own component that performs the warm up and accomplishes whatever tasks are required
for your application to be as responsive as expected. The feature is a joint venture between
IIS 7.5 and ASP.NET 4. ASP.NET ensures the preloader component is invoked in a timely
 manner; IIS 7.5, on the other hand, prevents the ASP.NET application from receiving any
HTTP traffic until it is ready. As you can see, the warm-up is not really magic and does not
squeeze extra computing power out of nowhere; it stems from the fact that users perceive
the application is down until it is ready to accept and promptly serve requests.

I’ll demonstrate concretely how to set up the IIS 7.5 autostart feature later in the chapter in
the section about the configuration of IIS.

Application Pool Custom Identities
For years, worker processes under both IIS 6.0 and IIS 7.0 have run under the aegis of the
NETWORKSERVICE account—a relatively low-privileged, built-in identity in Windows.
Originally welcomed as an excellent security measure, in the end the use of a single account
for a potentially high number of concurrently running services created more problems than

 Chapter 2 ASP.NET and IIS 39

it helped to solve. In a nutshell, services running under the same account could tamper with
each other.

In IIS 7.5, worker processes by default run under unique identities automatically and
 transparently created for each newly created application pool. (The underlying technology
is known as Virtual Accounts and is currently supported by Windows Server 2008 R2 and
Windows 7. For more information, have a look at http://technet.microsoft.com/en-us/library/
dd548356(WS.10).aspx.)

You can still change the identity of the application pool using the IIS Manager dialog box
shown in Figure 2-7.

FIGURE 2-7 Modifying the identity of an application pool.

Deploying ASP.NET Applications
An ASP.NET application must be installed on an IIS machine for it to be usable by its end
users. Installing a Web application means moving files and configuration from the develop-
ment server to a staging server first or directly to the production environment. In general,
deployment of a Web application entails a number of steps that relate to moving settings
and data around a few server machines. This process can obviously be accomplished manu-
ally but does offer a high degree of automation. Automation is always useful and welcome;
it becomes a necessity, though, when you need to install on a hosted server instead of an
enterprise server that you might have direct access to.

In the beginning of the Web development era, deployment was not an exact science and
everybody developed their own set of practices and tools to simplify and speed up necessary

http://technet.microsoft.com/en-us/library/

40 Part I The ASP.NET Runtime Environment

tasks. Today, Web deployment is part of the job, and effective tools are integrated into the
development environment and are taken care of as part of the development cycle.

Not all scenarios are the same for the deployment of Web applications. You still can
 recognize simple and less simple scenarios and pick appropriate tools for each. Let’s start
with plain XCopy deployment for Web site projects and then move on to consider more
 enterprise-level tools, such as the IIS 7 integrated Web Deployment Tool, that are better
suited for Web application projects.

Note In Microsoft Visual Studio, you can choose between two main types of Web projects—
Web Site Project (WSP) and Web Application Project (WAP). The biggest difference between the
two is the deployment of the source code. In a WSP, you deploy markup and source code; in a
WAP, you deploy markup and compiled code. There are, of course, pros and cons in both situa-
tions. Having source code deployed to the Web server enables you to apply quick fixes and up-
dates even via FTP. If you need to control the rollup of updates, or you are subject to strict rules
for deployment, a WAP is preferable as you build a single package and run it through the server.

A comprehensive comparison of WSP and WAP can be found in the whitepaper available at
http://msdn.microsoft.com/en-us/library/aa730880(VS.80).aspx#wapp_topic5. An interesting
post that helps you make the choice through a series of questions is found at http://vishaljoshi.
blogspot.com/2009/08/web-application-project-vs-web-site.html.

XCopy Deployment for Web Sites
In simple scenarios, installing an ASP.NET application is simply a matter of performing a
 recursive copy of all the files (assemblies, scripts, pages, style sheets, images) to the tar-
get folder on the target server machine. This process is often referred to as performing an
XCopy. Performing an XCopy doesn’t preclude applying additional configuration settings to
the IIS machine, but you keep XCopy and configuration on two distinct levels and run them
as distinct operations.

The Copy Web Site Function of Visual Studio 2010
Visual Studio 2010 offers XCopy capabilities only for Web site projects through the Copy Web
Site function on the Website menu. The typical user interface is shown in Figure 2-8.

http://msdn.microsoft.com/en-us/library/aa730880
http://vishaljoshi

 Chapter 2 ASP.NET and IIS 41

FIGURE 2-8 The Copy Web Site function of Visual Studio 2010.

Visual Studio offers you two list boxes representing the source and remote Web sites. All you
do is copy files from the source to the target and synchronize content if needed.

This approach works very well if you just want to have the source on the server machine in a
native format that can be edited live to apply updates and fixes. In a WSP, Visual Studio does
not really compile your source code and doesn’t deploy assemblies. It is limited to validating
the correctness of the code by running the ASP.NET compiler in the background and spotting
possible failures.

The actual compilation occurs only when the page is requested by some end users. This
ensures that any applied change is promptly detected without the need of an extra step of
compilation and deployment.

Note As mentioned, the Copy Web Site function is enabled only for Web site projects. There are
no technical reasons, however, that prevent the feature from also being implemented for Web
application projects. It was merely a matter of opportunity and a design choice. The assumption
is that if you opt for a WAP, you primarily intend to deploy compiled assemblies and markup
files. This means that editing a code-behind class on the fly and live on the production server (for
example, to apply a sensitive update) is not a priority of yours. Therefore, you are probably more
interested in an automated deployment experience.

42 Part I The ASP.NET Runtime Environment

Copying Files
The Copy Web Site function allows you to sync up your project files directly with the target
directory on the IIS machine (as illustrated in Figure 2-8) or in other ways. For example, you
can connect to the IIS Web site via FTP or via FrontPage extensions.

Beyond the Copy Web Site facility of Visual Studio, to copy files to a target site you can use
any of the following: FTP transfer, any server management tools providing forms of smart
replication on a remote site, or an MSI installer application.

Each option has pros and cons, and the best fit can be found only after you know exactly the
runtime host scenario and if the purpose of the application is clearly delineated. Be aware
that if you’re going to deploy the application on an ISP host, you might be forced to play
by the rules (read, “use the tools”) that your host has set. If you’re going to deliver a front
end for an existing system to a variety of servers, you might find it easier to create a setup
project. On the other hand, FTP is great for general maintenance and for applying quick
fixes. Ad hoc tools, on the other hand, can give you automatic sync-up features. Guess what?
Choosing the right technique is strictly application-specific and is ultimately left to you.

FTP gives you a lot of freedom, and it lets you modify and replace individual files. It doesn’t
represent a solution that is automatic, however—whatever you need to do must be accom-
plished manually. Assuming that you have gained full access to the remote site, using FTP is
not much different than using Windows Explorer in the local network. I believe that with the
Copy Web Site functionality the need for raw FTP access is going to lessen. If nothing else,
the new Copy Web Site function operates as an integrated FTP-like tool to access remote
locations.

The new copy function also provides synchronization capabilities too. It is not like the set
of features that a specifically designed server management tool would supply, but it can
 certainly work well in a number of realistic situations. At the end of the day, a site replication
tool doesn’t do much more than merely transfer files from end to end. Its plusses are the user
interface and the intelligence that are built around and atop this basic capability. So a rep-
lication tool maintains a database of files with timestamps, attributes, and properties, and it
can sync up versions of the site in a rather automated way, minimizing the work on your end.

Building a Setup Project
Another common scenario involves using an out-of-the-box installer file. Deploying in this
way is a two-step operation. First, create and configure the virtual directory; next, copy the
needed files. Visual Studio makes creating a Web setup application a snap. You just create a
new type of project—a Web Setup Project—select the files to copy, and build the project.

 Chapter 2 ASP.NET and IIS 43

Ideally, you proceed by adding a Web Setup Project to the solution that contains the Web
application. In this way, you can automatically instruct the tool to copy the project output in
the Bin folder and copy the content files directly in the root of the Web application folder.
The benefit is that you don’t have to deal with specific file names but can work at a higher
level of abstraction.

You create a Web application folder to represent the virtual directory of the new application
on the target machine. The Properties dialog box lets you configure the settings of the new
virtual directory. For example, the AllowDirectoryBrowsing property lets you assign browsing
permission to the IIS virtual folder you will create. You can also control the virtual directory
name, application execute permissions, the level of isolation, and the default page. The Bin
subfolder is automatically created, but you can have the setup process create and populate
as many subfolders as you need. (See Figure 2-9.)

FIGURE 2-9 Configuring the Web application folder in a Web setup project.

When you build the project, you obtain a Windows Installer .msi file that constitutes the
setup to ship to your clients. The default installer supports repairing and uninstalling the
 application. The setup you obtain in this way—which is the simplest you can get—does not
contain the Microsoft .NET Framework, which must be installed on the target machine or
 explicitly included in the setup project itself.

Packaging Files and Settings
The XCopy strategy is well suited for relatively simple scenarios where you don’t need to do
much more than copy files. All in all, the Web setup project is a solution that works well for
implementing an XCopy strategy in a context (for example, hosted servers) where you don’t
have direct access to the IIS machine.

44 Part I The ASP.NET Runtime Environment

In general, installing an ASP.NET Web application is not simply a matter of copying a bunch
of files and assemblies. It is likely that you will have to perform additional tasks, includ-
ing adapting configuration settings to the destination environment, creating databases,
 configuring the Web server environment, and installing security certificates. In the first place,
you must be able to express the detailed deployment logic you need (that is, what has to be
done, and where and how it must be done). Second, you need tools that allow you to push
content to one server (or more) in an automated way so that manual steps are eliminated,
which decreases the possibility of making mistakes.

For WAP projects only, Visual Studio 2010 offers a powerful set of tools centered on the Web
Deployment Tool.

The Web Deployment Tool
The Web Deployment Tool (WDT, or Web Deploy) is an IIS tool that recognizes ad hoc deploy
packages and runs them in the server environment. A deploy package contains setup instruc-
tions for a Web application, including the list of files to copy, assemblies to install, database
scripts to run, certificates, and IIS and registry configuration.

You don’t even need administrative privileges to deploy these packages to IIS—delegated
access to IIS is enough to run Web Deploy packages. You can get Web Deploy for IIS 6 and
IIS 7 from http://www.iis.net/download/webdeploy. As shown in Figure 2-10, you can install
the tool on an IIS machine via the latest version of Web Platform Installer.

FIGURE 2-10 The Web Deployment Tool installed through Web Platform Installer.

http://www.iis.net/download/webdeploy

 Chapter 2 ASP.NET and IIS 45

After you have WDT on board, all you need to do is prepare a deployment script and push it
to the tool installed on the IIS machine.

Notice that you can use WDT for clean installations as well as for updating existing
 applications. In other words, the tool gives you an API to synchronize files over HTTP, the
ability to execute setup and configuration commands remotely; more importantly, it works in
both enterprise and hosted environments.

The strict requirement, of course, is that WDT must be installed on the server machine.

Note To successfully operate with WDT, you need compatible versions of WDT installed on the
server and the client machine. However, note that WDT is automatically installed if you have
Visual Studio 2010. In addition, you must have appropriate permissions on the target computer
to perform the tasks you require.

Building a WDT Package
A deployment package is a zipped file with a manifest. The package includes all the
 information required to set up the IIS application and the files to copy. In a package, in
 addition to the application’s source files and binaries, you find IIS and application pool
 settings, changes required to the web.config file in the production environment, database
scripts, security certificates, registry settings, and assemblies to place in the global assembly
cache (GAC).

You can create a WDT package either from Visual Studio 2010 or using Windows PowerShell
or the command-line version of the tool. From Visual Studio 2010, you have a highly auto-
mated user interface you control through the Package/Publish Web tab. (See Figure 2-11.)

46 Part I The ASP.NET Runtime Environment

FIGURE 2-11 The Package/Publish Web tab, which is used to configure default settings for WDT.

You access the tab from the Project menu and use it to set your default settings for the
 projects. Interestingly, the tab goes hand in hand with the Package/Publish SQL tab, where
you can list the databases you intend to configure and script on the server. The tool also
 offers to load some database information from your web.config file.

In Visual Studio 2010, you can choose to publish the application directly or you can build
a WDT package and deploy it later. To build a package, you select the Build Deployment
Package item from the Project menu. You obtain a ZIP file in the specified location that,
among other things, contains a Windows PowerShell script to be used on a server machine.
Figure 2-12 shows the content of such a package.

 Chapter 2 ASP.NET and IIS 47

FIGURE 2-12 The content of a sample WDT package.

You can also publish the application in single step by choosing the Publish item on the Build
menu. You are then shown the dialog box seen in Figure 2-13 where you indicate the full
name of the target site or application and whether you want it to be a new application or
simply a virtual directory. To turn the newly installed package into a new application, you
 select the Mark As IIS Application On Destination check box. For the entire operation to
work, you need to run Visual Studio 2010 in administrative mode.

FIGURE 2-13 Publishing a Web application via Web Deploy.

If you choose to deploy a new IIS application, it will be placed in the default application pool.
Obviously, if the application pool is configured for, say, the .NET Framework 2.0, it can’t be
used to host an ASP.NET 4 application.

48 Part I The ASP.NET Runtime Environment

Propagating IIS Settings
How would you specify IIS settings for the application? The first option is importing a
package that will be installed in the application pool of choice, configured as appropriate.
Another option is creating the desired IIS environment in the development machine and then
just propagating those settings up to the destination environment via WDT. There are some
snags, though.

The Visual Studio Publish Wizard doesn’t let you determine the target application pool unless
the source Web project is an IIS Web project. So what’s an IIS Web project, exactly?

An IIS Web project is a project that relies on the local IIS Web server instead of the ASP.NET
Development Server that comes with Visual Studio. (Note that this internal Web server is also
referred to as the Visual Studio Development Server or, more familiarly, Cassini.) For a WAP,
you switch to the local IIS Web server by selecting the Web tab in the application properties
dialog box, as shown in Figure 2-14.

FIGURE 2-14 Switching to an IIS Web project.

At this point, when you open the Publish Settings tab you find a couple of check boxes
 selected that allow you to propagate current IIS settings down to the destination.
(See Figure 2-15.) To configure the local IIS for the current project, you just click the Open
Settings link. Any application pool or configuration scenario you define will be reported in
the deployment script.

 Chapter 2 ASP.NET and IIS 49

FIGURE 2-15 Propagating IIS settings.

Web.config Transformations
During the development of a Web site, you rely on a bunch of settings stored in the
web.config file that refer to the current environment. So, for example, the data access layer
targets a development database and the security settings are different from those required
by the production environment. When it comes to deploying the site to the real host, you
need to tweak the web.config appropriately. This is usually a manual process. You open the
development version of the web.config in Visual Studio and then proceed with any required
changes.

To make the whole matter even more complicated, sometimes you need to go through a
battery of integration tests. An integration test is typically a situation in which you test the
behavior of your site (or part of it) in an environment that simulates the production environ-
ment and in which multiple elements are being tested together. You might need yet another
web.config file for this scenario. In the end, you likely need about three different versions of
the web.config file: debug, release, and test. How do you deal with that?

The simplest, but not necessarily most effective, solution is managing distinct files and
 keeping them in sync by manual intervention. However, if you made the switch to Visual
Studio 2010, you can rely on a new IDE feature that automatically maintains a single copy
of the web.config file—the skeleton—and then transforms it into as many versions as you
need when you publish the solution using WDT. This feature is supported by Web application
 projects and is not available for simple Web site projects.

The web.config file of a Visual Studio 2010 WAP looks like the one shown in Figure 2-16. It
shows up as a subtree in Solution Explorer. If you expand the node, you see two child files—
web.debug.config and web.release.config. The debug version of web.config looks like a regular
configuration file except for a little detail.

50 Part I The ASP.NET Runtime Environment

FIGURE 2-16 Predefined transformations of the web.config file.

Here’s how the root <configuration> element appears for transformation files:

<configuration xmlns:xdt="http://schemas.microsoft.com/XML-Document-Transform">

The element includes the definition of a new namespace whose suffix is xdt. The namespace
refers to a specific XML schema used to express transformations required on the content of
the file. You use xdt elements to insert commands in the configuration file to be processed
during the publish process to apply transformations to the actual web.config file being de-
ployed for a given configuration (debug, release, or any other one you want to support).

Suppose, for example, that the web.config file you use for development purposes contains
a <connectionString> node that needs be updated for a production install to target a real
 database. You edit the web.release.config file to contain the following:

<connectionStrings>
 <add name="YourDatabase"
 xdt:Locator="Match(name)"
 xdt:Transform="Replace"
 connectionString="..." />
</connectionStrings>

The Transform attribute indicates the operation to perform on the current element. In this
case, you intend to perform a Replace. The Locator attribute, on the other hand, refers to
the attribute to process. In the example, the target of the replacement is any attribute that
matches the value of the name attribute. In other words, when processing the development
web.config file, the Publish Wizard will try to locate any connection string entry there that
matches the YourDatabase name. If any is found, the entire <add> subtree is replaced with
the one provided in the transformation file.

http://schemas.microsoft.com/XML-Document-Transform

 Chapter 2 ASP.NET and IIS 51

If you open up the Release transformation file that comes with the default Visual Studio
ASP.NET template, you find the following:

<configuration xmlns:xdt="http://schemas.microsoft.com/XML-Document-Transform">
 <system.web>
 <compilation xdt:Transform="RemoveAttributes(debug)" />
 </system.web>
</configuration>

The <compilation> element is definitely one that needs to be updated when you move to a
production environment. The Transform element indicates that a given attribute—the debug
attribute—must be removed. As a result, when the web.release.config file is transformed, the
debug attribute is removed from the <compilation> element.

The overall idea is that you write a base web.config file for the development environment and
then express the delta between it and any other one you might need through transforma-
tions. At a minimum, you need a transformation for the release version for the configura-
tion file. The delta results from the transformation applied via the XDT transform. The XDT
 processor is incorporated in the Web Deployment Tool.

You can have a distinct transformation of the web.config for each build configuration you
handle in your solution. Figure 2-17 shows how to define a custom build configuration. After
you successfully add a new custom build configuration, you right-click the web.config file
and select the Add Config Transform menu item. This will add a new web.Xxx.config file,
where Xxx is the name of the new configuration. At this point, you can edit the file at will and
add as many XDT tags as needed. The file transformation occurs only when you generate a
 deployment package from the Project menu.

FIGURE 2-17 Adding a new build configuration.

http://schemas.microsoft.com/XML-Document-Transform

52 Part I The ASP.NET Runtime Environment

Site Precompilation
Another aspect related to deploying an ASP.NET application is the site precompilation. Every
ASP.NET page needs an extra step of runtime compilation to serve its markup. As you’ll see
in the upcoming chapters, when you author an ASP.NET page you write a markup file (ASPX)
plus a code-behind class using C#, Visual Basic, or any other supported .NET language.

In a WSP scenario, you deploy markup and code-behind classes as is and wait for the users to
make requests to have them compiled. In a WAP scenario, you deploy markup files and one
or more assemblies containing the compiled code-behind classes. In both cases, the dynamic
compilation step for each available page is still required at least the first time a given page
is served. The WAP project type simply saves you from deploying the source code of your
classes.

In Visual Studio, when you attempt to publish a WSP project you are shown a different user
interface than for a WAP project where a new term is introduced: site precompilation. In spite
of this, site precompilation is a general ASP.NET feature and is not limited to WSP projects.
It’s the Visual Studio 2010 user interface that seems to limit it to Web site projects.

Is site precompilation really useful?

Site precompilation consists of programmatically invoking all pages so that the ASP.NET
 runtime can process them as if a user had already invoked each. The benefit is that us-
ers won’t experience any extra delay after the first request. In addition, you catch any
 compile-time errors that slipped into pages after the previous tests.

Precompilation doesn’t necessarily deliver a huge performance improvement; most of the
time, it is a small-scale optimization instead. However, if you have pages that cache a lot of
data and take a while to initialize, this little bit of speed can improve the user’s perception of
your application.

Precompilation can take two forms: in-place precompilation and deployment precompilation.

Note Site precompilation is sometimes sold as a feature that saves you from having to deploy
your source code to the production environment. This is definitely the wrong way to approach
things. ASP.NET allows you to deploy pages with their source code-behind classes, but it doesn’t
mandate it. It’s ultimately your choice, and the option has both pros and cons. If you don’t want
to deploy source code, just opt for a Web application project instead of a Web site project. Site
precompilation can be applied to any ASP.NET project regardless of the type and in spite of the
Visual Studio tooling support that for some reason is only offered if you opt for a WSP.

 Chapter 2 ASP.NET and IIS 53

In-Place Precompilation
In-place precompilation consists of running a tool over the entire set of project files to
 request each page as if it were being used by end users. As a result, each page is compiled as
if it’s for ordinary use. The site is fully compiled before entering production, and no user will
experience a first-hit compilation delay.

In-place precompilation usually takes place after the site is deployed but before it goes
 public. To precompile a site in-place, you use the following command, where /yourApp
 indicates the virtual folder of the application:

aspnet_compiler –v /yourApp

Note that with the previous syntax, YourApp is assumed to be deployed within the default
Web site. If that is not your case, you might want to indicate the site explicitly, as shown here:

aspnet_compiler –v /W3SVC/2/Root/YourApp

In this case, you are addressing YourApp within the Web site characterized by an ID of 2.

If you precompile the site again, the compiler skips pages that are up to date and only
new or changed files are processed and those with dependencies on new or changed files.
Because of this compiler optimization, it is practical to compile the site after even minor
updates.

Precompilation is essentially a batch compilation that generates all needed assemblies in the
fixed ASP.NET directory on the server machine. If any file fails compilation, precompilation
will fail on the application. The ASP.NET compiler tool also supports a target directory. If you
choose this option, the tool will generate all of its output in a distinct directory. Next, you can
zip all of the content and deploy it manually to the IIS machine. I’ll discuss the command line
of the ASP.NET compiler tool in a moment.

Precompilation for Deployment
Precompilation for deployment generates a representation of the site made of assemblies,
static files, and configuration files—a sort of manifest. This representation is generated on
a target machine and also can be packaged as MSI and then copied to and installed on a
 production machine. This form of precompilation doesn’t require source code to be left on
the target machine.

Precompilation for deployment is also achieved through the aspnet_compiler command-line
tool. Here’s a common way to use the tool:

aspnet_compiler –m metabasePath
 -c virtualPath
 -p physicalPath
 targetPath

54 Part I The ASP.NET Runtime Environment

The role of each supported parameter is explained in Table 2-1.

TABLE 2-1 Parameters of the aspnet_compiler Tool
Switch Description
–aptca If this switch is specified, compiled assemblies will allow partially trusted callers.

–c If this switch is specified, the precompiled application is fully rebuilt.

–d If this switch is specified, the debug information is emitted during compilation.

–delaysign If this switch is specified, compiled assemblies are not fully signed when created.

–errorstack Shows extra debugging information.

–m Indicates the full IIS metabase path of the application.

–f Indicates that the target directory will be overwritten if it already exists and
 existing contents will be lost.

–fixednames If this switch is specified, the compiled assemblies will be given fixed names.

–keycontainer Indicates the name of the key container for strong names.

–keyfile Indicates the physical path to the key file for strong names.

–p Indicates the physical path of the application to be compiled. If this switch is
missing, the IIS metabase is used to locate the application. This switch must be
combined with –v.

–u If this switch is specified, it indicates that the precompiled application is
 updatable.

–v Indicates the virtual path of the application to be compiled. If no virtual path is
specified, the application is assumed to be in the default site: W3SVC/1/Root.

If no target path is specified, the precompilation takes place in the virtual path of the
 application, and source files are therefore preserved. If a different target is specified, only
assemblies are copied, and the new application runs with no source file in the production
 environment. The following command line precompiles YourApp to the specified disk path:

aspnet_compiler –v /YourApp c:\DeployedSite

Static files such as images, web.config, and HTML pages are not compiled—they are just
 copied to the target destination.

Precompilation for deployment comes in two slightly different forms—with or without
 support for updates. Sites packaged for deployment only are not sensitive to file changes.
When a change is required, you modify the original files, recompile the whole site, and
 redeploy the new layout. The only exception is the site configuration; you can update
web.config on the production server without having to recompile the site.

Sites precompiled for deployment and update are made of assemblies obtained from all files
that normally produce assemblies, such as class and resource files. The compiler, though,
doesn’t touch .aspx page files and simply copies them as part of the final layout. In this way,
you are allowed to make limited changes to the ASP.NET pages after compiling them. For

 Chapter 2 ASP.NET and IIS 55

example, you can change the position of controls or settings regarding colors, fonts, and
other visual parameters. You can also add new controls to existing pages, as long as they do
not require event handlers or other code.

In no case can new pages be added to a precompiled site without recompiling it from
scratch.

The fixednames parameter in Table 2-1 plays an important role in update scenarios for
sites that need to release updates to specific portions without redeploying the entire set
of assemblies. In this case, you must be able to just replace some of the dynamically created
assemblies and subsequently require that their names be fixed.

Note In Visual Studio 2010, you have a graphical user interface for site precompilation only if
you create a Web site project. If this is the case, and you get to publish the site, you are offered
a nice dialog box with options to select to make the precompiled site updatable and to enable
strong naming on precompiled assemblies.

Configuring IIS for ASP.NET Applications
Because an ASP.NET application lives within the context of the IIS Web server, the settings
you apply to IIS might have an impact on the application itself. Let’s review some of the
 aspects of IIS you want to consider for achieving good performance and stability.

Recycling Policies
The application pool that hosts your ASP.NET application is subject to process recycling.
Process recycling is a configurable setting by means of which you determine when the appli-
cation pool (and subsequently all of its contained applications) is to be restarted. Recycling is
not necessarily a bad thing and doesn’t necessarily indicate a problem. However, if it happens
too often and without a clear reason, well, it’s not really a good sign.

Process recycling is an IIS feature introduced as a sort of insurance against programming
 errors that can cause the application to leak memory, hang, or just slow down. By recycling
the worker process behind the application pool regularly, the Web server tries to ensure an
acceptable average quality of service.

In light of this, process recycling is expected to happen naturally but occasionally, and in
a way that doesn’t affect the perceived performance. What if, instead, you detect that the
 application is restarted too often?

There are many reasons for a recycle of the worker process to be triggered. Natural reasons
are those configured through the wizard shown in Figure 2-18.

56 Part I The ASP.NET Runtime Environment

FIGURE 2-18 Application pool recycling settings.

The application pool can be recycled at regular intervals (which is the default choice, as
shown in Figure 2-18), after serving a fixed number of requests, at specific times, or when
enough memory is consumed. Beyond this, the pool is recycled when you apply changes to
the deployed site and modify configuration files or the Bin folder. If you frequently update
bits and pieces of the site (for example, you published it as a Web site), an application restart
also happens when a given number of assemblies is loaded in memory.

In the .NET Framework, you can’t unload a given assembly. Therefore, when an ASP.NET page
is modified, it is recompiled upon the next access, resulting in a new assembly being loaded
in the AppDomain. The number of recompiles allowed is not unlimited and is controlled by
the numRecompilesBeforeAppRestart attribute in the <compilation> section of the configura-
tion file. When the maximum number of recompiles is exceeded, the application just restarts.

Unexpected Restarts
Aside from all these reasons, an application pool can recycle because of unhandled
 exceptions, timeouts, low memory, or threads or connection pool issues. In general, the
worker process recycling is a defensive measure aimed at keeping the application in shape
and preventing any worse troubles. An application restart is not free of issues because it
causes the user’s session to disappear, for example; however, that is probably the lesser evil
compared to having a site that hangs or crashes.

An application restart is not something you can spot easily. It manifests through diminished
and periodical responsiveness of the site. Diagnosing the cause is usually hard. When you
suspect undue process recycling, the first place to look is in the event viewer to see whether
some interesting information is being tracked. Memory usage is another good successive
area to investigate.

 Chapter 2 ASP.NET and IIS 57

In IIS 7.x, you can use the settings shown in Figure 2-19 to determine which event log entries
you want to be generated in the case of process recycling events.

FIGURE 2-19 Setting up event log entries for process recycling.

To make sure you track effective termination of the application, or to handle that in a
 customized way, you can resort to using the following code, adapted from an old but very
nice post by Scott Guthrie:

public static class HttpApplicationExtensions
{
 public static void TrackAppShutdown(this HttpApplication theApp)
 {
 // Use reflection to grab the current instance of the HttpRuntime object
 var runtime = typeof(HttpRuntime).InvokeMember("_theRuntime",
 BindingFlags.NonPublic | BindingFlags.Static | BindingFlags.GetField,
 null, null, null);
 if (runtime == null) return;

 // Use reflection to grab the current value of an internal property explaining the
 // reason for the application shutdown
 var messageShutdown = runtime.GetType().InvokeMember("_shutDownMessage",
 BindingFlags.NonPublic | BindingFlags.Instance | BindingFlags.GetField,
 null, runtime, null);

 // Log an entry in the event viewer (or elsewhere ...)
 if (!EventLog.SourceExists("YourApp"))
 EventLog.CreateEventSource("YourApp", "Application");
 var log = new EventLog { Source = "YourApp" };
 log.WriteEntry(messageShutdown, EventLogEntryType.Error);
 }
}

58 Part I The ASP.NET Runtime Environment

Written as an extension method for the HttpApplication object, the method can be invoked
easily from the Application_End handler in global.asax, as shown here:

void Application_End(object sender, EventArgs e)
{
 this.TrackAppShutdown();
}

The result is an entry written in the application log for each restart. It’s not a magic wand, but
it’s a nice extension you can incorporate into all applications or just in case of problems.

Output Caching Settings
Devised in the context of earlier versions of ASP.NET, output caching in IIS 7 is a fully fledged
feature of the Web server. Output caching refers to caching for performance reasons some
of the semi-dynamic content served by the Web server. Semi-dynamic content is any content
that partially changes from request to request. It is the opposite of static content, such as
JPEG images or HTML pages, and also different from classic ASP.NET pages that need to be
entirely regenerated for every request.

The whole point of output caching is skipping the processing of a given ASP.NET page for
a number of seconds. For each interval, the first request is served as usual; however, its
 response is cached at the IIS level so that successive requests for the same resource that
could be placed in the interval are served as if they were for some static content. When the
interval expires, the first incoming request will be served by processing the page as usual but
caching the response, and so forth. I’ll say a lot more about output caching in Chapter 17,
“ASP.NET State Management.”

When it comes to configuring output caching in IIS, you proceed by first defining the
 extensions (for example, aspx) you intend to cache, and then you have to choose between
user-mode and kernel-mode caching. What’s the difference?

It all depends on where IIS ends up storing your cached data. If you opt for user-mode
 caching, any content will be stored in the memory of the IIS worker process. If you go for
kernel-mode caching, it is then the http.sys driver that holds the cache.

Using the kernel cache gives you a throughput of over ten times the throughput you would
get with a user-mode cache. Additionally, the latency of responses is dramatically better.
There are some drawbacks too.

Kernel caching is available only for pages requested through a GET verb. This means that
no kernel caching is possible on ASP.NET postbacks. Furthermore, pages with semi-dynamic
content that needs to be cached based on form values or query string parameters are not

 Chapter 2 ASP.NET and IIS 59

stored in the kernel cache. Kernel caching only supports multiple copies of responses based
on HTTP headers. Finally, note that ASP.NET Request/Cache performance counters will not be
updated for pages served by the kernel cache.

Application Warm-up and Preloading
As mentioned, an ASP.NET application is hosted in an IIS application pool and run by an
instance of the IIS worker process. An application pool is started on demand when the first
request for the first of the hosted applications arrives. The first request, therefore, sums up
different types of delay. There’s the delay for the application pool startup; there’s the de-
lay for the ASP.NET first-hit dynamic compilation; and finally, the request might experience
the time costs of its own initialization. This delay sums up any time the application pool is
 recycled, or perhaps the entire IIS machine is rebooted.

In IIS 7.5, with the IIS Application Warm-up module (also available as an extension to IIS 7),
any initialization of the application pool is performed behind the scenes so that it doesn’t
add delays for the user. The net effect of the warm-up module is simply to improve the user
experience; the same number of system operations is performed with and without warm-up.

Behavior of a Warmed-up Application Pool
You apply the warm-up feature to an application pool. An application pool configured in this
way has a slightly different behavior when the whole IIS publishing service is restarted and in
the case of process recycling.

In the case of an IIS service restart, any application pools configured for warm-up are started
immediately without waiting for the first request to come in, as would the case without
warm-up.

When warm-up is enabled, IIS also handles the recycling of the worker process differently.
Normally, recycling consists of killing the current instance of the worker process and start-
ing a new one. For the time the whole process takes, however, IIS keeps getting requests;
of course, these requests experience some delay. With warm-up enabled, instead, the two
 operations occur in the reverse order. First a new worker process is started up, and next the
old one is killed.

When the new process is up and running, it notifies IIS that it is ready to receive requests.
At this point, IIS shuts down the old worker process and completes the recycle in a way that
doesn’t add hassle for the user.

60 Part I The ASP.NET Runtime Environment

Setting Up the Application Pool
To configure an application pool for warm-up, you need to edit the applicationHost.config
file under the IIS directory. The folder is \inetsrv\config and is found under the Windows
System32 folder. You need to change the value of the startMode attribute of the application
pool entry from OnDemand to AlwaysRunning. Here’s the final snippet you need to have:

<applicationPools>
 <add name="MyAppWorkerProcess"
 managedRuntimeVersion="v4.0"
 startMode="AlwaysRunning" />
</applicationPools>

You can achieve the same effect in a much more comfortable way via the IIS Manager user
interface, as shown in Figure 2-20.

FIGURE 2-20 Activating the warm-up feature for an application pool.

Because an application pool can host multiple ASP.NET applications, you also need to specify
which applications the warm-up applies to. You can do that either by entering the following
script into the applicationHost.config file or by using the IIS Manager interface:

<sites>
 <site name="YourApp" serverAutoStart="true" ...>
 ...
</sites>

From within IIS Manager, you just navigate to the application and select the Warm-up applet
for it.

 Chapter 2 ASP.NET and IIS 61

Note Warm-up is configured at the host level, not the application level. As mentioned, changes
are saved to the applicationHost.config file, not the web.config file. This means that the hoster
(including a hosting company) or the administrator decides about the policy and whether or not
warm-up is allowed. (In a hosting scenario, that could cause a lot of extra data to be hanging
around and, subsequently, a loss of performance.)

Specifying the Warm-up Code
So far, we’ve configured the application pool for warming up, but we haven’t discussed
yet the actions to take to actually warm up an application. At the IIS level, all you need to
 indicate is a URL to your application that runs the warm-up code.

The Warm-up applet in IIS Manager gives you a dialog box where you enter the URL to
the page on your site that will execute the preloading code. You also indicate a range of
 acceptable HTTP status codes that indicate the success of the operation.

This approach works with both IIS 7 and IIS 7.5.

With IIS 7.5, however, you can define an autostart service provider—namely, a managed
component that runs any required preloading code for a given application. Such providers
are registered in the IIS configuration using the following new section:

<serviceAutoStartProviders>
 <add name="MyPreloader" type="Samples.MyPreloader, MyWebApp" />
 ...
</serviceAutoStartProviders>

There’s no visual interface to configure this aspect. You either edit the configuration file
 manually or resort to the generic configuration editor of IIS Manager. After you have
 registered a bunch of autostart providers, you can pick up one for a particular application, as
shown here:

<sites>
 <site name="YourApp" serverAutoStart="true">
 <application serviceAutoStartProvider ="MyPreloader" ... />
 ...
</sites>

An autostart provider is a class designed to execute any initialization or cache-loading logic
you want to run before requests are received and processed. Here’s an example:

using System.Web.Hosting;

public class MyPreloader : IProcessHostPreloadClient
{
 public void Preload(String[] parameters)
 {
 // Perform initialization here...
 }
}

62 Part I The ASP.NET Runtime Environment

When the Preload method on the autostart provider returns, IIS sets up the application to
receive incoming requests. If the Preload method throws an unhandled exception, the worker
process is shut down and the whole warm-up feature fails. The result is that the worker
 process will be activated on demand by the next Web request as in the default scenario.

However, if the preload continues to fail, at some point IIS will mark the application as broken
and put it in a stopped state for awhile. (All these parameters are configurable. For more
 information, refer to http://www.iis.net/ConfigReference.)

Note The warm-up feature is an IIS feature. Autostart providers are an ASP.NET 4 extension that
works for any type of ASP.NET applications, including Web Forms applications and ASP.NET MVC
applications. Furthermore, warm-up also works for Windows Communication Foundation (WCF)
services running under IIS.

Summary
With the release of IIS 7 just a couple of years ago, the ASP.NET platform and the Microsoft
Web server platform are finally aligned to the same vision of HTTP request processing. A
request that hits the IIS Web server goes through a number of steps—nearly the same set of
steps that for years have characterized the ASP.NET runtime environment.

Today, you need to understand the internal mechanics of IIS to optimize deployment and
configuration of ASP.NET applications. The great news is that if you know ASP.NET and
its runtime machinery, you’re more than halfway to understanding and leveraging IIS
capabilities.

Put another way, the integration between ASP.NET 4 and IIS 7.x couldn’t be tighter and
more rewarding for Web application developers. In this chapter, I reviewed the key facts of
the internal workings of IIS and ASP.NET when they process a request and discussed some
of the features you want to dig out to deploy an application and optimize its behavior in a
 production environment.

In the next chapter, I’ll take a look at some details of the configuration of ASP.NET
 applications and discuss the schema of configuration files.

http://www.iis.net/ConfigReference

 63

Chapter 3

ASP.NET Configuration
Computers are useless. They can only give you answers.

—Pablo Picasso

The .NET Framework defines a tailor-made, XML-based API to access configuration files and,
in doing so, forces developers to adopt a common, rich, and predefined schema for storing
application settings. In the more general context of the .NET configuration scheme,
ASP.NET applications enjoy specific features such as a hierarchical configuration scheme that
allows settings inheritance and overriding at various levels: machine, application, or specific
directories.

Configuration files are typically created offline or during the development of the application.
They are deployed with the application and can be changed at any time by administra-
tors. Changes to such critical files are promptly detected by the ASP.NET runtime, Internet
Information Services (IIS), or both, and they typically cause a restart of the worker process.
ASP.NET pages can use the classes in the System.Configuration namespace to read from, and
to write to, configuration files.

In this chapter, I’ll specifically delve into the ASP.NET configuration machinery. You’ll see how
to fine-tune the ASP.NET runtime and review the whole collection of parameters you can set
for an individual application.

The ASP.NET Configuration Hierarchy
Configuration files are standard XML files that rigorously follow a given schema. The schema
defines all possible settings for machine and application files. Configuration in ASP.NET is
 hierarchical by nature and is based on a unique, machine-specific file known as the
machine.config file plus a number of web.config files. The syntax of machine.config and
web.config files is identical.

64 Part I The ASP.NET Runtime Environment

Note ASP.NET protects its configuration files from direct Web access by instructing IIS to
block browser access to configuration files. An HTTP access error 403 (forbidden) is returned to
all browsers that attempt to request a .config resource as a URL. At least, this was considered
to be true for a few years. In September 2010, an ASP.NET vulnerability was discovered and
fixed by Microsoft via a security patch. You can read about it at http://weblogs.asp.net/scottgu/
archive/2010/09/18/important-asp-net-security-vulnerability.aspx. The article includes a link
to the patch, which is also available through standard Windows Update channels. Why is that
 important here? One of the effects of the vulnerability was that it fooled a system HTTP handler
to return the content of any file being requested, including web.config.

Configuration Files
The ASP.NET runtime processes configuration information hierarchically, proceeding from a
root common to all applications on the machine—machine.config—down to all the
web.config files found in the various folders of the particular application.

Note The machine.config file is located in the CONFIG directory under the ASP.NET installation
folder. The installation folder is located under the Windows directory at the following path:
\Microsoft.NET\Framework\[version]\. For the .NET Framework 4, the version folder is v4.0.30319.
If you take a look at the contents of the CONFIG directory, you’ll find three similar files: machine.
config, machine.config.default, and machine.config.comments. Provided for educational purposes,
the latter two files provide the description and default values of each configuration section. To
gain a bit of performance, and a lot of readability, the contents of the machine.config file contain
only the settings that differ from their defaults.

The Tree of Configuration Files
When an ASP.NET application starts, all configurable parameters are set to the default values
defined in machine.config. These values can be overridden in the first place by a web.config
file placed in the root folder of the application. The web.config file can also add new appli-
cation-specific settings. In theory, a root web.config file can also clear all the settings in the
original machine configuration and replace them altogether. However, in practice it is rare
that you would reconfigure ASP.NET for your application to this extreme.

You can also define additional web.config files in child folders to apply other settings to all
the resources contained in the subtree rooted in the folder. Also in this case, the innermost
web.config can overwrite, restrict, or extend the settings defined at upper levels. Figure 3-1
illustrates how ASP.NET processes system and application settings for each page in the
Web site.

http://weblogs.asp.net/scottgu/�archive/2010/09/18/important-asp-net-security-vulnerability.aspx
http://weblogs.asp.net/scottgu/�archive/2010/09/18/important-asp-net-security-vulnerability.aspx
http://weblogs.asp.net/scottgu/�archive/2010/09/18/important-asp-net-security-vulnerability.aspx

 Chapter 3 ASP.NET Configuration 65

web.config is merged with
machine.config and can
override, restrict, or extend
settings. Resultant settings are
applied to all pages in the root
(/) folder and below.

web.config is merged with the
current settings for the subtree
and can override, restrict, or
extend settings. Resultant
settings are applied to all pages
in the /Protected folder and
below.

<configuration>
 <configSections> . . . </configSections>
 .
 .
 <system.web> . . . </system.web>
 .
 .
</configuration>

Power Users

Admin

/Protected

/Public

/

Machine.config

web
.config

web
.config

FIGURE 3-1 The hierarchical nature of ASP.NET configuration.

Configuring the machine file is an administrative task and should be performed with the
server offline when the application is deployed or during periodical maintenance. Application
settings can be changed on the fly administratively or even programmatically. Usually,
changes to the application’s configuration file result in a process recycling. However, in IIS 7
application pools can be configured to make recycling after a configuration change optional.

Important Only in very special cases should the application write to its web.config file. If
you need to persist some data on the server (for example, user profile data), you should take
 advantage of cookies or, better yet, the user profile API or some custom form of storage. The
need for writing to a configuration file should be taken as an alarm bell that warns you against
possible bad design choices. ASP.NET comes with a set of tailor-made classes, maps all the
 feasible sections and nodes in the configuration schema, and exposes methods to read and write.
The primary role of configuration files is just the overall configuration of the system, namely a set
of options that can be changed offline without recompiling the system.

66 Part I The ASP.NET Runtime Environment

The Configuration Schema
All configuration files have their root in the <configuration> element. Table 3-1 lists the main
first-level children of the <configuration> element. Each node has a specified number of
child elements that provide a full description of the setting. For example, the <system.web>
 element optionally contains the <authorization> tag, in which you can store information
about the users who can safely access the ASP.NET application.

TABLE 3-1 Main Children of the <configuration> Element
Element Description
<appSettings> Contains custom application settings.

<configSections> Describes the configuration sections for custom settings. If this
 element is present, it must be the first child of the <configuration>
node.

<connectionStrings> Lists predefined connection strings that are useful to the application.

<configProtectedData> Contains ciphered data for sections that have been encrypted.

<runtime> Run-time settings schema; describes the elements that configure
 assembly binding and run-time behavior such as probing and
 assembly redirect.

<startup> Startup settings schema; contains the elements that specify which
 version of the common language runtime (CLR) must be used.

<system.diagnostics> Describes the elements that specify trace switches and listeners that
collect, store, and route messages.

<system.net> Network schema; specifies elements to indicate how the .NET
Framework connects to the Internet, including the default proxy,
 authentication modules, and connection parameters.

<system.runtime.remoting> Settings schema; configures the client and server applications that
 exploit the .NET Remoting.

<system.serviceModel> Contains configuration settings for Windows Communication
Foundation (WCF) services being used by the ASP.NET application.

<system.web> The ASP.NET-specific configuration section; it contains the elements
that control all aspects of the behavior of an ASP.NET application.

<system.web.extensions> Contains elements that configure ASP.NET AJAX capabilities and
 services and control their behavior.

<system.webServer> Specifies settings for the IIS 7 Web server (and newer versions) that
configure the host environment for the ASP.NET application.

Because we’re discussing ASP.NET applications, in this chapter I’ll focus primarily
on the <system.web> section, with a look at <system.webServer>. I’ll cover
<system.web. extensions> later on in Chapter 20, which is dedicated to AJAX
programming. Other sections for which you’ll find significant coverage here are
<connectionStrings> and <configProtectedData>. However, this doesn’t mean that, as an
ASP.NET developer, you’ll never be using other sections—most certainly not!

 Chapter 3 ASP.NET Configuration 67

For example, the <configSections> element defines the sections that will be used to group
information in the rest of the document. The <appSettings> element contains user-defined
nodes whose structure has been previously defined in the <configSections> node. You might
need to interact with the <system.diagnostics> section if you want to use a custom trace
 listener that logs its results to an application-defined file.

Another section that is often found in the configuration of ASP.NET applications is
<system.serviceModel>. The section is used to store settings about WCF services your
ASP.NET application is going to use. Settings typically include binding information
(transportation, security, credentials) and endpoint details (URL, contract, operations).

Sections and Section Groups
All sections used in a configuration file must be declared in the initial <configSections>
 section. The following code snippet demonstrates how the <system.web> section is declared
in machine.config:

<configSections>
 <sectionGroup name="system.web"
 type="System.Web.Configuration.SystemWebSectionGroup, ...">
 <section name="authentication"
 type="System.Web.Configuration.AuthenticationSection, ..."
 allowDefinition="MachineToApplication" />
 ...
 </sectionGroup>
</configSections>

The <sectionGroup> element has no other role than marking and grouping a few child
 sections, thus creating a sort of namespace for them. In this way, you can have sections with
the same name living under different groups. The <section> element takes two attributes:
name and type. The name attribute denotes the name of the section being declared. The
type attribute indicates the name of the managed class that reads and parses the contents of
the section from the configuration file. The value of the type attribute is a comma-separated
string that includes the class and full name of the assembly that contains it.

The <section> element also has two optional attributes: allowDefinition and allowLocation.
The allowDefinition attribute specifies which configuration files the section can be used in.
Feasible values for the allowDefinition attribute are listed in Table 3-2.

TABLE 3-2 Values for the allowDefinition Attribute
Value Description
Everywhere The section can be used in any configuration file. (Default.)

MachineOnly The section can be used only in the machine.config file.

MachineToApplication The section can be used in the machine.config file and in the
 application’s web.config file. You cannot use the section in web.config
files located in subdirectories of the virtual folder.

68 Part I The ASP.NET Runtime Environment

The allowLocation attribute determines whether the section can be used within the
 <location> section. The <location> section in a machine.config file allows you to apply the
specified machine-wide settings only to the resources below a given path. (I’ll say more
about the <location> section shortly.)

Many sections in the configuration files support three special elements, named <add>,
 <remove>, and <clear>. The <add> element adds a new setting to the specified section,
while <remove> removes the specified one. The <clear> element clears all the settings that
have previously been defined in the section. The <remove> and <clear> elements are par-
ticularly useful in ASP.NET configuration files in which a hierarchy of files can be created. For
example, you can use the <remove> element in a child web.config file to remove settings that
were defined at a higher level in the configuration file hierarchy.

The <remove> and <clear> elements don’t affect the actual data stored in the configuration
file. Removing a section doesn’t erase the related data from the file, it simply removes
the data from the in-memory tree of settings that ASP.NET builds and maintains for an
application.

Note Sections are a necessary syntax element in configuration files. However, you don’t need
to declare sections in all application-specific web.config files. When processing a web.config file,
in fact, ASP.NET builds a configuration tree starting from the root machine.config file. Because
all standard sections are already declared in the machine.config file that ships with the .NET
Framework, your application needs to declare only custom sections you plan to use. Finally, bear
in mind that an exception is thrown if a configuration section lacks a corresponding entry in the
<configSections> section and when the layout of the data does not match the declaration.

Let’s start our tour of the configuration schema with a closer look at the <location> section.

The <location> Section
The <location> section serves one main purpose in two distinct scenarios. The section pro-
vides an alternative technique to apply different settings to various parts of an application.
You typically employ the <location> section to apply different settings to subdirectories of
the same application and to configure distinct applications installed on the same machine.

When defined inside an application’s root web.config file, it allows you to apply different
 settings to different subdirectories. Instead of defining child web.config files, you can create a
single web.config file in the root folder and specify settings on a per-directory basis. Basically,
the <location> element lets you create embedded configuration sections associated with a
particular directory. From a functional point of view, this is equivalent to having a web.config
file in each directory.

 Chapter 3 ASP.NET Configuration 69

When defined inside the machine.config file, or in a site’s root web.config file, the <location>
section enables you to specify different machine-wide settings for various Web applications.
Used in this way, the section turns out to be an extremely powerful tool to let multiple appli-
cations apply individual machine-wide settings in an ISP scenario.

Important Note the difference between the application’s root web.config file and the site’s
root web.config file. The application’s root configuration file is the web.config file you find in the
 application’s root folder. You use this file to adapt ASP.NET settings to the needs of the particular
application and its subdirectories. In contrast, the site’s root web.config file is located in the same
folder as machine.config, and therefore is well outside the Web space of any deployed applica-
tions. This file is a sort of appendix of machine.config and should be used as an additional level of
settings personalization. A <location> element defined in this file can be scoped to any applica-
tions on the machine. A <location> element without the path attribute will affect all applications
in the machine.

Centralized Configuration
The <location> section has two attributes: Path and allowOverride. The Path attribute
 represents the virtual path to which the embedded settings apply. The following snippet
shows how it works. The code shown is taken from a web.config file. Note that the name of
the folder must be relative and should not begin with slashes, backslashes, or dots.

<configuration>
 <system.web>
 <!-- Settings for the application go here -->
 </system.web>

 <location path="Reserved">
 <system.web>
 <!-- Settings for the /Reserved folder go here -->
 </system.web>
 </location>
</configuration>

The defining characteristic of this approach is that you have a single, centralized web.config
file to maintain and can still configure subdirectories individually and independently. This
feature saves you from the burden of maintaining several web.config files, but it also intro-
duces some unpleasant side effects that in the long run can turn out to be quite harsh. For
example, any change to the file results in a new compilation for all the pages in the applica-
tion. If you maintain distinct web.config files, the compilation occurs only for the pages really
affected by the change.

70 Part I The ASP.NET Runtime Environment

Note If the path attribute is omitted in the <location> element, the embedded settings will
 apply to all subfolders of the application in the case of an application’s root web.config. Settings
will affect all installed applications on the server machine if the <location> element that is
 missing the path attribute is found in the site’s root web.config or machine.config.

Machinewide Settings
Used within the machine.config file or the site’s root web.config file, the <location> element
lets you specify different machinewide settings for all the Web applications hosted on the
server machine. Note that in this case, though, you must indicate the name of the application
you’re configuring prefixed by the IIS name of the Web site. The Web site name is read in the
IIS Manager. The following script applies to the YourApp application in the default Web site:

<location path="Default Web Site/YourApp">
 <system.web>
 <!-- Settings for the Web site go here -->
 </system.web>
</location>

When you develop the ASP.NET code, you typically test it on a development machine with
its own copies of machine.config and site web.config files. When you deploy the applica-
tion on a production box, especially in an ISP scenario, you might not be able to restore the
same settings. One possible reason is that the administrator does not want you to modify
the current settings because they work well for all other applications or because of security
concerns.

You can work around the issue by simply replicating any needed global settings into the
 application’s root web.config. If you are deploying your code to a service provider, you might
find that many configuration elements have been locked down and cannot be overridden.
(I’ll say more about this aspect in a moment.) In this case, a new application-specific
 <location> section created in machine.config or the site’s web.config can contain all the
 machine settings needed for your application without breaking others.

Whenever possible, though, you should try to replicate needed changes into the application’s
web.config. This should always be the first option considered because it makes the entire
 application self-contained.

Unmodifiable Settings
The second <location> attribute you can specify—allowOverride—allows you to lock some
settings at either the machine or application level. By grouping settings in a <location>
 element with the allowOverride attribute set to false, you tell the ASP.NET configuration
 system to raise an exception whenever a protected setting is overridden in a lower-level
 configuration file.

 Chapter 3 ASP.NET Configuration 71

<location path="Default Web Site/YourApp" allowOverride="false">
 <system.web>
 <!-- These settings cannot be overridden -->
 </system.web>
</location>

The ultimate goal of this feature is to enable administrators to control the settings of a server
that provides ASP.NET hosting. When a new application is installed in production, changes
might be required on the target machine to reflect the native environment of the application.
Updating the machine.config file on the production machine is not an issue as long as yours
is the only application running or if you can directly control and configure all the applica-
tions hosted on that machine. However, in an application-hosting scenario, the administrator
might decide to lock some machine settings to prevent installed applications from modifying
them. In this way, the administrator can preserve, to the extent possible, the integrity of the
hosting environment and guarantee that all applications run under the same conditions.

Note By default, nearly all predefined sections can appear within a <location> section. In
 general, sections can be disallowed from appearing in <location> by using the allowLocation
 attribute. The allowLocation attribute of the <section> element determines the section’s
 capability of being customized for a particular path. Set it to false, and the section is not allowed
to be used within a <location> section.

The <system.web> Section
The <system.web> section contains all the configuration elements that set up the ASP.NET
runtime environment and controls how ASP.NET applications behave. Table 3-3 lists the
 entire sequence of first-level elements and their override level.

TABLE 3-3 The Full List of Important Sections Allowed Within <system.web>
Section Overridable Description
<anonymousIdentification> Machine, application Configures identification for users

that are not authenticated.

<authentication> Machine, application Sets the authentication mechanism.

<authorization> Everywhere Indicates authorized users.

<browserCaps> Everywhere Lists known browser capabilities.

<clientTarget> Everywhere Lists predefined client targets.

<compilation> Everywhere Settings for batch compilation.

<customErrors> Machine, application Settings for custom error pages.

<deployment> Machine only Indicates how the application is
 deployed.

72 Part I The ASP.NET Runtime Environment

Section Overridable Description
<deviceFilters> Everywhere Lists known mobile device

 capabilities.

<fullTrustAssemblies> Machine, application Lists full-trust assemblies for the
 application.

<globalization> Everywhere Settings for application localization.

<healthMonitoring> Machine, application Settings to monitor the status of the
application.

<hostingEnvironment> Machine, application Defines configuration settings that
control the behavior of the applica-
tion hosting environment.

<httpCookies> Everywhere Configures properties for cookies
used by an ASP.NET application.

<httpHandlers> Everywhere Lists registered HTTP handlers.

<httpModules> Everywhere Lists registered HTTP modules.

<httpRuntime> Everywhere Lists HTTP runtime settings.

<identity> Everywhere Sets impersonation.

<machineKey> Machine, application Encryption key for sensitive data.

<mobileControls> Everywhere Configures the behavior of mobile
controls. In ASP.NET 4.0, mobile
 controls are deprecated.

<membership> Machine, application Defines settings for user
 authentication via ASP.NET
 membership.

<pages> Everywhere Controls features of ASP.NET pages.

<partialTrustVisibleAssemblies> Machine, application Lists partial-trust visible assemblies
for the application

<processModel> MachineOnly Configures the process model.

<profile> Machine, application Defines settings for user profile’s data
model.

<roleManager> Machine, application Defines settings for role
 management.

<securityPolicy> Machine, application Defines allowed trust levels.

<sessionPageState> Everywhere Defines page view-state settings for
mobile controls.

<sessionState> Machine, application Configures the Session object.

<siteMap> Machine, application Defines settings used to support the
navigation infrastructure.

<trace> Everywhere Configures the tracing system.

<trust> Machine, application Defines the default trust level.

 Chapter 3 ASP.NET Configuration 73

Section Overridable Description
<urlMappings> Machine, application Defines routes mapping a requested

URL to a real page.

<webControls> Everywhere Locates client scripts.

<webParts> Everywhere Managed Web Parts.

<webServices> Everywhere Configures Web services. The Web
Services technology is considered
obsolete, as is this section.

<xhtmlConformance> Everywhere Defines settings for XHTML
 conformance.

Each of the elements listed in Table 3-3 features its own schema and provides attributes and
enumerations to pick values from.

In addition to the sections listed in Table 3-3, the <system.web> group contains a subgroup
named <Caching>. Table 3-4 lists the child elements.

TABLE 3-4 Sections Allowed Within <Caching>
Section Overridable Description
<cache> Machine, application Configures the global cache settings for an

ASP.NET application.

<outputCache> Machine, application Configures the output cache for a Web
 application.

<outputCacheSettings> Machine, application Defines caching profiles.

<sqlCacheDependency> Machine, application Configures the SQL cache dependencies for
an ASP.NET application.

Let’s examine some of the aforementioned sections in a bit more detail. For a complete
 reference, though, you might want to check out the excellent MSDN online documentation
starting at http://msdn.microsoft.com/en-us/library/b5ysx397.aspx.

The <anonymousIdentification> Section
Anonymous identification is a feature that assigns a predefined identity to users who connect
anonymously to an application. Anonymous identification has nothing to do with the anony-
mous user you can set at the IIS level, nor does it affect the authentication mechanism of
ASP.NET. The feature is designed to work with the user profile API to simplify the way you
write code in scenarios where both authenticated and unauthenticated users can use the site.

http://msdn.microsoft.com/en-us/library/b5ysx397.aspx

74 Part I The ASP.NET Runtime Environment

The <anonymousIdentification> section allows you to configure how it works. Here’s the
overall schema of the section:

<anonymousIdentification
 enabled="[true | false]"
 cookieless="[UseUri | UseCookies | AutoDetect | UseDeviceProfile]"
 cookieName=""
 cookiePath=""
 cookieProtection="[None | Validation | Encryption | All]"
 cookieRequireSSL="[true | false]"
 cookieSlidingExpiration="[true | false]"
 cookieTimeout="[DD.HH:MM:SS]"
 domain="cookie domain"
/>

Basically, anonymous identification creates a cookied or cookieless ticket and associates it
with the ongoing request. The enabled attribute turns the feature on and off; the cookieless
attribute instructs the ASP.NET runtime about cookie usage. Table 3-5 illustrates the options
for the cookieless attribute.

TABLE 3-5 Options for the cookieless Attribute
Value Description
AutoDetect Uses cookies if the browser has cookie support currently enabled. It uses the

cookieless mechanism otherwise.

UseCookie Always uses cookies, regardless of the browser capabilities.

UseDeviceProfile Uses cookies if the browser supports them, and uses the cookieless
 mechanism otherwise. When this option is used, no attempt is made to check
whether cookie support is really enabled for the requesting device. This is the
default option.

UseUri Never uses cookies, regardless of the browser capabilities.

All other attributes relate to the cookie, if one gets created. You can set its name—the
 default name is .ASPXANONYMOUS—as well as its path, domain, protection, expiration, and
timeout. You can also indicate whether Secure Sockets Layer (SSL) should be used to transmit
the cookie.

The <authentication> Section
The <authentication> section allows you to configure a Web site for various types of user
authentication, including Forms authentication as well as Passport and IIS-driven authentica-
tion. This section has two mutually exclusive subsections—<forms> and <passport>—and the
mode attribute to control the authentication mode requested by an application. Allowable
values for the mode attribute are shown in Table 3-6.

 Chapter 3 ASP.NET Configuration 75

TABLE 3-6 Supported Authentication Modes
Value Description
Forms Makes use of a custom form to collect logon information.

Passport Exploits the authentication services of Microsoft Passport (now LiveID). In
ASP.NET 4, classes dealing with Passport authentication are marked obsolete.

None Indicates ASP.NET should not enforce any type of authentication, which means
only anonymous users can connect or the application itself provides a built-in
mechanism.

Windows Exploits any authentication services of IIS—basic, digest, NTLM\Kerberos, or
certificates. This is the default mode.

When using Forms authentication, you are allowed to specify a few additional parameters,
such as name, loginURL, protection, and cookieless. Table 3-7 lists the attributes of the
<forms> element.

TABLE 3-7 Attributes of the <forms> Element
Attribute Description
cookieless Defines whether and how cookies are used for authentication tickets.

Feasible values are the same as those listed in Table 3-5.

defaultUrl Defines the URL to redirect after authentication. The default is default.
aspx.

domain Specifies a domain name to be set on outgoing authentication cookies.

enableCrossAppRedirects Indicates whether users can be authenticated by external applications
when authentication is cookieless. The setting is ignored if cookies are
enabled. When cookies are enabled, cross-application authentication is
always possible.

loginUrl Specifies the URL to which the request is redirected for login if no valid
authentication cookie is found.

name Specifies the name of the HTTP cookie to use for authentication. The
 default name is .ASPXAUTH.

path Specifies the path for the authentication cookies issued by the applica-
tion. The default value is a slash (/). Note that some browsers are case-
sensitive and will not send cookies back if there is a path case mismatch.

protection Indicates how the application intends to protect the authentication
cookie. Feasible values are All, Encryption, Validation, and None. The
 default is All.

requireSSL Indicates whether an SSL connection is required to transmit the
 authentication cookie. The default is false. If true, ASP.NET sets the
Secure property on the authentication cookie object so that a compliant
 browser does not return the cookie unless the connection is using SSL.

slidingExpiration Indicates whether sliding expiration is enabled. The default is false,
meaning that the cookie expires at a set interval from the time it was
originally issued. The interval is determined by the timeout attribute.

timeout Specifies the amount of time, in minutes, after which the authentication
cookie expires. The default value is 30.

76 Part I The ASP.NET Runtime Environment

Note that the description of cookie-related attributes in Table 3-7 works also for similar
 attributes in the <anonymousIdentification> section.

I’ll return to authentication and security in Chapter 19, “ASP.NET Security.” In particular, in
that chapter you’ll discover various flavors of Forms authentication that, although described
as custom types of Forms authentication, are gaining wide acceptance in real-world applica-
tions. Two examples are OpenID and claims-based Windows Identity Foundation (WIF).

Overall, when it comes to providing authentication for an ASP.NET application, the primary
choice is Forms authentication, including when it’s in the form of OpenID implementations
such as dotnetOpenAuth. Windows authentication and Passport are seldom used today even
though both, especially Windows authentication, still serve the needs of a particular seg-
ment of applications. An emerging approach is based on Windows Identity Foundation (WIF).
With a WIF integrated with Web Forms, the user navigates to inside the application and
then, when authentication is required, the user is redirected to the configured Security Token
Service (STS), logs in there, and is then redirected back to the application with his own set of
claims. (I’ll return to WIF in Chapter 19.)

The <authorization> Section
The <authorization> section is used to define a declarative filter to control access to the
resources of the application. The <authorization> section contains two subsections, named
<allow> and <deny>, that can be used to allow and deny access to users. Both elements
 feature three attributes—users, roles, and verbs—filled with a comma-separated list of
names, as the following code demonstrates:

<authorization>
 <allow users="comma-separated list of users"
 roles="comma-separated list of roles"
 verbs="comma-separated list of verbs" />
 <deny users="comma-separated list of users"
 roles="comma-separated list of roles"
 verbs="comma-separated list of verbs" />
</authorization>

The <allow> element authorizes access to any user whose name appears in the list—that is,
to all users with any of the specified roles. Authorized users can execute only the HTTP verbs
(for example, POST and GET) indicated by the verbs attribute.

Conversely, the <deny> element prohibits listed users from executing the specified actions.
The default setting allows all users free access to the resources of the application. When
specifying the user name, a couple of shortcuts are allowed. The asterisk (*) means “all users,”
whereas the question mark (?) stands for the “anonymous user.”

 Chapter 3 ASP.NET Configuration 77

Important The <authorization> section is all about declarative authorization. It uses a fixed
syntax to feed authorization modules (UrlAuthorization and FileAuthorizationModule) and
have them block unauthorized users as they try to access a URL or a file. Most applications,
 instead, prefer to incorporate authorization within their business layer in a fluent way. In doing
so, applications associate users with roles and check roles before proceeding with any critical
 operations. For this approach, you don’t need the <authorization> section. The section, however,
remains quite useful for relatively simple scenarios when you just want to limit access to a specific
subset of users or protect the entire content of pages in a given area of the application. (See
Chapter 19.)

The <browserCaps> Section
The <browserCaps> section enumerates the characteristics and capabilities of the supported
browsers, including mobile devices. The <browserCaps> section is tightly coupled with the
HttpBrowserCapabilities class and MobileCapabilities, which allows the ASP.NET runtime to
gather technical information about the browser that is running on the client.

So ASP.NET supports the concept of browser capabilities and gives you a chance to check
them and build your applications accordingly. You use any browser information available
through the Browser property of the intrinsic Request object. The point is, where would
ASP.NET find information to feed the Browser property?

Internally, the Request object first looks at the user-agent information that comes with the
HTTP request and then matches this information to some sort of provider. The internal struc-
ture of the browser provider has evolved quite significantly lately and especially in ASP.NET 4.

In the beginning, the <browserCaps> section was the only repository for browser
 information. Under the <browserCaps> section, you find a number of commercial browsers
described in terms of their run-time capabilities, such as cookies, tables and frames support,
accepted script languages, XML DOM, and operating system. The element can be declared
at any level in the application, thus making it possible for you to enable certain levels of
 browser support for certain applications. The list of available browsers can be updated as
required to detect future browsers and browser capabilities. The use of the <browserCaps>
element to define browsers was deprecated already in ASP.NET 2.0. It is, however, fully
 supported still today.

An alternate approach to using <browserCaps> is reading browser information from
 matching files with a .browser extension located in the folder Microsoft.NET\framework\
[version]\config\browsers. Figure 3-2 shows the default content of the folder for a site
equipped with ASP.NET 4.

78 Part I The ASP.NET Runtime Environment

FIGURE 3-2 The list of .browser files in ASP.NET 4.

In ASP.NET 4, yet another approach is supported to provide browser capabilities—browser
providers. In a nutshell, a browser provider is a class you register with the application using
the classic provider model, as shown in the following code snippet, or using a line of code in
global.asax:

<system.web>
 <browserCaps provider="Samples.CustomProvider, Samples" />
</system.web>

The browser provider usually derives from the system-provided base class
HttpCapabilitiesProvider and extends it by overriding some methods.

The <caching> Section
The <caching> section configures the cache settings for an ASP.NET application. It consists of
four child sections: cache, outputCache, outputCacheSettings, and sqlCacheDependency.

The <cache> section defines a few application-wide settings that relate to caching. For
 example, the percentagePhysicalMemoryUsedLimit and privateBytesLimit attributes indicate
the maximum size of memory (percentage and bytes) that can be occupied before the cache
starts flushing expired items and attempting to reclaim memory. Here’s the schema of the
section with default values:

<cache disableMemoryCollection = "false"
 disableExpiration = "false"
 privateBytesLimit = "0"
 percentagePhysicalMemoryUsedLimit = "89"
 privateBytesPollTime = "00:02:00" />

 Chapter 3 ASP.NET Configuration 79

The default time interval between polling for the memory usage is 2 minutes. Note that by
setting the disableExpiration attribute you can disable the automatic scavenging of expired
cache items—the most defining trait of ASP.NET cache.

The <outputCache> section takes care of output caching. Here is the schema of the section
with default values:

<outputCache defaultProvider="AspNetInternalProvider"
 enableOutputCache = "true"
 enableKernelCacheForVaryByStar = "false"
 enableFragmentCache = "true"
 sendCacheControlHeader = "true"
 omitVaryStar = "false">
</outputCache>

If output or fragment caching is disabled in the configuration file, no pages or user controls
are cached regardless of the programmatic settings. The sendCacheControlHeader attribute
indicates whether the cache-control:private header is sent by the output cache module by
 default. Similarly, the omitVaryStar attribute enables or disables sending an HTTP Vary: *
header in the response. The enableKernelCacheForVaryByStar attribute controls whether
 kernel caching is enabled or not. You should note that kernel caching is supported only for
compressed responses. This means that regardless of the attribute’s value, kernel caching
won’t work any time the client requests an uncompressed response.

The defaultProvider attribute indicates the component that takes care of storing and
 serving the cached output. The default provider is based on the same code that pow-
ered output caching in earlier versions of ASP.NET. The store is the in-memory cache. By
 writing your own provider, you can change the storage of the output cache. Note that the
AspNetInternalProvider provider name doesn’t really match any class in the system.web
 assembly. It is simply a moniker that instructs the system to go with the built-in logic that
worked for any previous versions of ASP.NET. The framework offers a new abstract class—
OutputCacheProvider—that represents your starting point on the way to building custom
output cache providers.

The <outputCacheSettings> section contains groups of cache settings that can be applied
to pages through the @OutputCache directive. The section contains only one child section,
named <outputCacheProfiles>. An output cache profile is simply a way of referencing
 multiple settings with a single name. Here’s an example:

<outputCacheSettings>
 <outputCacheProfiles>
 <add name="ServerOnly"
 duration="60"
 varyByCustom="browser" />
 </outputCacheProfiles>
</outputCacheSettings>

80 Part I The ASP.NET Runtime Environment

In the example, the ServerOnly profile defines a cache duration of 60 seconds and
stores different versions of the page based on browser type. Here is the schema of
<outputCacheProfiles>:

<outputCacheProfiles>
 <add name = ""
 enabled = "true"
 duration = "-1"
 location = ""
 sqlDependency = ""
 varyByCustom = ""
 varyByControl = ""
 varyByHeader = ""
 varyByParam = ""
 noStore = "false"/>
</outputCacheProfiles>

A database dependency is a special case of custom dependency that consists of the
 automatic invalidation of some cached data when the contents of the source database table
changes. In ASP.NET, this feature is implemented through the SqlCacheDependency class.
The <sqlCacheDependency> section defines the settings used by the SqlCacheDependency
class when using database caching and table-based polling against versions of Microsoft SQL
Server equal or newer than version 7.

<sqlCacheDependency enabled="true" pollTime="1000">
 <databases>
 <add name="Northwind" connectionStringName="LocalNWind" />
 </databases>
</sqlCacheDependency>

The pollTime attribute indicates (in milliseconds) the interval of the polling. In the
 preceding sample, any monitored table will be checked every second. Under the
 <databases> node, you find a reference to monitored databases. The name attribute is used
only to name the dependency. The connectionStringName attribute points to an entry in
the <connectionStrings> section of the web.config file and denotes the connection string to
 access the database. Which tables in the listed databases will really be monitored depends on
the effects produced by another tool—aspnet_regsql.exe. I’ll return to this form of caching in
Chapter 18, “ASP.NET Caching.”

Any values stored in the <sqlCacheDependency> section have no effect when using
SqlCacheDependency in conjunction with query notifications on SQL Server 2005 and newer
versions.

The <customErrors> Section
The <customErrors> section specifies the error-handling policy for an ASP.NET application. By
default, when an error occurs on a page, the local host sees the detailed ASP.NET error page,

 Chapter 3 ASP.NET Configuration 81

while remote clients are shown a custom error page or a generic page if no custom page is
specified. This policy is controlled through the Mode attribute.

The Mode attribute can be set to On, Off, or RemoteOnly, which is the default. If it’s set to
On, custom error pages are displayed both locally and remotely; if it’s set to Off, no special
error-handling mechanism is active and all users receive the typical ASP.NET (yellow) error
page with the original runtime’s or compiler’s error message and the stack trace.

Custom error pages can be specified in two ways. You can provide a generic error page as
well as error-specific pages. A custom error page that is not error-specific can be set through
the defaultRedirect attribute of the <customErrors> element. This setting is ignored if the
mode is Off.

<customErrors defaultRedirect="Errors/appGenericError.aspx" mode="On">
 <error statusCode="404" redirect="Errors/notfound.aspx" />
 <error statusCode="500" redirect="Errors/internal.aspx" />
</customErrors>

The <customErrors> section supports a repeatable child <error> tag that is used to associate
a custom page with a particular error code. You should note that only certain status codes
are supported. Some error codes, such as 403, might come directly from IIS and never get to
ASP.NET.

The <error> tag has two optional attributes, redirect and statusCode. The redirect attribute
points to the URL of the page, whereas the statusCode specifies the HTTP status code that
will result in an error. If the custom mode is enabled, but no error-specific page is known, the
default redirect is used. If the custom mode is enabled, but no custom page is specified, the
ASP.NET generic error page is used.

Important The aforementioned ASP.NET vulnerability discovered in September 2010 brought
about a best practice as far ASP.NET security is concerned. You are now discouraged from using
any <error> element to return an error-specific page. By examining the error code, in fact, the
attacker could learn enough to compromise your system. The recommended approach is set-
ting the Mode attribute to On and to have all errors handled by the same error page, which is set
through the defaultRedirect attribute. The content of the default error page is not relevant; what
matters is that you don’t provide means to potential attackers to distinguish between types of
responses.

The <deployment> Section
The <deployment> section indicates the deployment mode of the application and has
only one Boolean attribute, named retail. The attribute indicates whether the application is
 intended to be deployed for production (retail equals true) or test (retail equals false).

<deployment retail="true" />

82 Part I The ASP.NET Runtime Environment

When retail is set to true, ASP.NET automatically disables certain configuration settings, such
as trace output, custom errors, and debug capabilities. When the default value of retail is
false, each application is automatically deployed for testing.

The <globalization> Section
The <globalization> section configures the globalization settings of ASP.NET applications
so that requests and responses take into account encoding and culture information. The
 attributes of the <globalization> section are shown in Table 3-8.

TABLE 3-8 Globalization Attributes
Attribute Description
culture Specifies the culture to be used to process requests.

fileEncoding Specifies the encoding for ASP.NET resource files (.aspx, .asmx, and
.asax). Unicode and UTF-8 files saved with the byte order mark prefix
are recognized regardless of the value of the attribute.

requestEncoding Specifies the assumed encoding of each request, including posted
data and the query string. The default is UTF-8.

responseEncoding Specifies the content encoding of responses. The default is UTF-8.

uiCulture Specifies the culture name to be used to look up locale-dependent
resources at run time.

Note that, if specified, the Accept-Charset attribute in the request overrides the default
 requestEncoding setting. If you remove any encoding setting from the configuration files,
ASP.NET defaults to the server’s locale. In the majority of cases, requestEncoding and
 responseEncoding have the same value.

Valid names for the culture and uiCulture attributes are non-neutral culture names such as
en-US, en-AU, and it-IT. A culture name is made of two elements—the language and country/
region—and both are to be specified in this context.

The <httpHandlers> Section
The section allows you to register application-specific HTTP handlers that take care of ad hoc
URLs invoked over given HTTP verbs. I’ll dissect the syntax and usage of the <httpHandlers>
section in the next chapter.

The <httpModules> Section
The <httpModules> section allows you to register application-specific HTTP modules that
take care of hooking up specific stages during the processing of an ASP.NET request. I’ll
 dissect the syntax and usage of the <httpModules> section in the next chapter.

 Chapter 3 ASP.NET Configuration 83

The <healthMonitoring> Section
Health monitoring is a system feature that allows the production staff to monitor the sta-
tus of a deployed application and track significant events related to performance, failures,
and anomalies. The ASP.NET health monitoring system works by firing events to providers.
The event contains actual information about what happened; the provider processes the
 information. Here is the overall schema:

<healthMonitoring
 enabled="true|false"
 heartbeatInterval="HH:MM:SS">
 <bufferModes>...</bufferModes>
 <providers>...</providers>
 <eventMappings>...</eventMappings>
 <profiles>...</profiles>
 <rules>...</rules>
</healthMonitoring>

The enabled attribute specifies whether health monitoring is enabled. It is true by default. The
heartbeatInterval attribute indicates how often the heartbeat event is raised. The heartbeat
event serves as a timer for the whole subsystem and is raised at regular intervals to capture
useful runtime state information. The heartbeat is just one of the events that the health
monitoring system can detect. Other events track unhandled exceptions, request processing,
application lifetime, and the success and failure audits. Child sections, listed in Table 3-9, let
you configure the whole subsystem.

TABLE 3-9 Elements for Health Monitoring
Element Description
bufferModes Used with Microsoft SQL Server and Web event providers (with built-in e-mail

capability) to determine how often to flush the various events to the provider
and the size of the intermediate buffer.

eventMappings Maps friendly event names to the event classes. You use this element to register
custom event types.

profiles Defines parameter sets to use when configuring events.

providers Defines the health monitoring providers that process events. Predefined
 providers write to a SQL Server table and the Event Log, and they send e-mail.
You use this element to register custom Web event providers.

rules Maps events to providers.

The interval for the heartbeat event is set to 0 by default, meaning that no heartbeat event is
raised by default.

84 Part I The ASP.NET Runtime Environment

The <hostingEnvironment> Section
The <hostingEnvironment> section defines configuration settings that control the behavior
of the application-hosting environment. As you can see in the following code segment, the
 section has three attributes: idleTimeout, shadowCopyBinAssemblies, and shutdownTimeout:

<hostingEnvironment idleTimeout="HH:MM:SS"
 shadowCopyBinAssemblies="true|false"
 shutdownTimeout="number"
 urlMetadataSlidingExpiration="HH:MM:SS" />

The idleTimeout attribute sets the amount of time to wait before unloading an inactive
 application. It is set to Infinite by default, meaning that inactive applications are not auto-
matically unloaded. Note also that “inactive” doesn’t mean nonresponsive; an application is
inactive if no user is working with it, and this is normally not by itself a good reason to kill it.
The shadowCopyBinAssemblies attribute indicates whether the assemblies of an application
in the Bin directory are shadow-copied to the application’s ASP.NET temporary files directory.
It is true by default. Finally, the shutdownTimeout attribute sets the number of seconds (30 by
default) it should take to shut down the application. Finally, the urlMetadataSlidingExpiration
attribute indicates for how long the URL metadata will be cached by ASP.NET. The default is 1
minute. Both idleTimeout and urlMetadataSlidingExpiration attributes can be set to any time
span, ranging from seconds to minutes and hours.

Note Shadow-copy is a feature of the .NET Framework that ASP.NET uses extensively. When
shadow-copy is enabled on an AppDomain, assemblies loaded in that AppDomain will be
copied to an internal cache directory and used from there. In this way, the original file is
not locked and can be changed at will. In ASP.NET, you can control the feature through the
 shadowCopyBinAssemblies attribute.

The <httpCookies> Section
The <httpCookies> section is used to configure properties for cookies used by ASP.NET
 applications. Here is the overall schema:

<httpCookies domain="string"
 httpOnlyCookies="true|false"
 requireSSL="true|false" />

The domain attribute indicates the default Internet domain of the cookie and is set to the
empty string by default. The requireSSL attribute is false by default. If it’s true, SSL is required
for all cookies. The httpOnlyCookies attribute enables ASP.NET to output an extra HttpOnly
cookie attribute that can help mitigate cross-site scripting threats that result in stolen
 cookies. When a cookie that has the HttpOnly attribute set to true is received by a compliant
browser such as Internet Explorer 6 SP1 (and superior), it is inaccessible to client-side script.

 Chapter 3 ASP.NET Configuration 85

Adding the HttpOnly attribute is as easy as appending the HttpOnly string to the path of all
response cookies.

Caution The HttpOnly attribute is helpful when it comes to raising the security bar, but it is not
a silver bullet. Any network monitoring tool, in fact, can easily detect it, thus giving malicious
users an important bit of help.

Finally, note that any settings defined in the <httpCookies> section can be overridden by
classes that actually create cookies in ASP.NET pages.

The <httpRuntime> Section
The <httpRuntime> section configures some run-time parameters for the ASP.NET pipeline.
Interestingly enough, the section can be declared at any level, including subdirectory levels.
This fact accounts for the great flexibility that allows you to set up the run-time environment
with the finest granularity. Configurable attributes are listed in Table 3-10.

TABLE 3-10 ASP.NET Runtime Attributes
Attribute Description
apartmentThreading Enables apartment threading for classic ASP compatibility. The

 default is false.

appRequestQueueLimit Specifies the maximum number of requests the application is
 allowed to queue before returning error 503—Server too busy. The
default is 5000.

delayNotificationTimeout Specifies the timeout for delaying notifications. The default is 5
 seconds.

Enable Specifies whether the AppDomain is enabled to accept incoming
requests. This is true by default.

enableHeaderChecking Specifies whether ASP.NET should check the request header
for potential injection attacks. If an attack is detected, ASP.NET
 responds with an error. This is true by default.

enableKernelOutputCache Enables the http.sys kernel-level cache on IIS 6 and higher. The
 default is true.

enableVersionHeader Outputs a header with the ASP.NET version with each request. The
default is true. You can disable it for production sites.

encoderType Indicates the class to be used for any encoding and decoding tasks
in ASP.NET, such as those performed by HttpServerUtility.

executionTimeout Specifies the maximum number of seconds a request is allowed to
execute before ASP.NET automatically times it out. The default is 110
seconds.

maxQueryStringLength Indicates the maximum accepted size of the query string. The
 default is 260.

86 Part I The ASP.NET Runtime Environment

Attribute Description
maxRequestLength Indicates the maximum accepted size (in KB) of a Web request.

No request is accepted if its overall length exceeds the threshold of
4 MB.

maxUrlLength Indicates the maximum accepted size of the URL. The default is 260.

minLocalRequestFreeThreads Indicates the minimum number of free threads needed to allow the
execution of new local requests. The default threshold value is set
to 4.

minFreeThreads Indicates the minimum number of free threads needed to allow the
execution of new Web requests. The default threshold value is set
to 8.

requestLengthDiskThreshold Specifies the input stream buffering threshold limit in number
of bytes. Its value should not exceed the maxRequestLength. The
 default is 256 bytes.

requireRootedSaveAsPath Specifies whether the file name parameter in a Request’s SaveAs
method must be an absolute path.

requestValidationMode Indicates whether HTTP request validation can be customized
(only in ASP.NET 4) or whether it should happen through a system-
provided layer (as in earlier versions). The default value is “4.0”.
Anything else is considered as “do as ASP.NET 2.0 does.”

requestValidationType Indicates the name of a type that is used to validate HTTP requests.

sendCacheControlHeader Specifies whether to send a cache control header.

shutDownTimeout Number of seconds that are allowed for the worker process to shut
down. When the timeout expires, ASP.NET shuts down the worker
process. The default is 90 seconds.

useFullyQualifiedRedirectUrl Indicates whether client redirects must be automatically converted
to fully qualified URLs (true) or used as specified in the page source
code (false). The default is false.

waitChangeNotification, max-
WaitChangeNotification

Indicates the minimum and maximum number of seconds to wait
(0 by default) before restarting the AppDomain after a file change
notification. This is actually pretty important for XCopy deployment,
especially with named assemblies in precompiled sites.

Notice that ASP.NET won’t process a request if not enough free threads are available in the
thread pool. When this happens, the request is queued to the application until the threshold
set by the appRequestQueueLimit is exceeded. But why, in the default case, does ASP.NET
need at least eight free threads to execute a request? These free threads are at the disposal
of ongoing requests (for example, the request for a download of linked images, style sheets,
or user controls) if they issue child requests to complete processing.

Another small number of threads (four by default) is kept reserved for child requests coming
through the local host. If the request has been generated locally—that is, the client IP is
127.0.0.1 or matches the server IP—it is scheduled on one of the threads in the pool reserved
for local calls. Often local requests originate as child requests—for example, when an

 Chapter 3 ASP.NET Configuration 87

ASP.NET page invokes a Web service on the same server. There’s no need in this case to
 consume two threads from the pool to serve two related requests, one of which is waiting for
the other to terminate. By using an additional thread pool, you actually assign local requests
a slightly higher priority and reduce the risk of deadlocks.

The <identity> Section
The <identity> section controls the identity of the ASP.NET application. It supports three
 attributes: impersonate, userName, and password. The key attribute is impersonate. It is set to
false by default, which means that the application does not impersonate any client user.

<identity impersonate="true" />

When impersonate is set to true, each request is served by ASP.NET impersonating either the
Windows user currently logged on or the user specified through the userName and password
attributes.

Note that user name and password are stored in clear text in the configuration file. Although
IIS never serves requests for configuration files, a web.config file can be read by other means.
You should consider forms of protection for the contents of the section. In ASP.NET, you can
encrypt the <identity> section using XML Encryption.

The <machineKey> Section
Valid at the machine and application levels, the <machineKey> section configures the keys to
encrypt and decrypt forms authentication tickets and view-state data. Here’s the schema:

<machineKey
 validationKey="AutoGenerate,IsolateApps"
 decryptionKey="AutoGenerate,IsolateApps"
 validation="HMACSHA256"
 decryption="Auto" />

The validationKey and decryptionKey attributes are strings and specify the encryption and
decryption keys, respectively. An encryption key is a sequence of characters whose length
ranges from a minimum of 40 characters to a maximum of 128.

The validation attribute, on the other hand, indicates the type of encryption used to
validate data. Allowable values are SHA1, MD5, 3DES, AES, HMACSHA256 (the default),
HMACSHA384, and HMACSHA512.

Finally, the decryption attribute indicates the type of hashing algorithm that is used for
 decrypting data. Feasible values are DES, AES, and 3DES. The default is Auto, meaning
that ASP.NET determines which decryption algorithm to use based on the configuration
default settings.

88 Part I The ASP.NET Runtime Environment

The default value of both the validationKey and decryptionKey attributes is
AutoGenerate,IsolateApps. This means that keys are autogenerated at setup time and stored
in the Local Security Authority (LSA). LSA is a protected subsystem of Windows NT–based
operating systems that maintains information about all aspects of local security on a
 system. The IsolateApps modifier instructs ASP.NET to generate a key that is unique for each
application.

Settings in the <machineKey> section are a critical element of applications hosted on
 multiple machines, such as in a Web farm or a failover cluster. All machines across a net-
work must share the same <machineKey> settings. For this reason, you might want to set
 validationKey and decryptionKey attributes manually to ensure consistent configuration in a
multiserver environment.

The <membership> Section
The <membership> section defines parameters for managing and authenticating user
 accounts through the ASP.NET membership API. Here’s the schema of the section:

<membership
 defaultProvider="provider name"
 userIsOnlineTimeWindow="number of minutes"
 hashAlgorithmType="SHA1">
 <providers>
 ...
 </providers>
</membership>

The defaultProvider attribute indicates the name of the default membership provider—it is
SqlMembershipProvider by default. The attribute named userIsOnlineTimeWindow specifies
how long a user can be idle and still be considered online. The interval is set to 15 minutes by
default. The hashAlgorithmType refers to the name of the encryption algorithm that is used
to hash password values. (The default is SHA1.)

The <providers> child section lists all registered membership providers. Here’s the schema:

<membership>
 <providers>
 <add name="MyProvider"
 type="Samples.MyMembershipProvider"
 connectionStringName="MyConnString"
 enablePasswordRetrieval="false"
 enablePasswordReset="true"
 requiresQuestionAndAnswer="true"
 passwordFormat="Hashed" />
 ...
 </providers>
</membership>

 Chapter 3 ASP.NET Configuration 89

You use the <providers> section to add custom membership providers. Each provider has its
own set of attributes, as shown in the upcoming sections.

The <pages> Section
The <pages> section sets default values for many of the @Page directive attributes and
 declaratively configures the run-time environment for a Web page. Table 3-11 enumerates
the supported attributes.

TABLE 3-11 Attributes to Configure ASP.NET Pages
Attribute Description
asyncTimeout Number of seconds to wait for an asynchronous handler to

complete during asynchronous processing. The default is 45
seconds.

autoEventWireup Indicates whether page events are automatically assigned to
event handlers with a particular name (for example,
Page_Load). It’s set to true by default.

buffer Indicates whether or not response buffering is enabled. It’s
set to true by default.

clientIDMode Specifies the algorithm to use to generate the client ID for
server controls. Feasible values are AutoID, Static, Predictable,
and Inherit.

compilationMode Indicates whether an ASP.NET page or control should be
compiled at run time. Allowable values are Never, Auto,
and Always—the default. Auto means that ASP.NET will not
 compile the page, if possible.

controlRenderingCompatibilityVersion Indicates how controls are expected to render out their
markup. The default value is 4.0, meaning that the markup
is updated to the latest version. By setting it to 3.5 (no other
values are supported), you fall back to the behavior of earlier
versions of ASP.NET.

enableEventValidation Specifies whether pages and controls validate postback and
callback events. The default is true.

enableSessionState Indicates whether session state is enabled. It’s set to true
by default; it also accepts as values false and ReadOnly. The
 session state is disabled altogether if the attribute is set to
false; it is accessible only for reading if set to ReadOnly.

enableViewState Specifies whether view state is enabled. It’s set to true by
 default.

enableViewStateMac Specifies whether the view state of a page should be checked
for tampering on each page postback. It’s set to true by
 default.

maintainScrollPositionOnPostBack If this is set to true, the page maintains the same scroll
 position after a postback.

90 Part I The ASP.NET Runtime Environment

Attribute Description
masterPageFile Specifies the master page for the pages in the scope of the

configuration file.

maxPageStateFieldLength Indicates the maximum length of the view-state field. A
 negative value indicates that no upper limit exists. If the size
of the view state exceeds the maximum, the contents will be
sent in chunks.

pageBaseType Indicates the base code-behind class that .aspx pages inherit
by default—unless a code-behind class is explicitly provided.
The default class is System.Web.UI.Page. The new class name
must include assembly information.

pageParserFilterType Specifies the type of filter class that is used by the ASP.NET
parser to determine whether an item is allowed in the page at
parse time.

smartNavigation Specifies whether smart navigation is enabled. This is
set to false by default. It’s deprecated in favor of the
 maintainScrollPositionOnPostBack attribute.

styleSheetTheme Name of the style-sheet theme used for the pages in the
scope of the configuration file.

theme Name of the theme used for the pages in the scope of the
configuration file.

userControlBaseType Indicates the code-behind class that .ascx user controls inherit
by default. The default class is System.Web.UI.UserControl.
The new class name must include assembly information.

validateRequest Indicates that ASP.NET examines all input from the browser
for potentially dangerous data. It’s set to true by default.

viewStateEncryptionMode Indicates the encryption mode of the view state. Feasible
 values are Always, Never, or Auto. Auto means that the view
state is encrypted only if a control requests it.

In particular, the pageBaseType attribute is an extremely powerful setting you might want to
leverage when all your application pages inherit from a common code-behind class. In this
case, instead of modifying all the pages, you centralize the setting in the web.config file at the
level (machine, application, or subdirectory) you want.

An interesting attribute is maxPageStateFieldLength. One of the problems developers
might experience with a too-large view state is that some legacy firewalls and proxy
 servers might not be capable of carrying all those bytes back and forth for a single input
field. As a result, the content of the view state is truncated and the application fails. This
is particularly likely to happen on pretty simple Web browsers, such as those you find
in palmtops and smartphones. If the real size of the view state exceeds the upper limit

 Chapter 3 ASP.NET Configuration 91

set through the maxPageStateFieldLength attribute, ASP.NET automatically cuts the view
state into chunks and sends it down using multiple hidden fields. For example, if you set
 maxPageStateFieldLength to 5, here’s what the page contains:

<input type="hidden" id="__VIEWSTATEFIELDCOUNT" value="..." />
<input type="hidden" id="__VIEWSTATE" value="/wEPD" />
<input type="hidden" id="__VIEWSTATE1" value="wUKLT" />
<input type="hidden" id="__VIEWSTATE2" value="I2MjI" />
...

The final byte count of the client page is even a bit higher than in the default case, but at
least your page won’t fail because of a truncated view state on simple and not too powerful
Web browsers.

A sign of the evolution of the Web platform is the clientIDMode attribute introduced in
ASP.NET 4. Earlier versions of ASP.NET use a built-in algorithm to generate the client ID
 values for HTML elements output by server controls. The algorithm guarantees uniqueness
but do not necessarily result in predictable IDs. Until the advent of AJAX, that has never been
a problem. AJAX brought developers to write more client-side code and subsequently raised
the need for accessing in a reliable and easy way any DOM element added by ASP.NET con-
trols. The clientIDMode attribute offers two main options: using static IDs (and thus accepting
the potential risk of having duplicates) and using predictable IDs. A predictable ID is essen-
tially an ID generated by ASP.NET but through a much simpler algorithm that doesn’t walk
through the entire list of naming containers like the default algorithm we used for years.

The <pages> section contains a bunch of child sections, as shown here:

<pages>
 <controls>...</controls>
 <namespaces>...</namespaces>
 <tagMapping>...</tagMapping>
 <ignoreDeviceFilters>...</ignoreDeviceFilters>
</pages>

The <controls> and <namespaces> sections define a collection of @Register and @Import
directives to be implicitly added to any page. The <tagMapping> section, instead, plays the
role of remapping an existing control type to another type specified in the markup:

<pages>
 <tagMapping>
 <add
 tagType=
 "System.Web.UI.WebControls.TextBox"
 mappedTagType=
 "Samples.MyTextBox" />
 </tagMapping>
</pages>

92 Part I The ASP.NET Runtime Environment

As an example, you can use this tag to automatically invoke a TextBox of yours wherever the
source code invokes, instead, the standard TextBox control out of the <asp:TextBox> markup.

Finally, <ignoreDeviceFilters> defines a collection of elements that identify the device-specific
content that ASP.NET should ignore when it displays a page. Device-specific content is listed
through a <filter> child element. The usefulness of this feature is illustrated by the following
example. Suppose you have the following markup in an ASP.NET page:

<asp:Text moz:Text="Hello Mozilla" ie:Text="Hello IE">

In this instance, moz and ie are device filters, meaning that the property they attribute should
be used only if the user agent matches the filter. So where’s the problem? The problem arises
with some AJAX functionality and microformats that extended the schema to allow additions.
An example is when some JavaScript libraries add their own expando attributes prefixed with
a string, as shown here:

<asp:Text sys:Text="Hello from Ajax">

Without countermeasures, the sys prefix would be mistaken for a device filter and the whole
attribute would be stripped off in absence of a matching filter. In fact, sys is not likely to be
the nickname of any browser.

<pages>
 <ignoreDeviceFilters>
 <filter add="sys" />
 </ignoreDeviceFilters>
</pages>

In ASP.NET 4, by adding the previous script to the configuration file you instruct ASP.NET to
ignore some of the names that appear to be device filters.

The <processModel> Section
This section configures the ASP.NET process model—that is, the procedure that brings a re-
quest to be processed in the HTTP pipeline. The attributes of the <processModel> section are
actually read by unmanaged code—the aspnet_isapi.dll ISAPI extension. For this reason, you
need to restart IIS to have any changes applied. For the same reason, you can never override
any attributes in the <processModel> section in a web.config file. The <processModel> section
can exist only within a machine.config file, and it affects all ASP.NET applications that are
 running on the server. The following code snippet illustrates the schema of the section:

<processModel
 enable="true|false"
 timeout="hrs:mins:secs|Infinite"
 idleTimeout="hrs:mins:secs|Infinite"
 shutdownTimeout="hrs:mins:secs|Infinite"
 requestLimit="num|Infinite"
 requestQueueLimit="num|Infinite"
 restartQueueLimit="num|Infinite"
 memoryLimit="percent"
 webGarden="true|false"

 Chapter 3 ASP.NET Configuration 93

 cpuMask="num"
 userName="username"
 password="password"
 logLevel="All|None|Errors"
 clientConnectedCheck="hrs:mins:secs|Infinite"
 comAuthenticationLevel="Default|None|Connect|Call|
 Pkt|PktIntegrity|PktPrivacy"
 comImpersonationLevel="Default|Anonymous|Identify|
 Impersonate|Delegate"
 responseDeadlockInterval="hrs:mins:secs|Infinite"
 responseRestartDeadlockInterval="hrs:mins:secs|Infinite"
 autoConfig="true|false"
 maxWorkerThreads="num"
 maxIoThreads="num"
 minWorkerThreads="num"
 minIoThreads="num"
 serverErrorMessageFile=""
 pingFrequency="Infinite"
 pingTimeout="Infinite"
 maxAppDomains="2000" />

As mentioned, the machine.config file remains the root of the configuration hierarchy also in
IIS 7 and newer versions. The second level in the hierarchy is given by the root web.config file
located in the same folder as machine.config.

Under IIS 7, or newer, an additional level in the hierarchy is represented by the
 applicationHost.config file located in the system32\inetsrv\config folder. To edit the content of
this file, and thus configure most of the settings of the process model, you can use the visual
editors in the IIS Manager tool. Figure 3-3 shows how to configure some parameters of the
process model for a given application pool in the server.

FIGURE 3-3 Configure the process model for a given application pools in IIS 7.5.

94 Part I The ASP.NET Runtime Environment

By default, the machine.config file contains the following:

<system.web>
 <processModel autoConfig="true"/>
 ...
</system.web>

This means that ASP.NET automatically configures some critical attributes to achieve optimal
performance. You might want to tweak some of these attributes to tailor a configuration for
your specific application. Table 3-12 describes these attributes.

TABLE 3-12 Optimizing the ASP.NET Process Model
Attribute Description
maxIoThreads Indicates the maximum number of IO threads per CPU in the thread

pool. The default is 20 (indicating a total of 20xN threads on a machine
with N CPUs).

maxWorkerThreads Indicates the maximum number of worker threads per CPU in the
thread pool. The default is 20 (meaning a total of 20xN threads on a
machine with N CPUs).

memoryLimit Indicates the percentage of memory that the worker process can
 consume before being recycled by IIS. The number indicates the
 percentage of the total system memory. The default value is 60.

minIoThreads Configures the minimum number of I/O threads to use for the process
on a per-CPU basis. The default is 1.

minWorkerThreads Configures the minimum amount of worker threads to use for the
 process on a per-CPU basis. The default is 1.

requestQueueLimit Indicates the number of requests the ASP.NET process can queue
 before returning error 503 (Server too busy.) The default is 5000.

responseDeadlockInterval Indicates the time after which a process with queued requests that has
not returned a response is considered deadlocked and is shut down.
The default is three minutes.

Let’s consider some alternatives, starting with memory limits. The default value of 60 has
been determined by looking at an average scenario where your application is likely not to
be the only one on the server. However, if you’re lucky enough to be the only server process
that consumes memory, the number can set to a higher threshold such as 75 without raising
significant issues.

I/O threads are threads used to perform asynchronous operations that tend to take a
while to complete. The typical example is reading a file or calling into a Web service. I/O
threads are implicitly set up by high-level code you call usually through BeginXxx methods.
Worker threads are, instead, threads used for plain operations. You might want to increase
the number of I/O threads or worker threads based on the characteristics of your applica-
tion. As you might have noticed, two minimum settings exist for threads: minIoThreads and

 Chapter 3 ASP.NET Configuration 95

 minWorkerThreads. These values determine the lower bound that, when reached, cause
ASP.NET to queue successive requests. A new request for a worker process is queued when
fewer than the minWorkerThreads free threads are counted. The same happens for I/O
threads.

Process Model and IIS 7.x Integrated Mode
ASP.NET uses threads differently when an application is hosted in an application pool
running under IIS 7 in integrated mode. The biggest difference is that by default ASP.
NET counts and keeps under control the number of concurrent requests instead of the
number of concurrent threads. Is this really different? The two quantities are the same
except when asynchronous requests are present. Asynchronous requests, in fact, might
be pending without blocking an ASP.NET thread. As a result, you can have far more
 requests than threads.

You can still use the settings for threads exposed by the <processModel> section,
but they are just ignored in integrated mode. How can you configure the maximum
number of concurrent requests per CPU? A new configuration file has been added
that supports an extra section named <applicationPool>. The new configuration file
is aspnet.config and is available in the .NET Framework folder. For ASP.NET 4, it is
\microsoft.net\framework\v4.0.30319 under the Windows folder. You can add the
 following section:

<system.web>
 <applicationPool
 maxConcurrentRequestsPerCPU="5000"
 maxConcurrentThreadsPerCPU="0"
 requestQueueLimit="5000" />
</system.web>

The requestQueueLimit value specified in aspnet.config is the same as in
<processModel> and will override any value you assign at the machine.config level.

Note that in integrated mode any requests are handed to ASP.NET by IIS for mere
execution. When this happens, a thread switch occurs—from the IIS thread to a CLR
thread. If you set maxConcurrencyRequestPerCPU to 0, the request will execute on the
IIS I/O thread, without switching to a CLR thread. This is not a recommended approach
because it could slow down the application when it comes to serving static resources. If
you have IIS threads engaged in dynamic (and likely lengthier) requests, there are more
chances that at peak times no threads are left to serve simpler requests.

In integrated mode, ASP.NET defaults to counting requests instead of threads. You can
change this behavior by tweaking the values of maxConcurrencyRequestsPerCPU and
maxConcurrencyThreadsPerCPU. You can also set both to nonzero values, in which case
ASP.NET will manage to honor both of your settings.

96 Part I The ASP.NET Runtime Environment

The <profile> Section
The <profile> section is used to configure storage and layout of the user-profiling feature.
Basically, each user can be assigned a set of properties whose values are loaded and persist-
ed automatically by the system when the request begins and ends. A profile provider takes
care of any I/O activity using a particular data store. The default profile provider, for example,
uses the AspNetDb.mdf file and SQL Server Express.

The <profile> section has the following schema:

<profile
 enabled="true|false"
 inherits="fully qualified type reference"
 automaticSaveEnabled="true|false"
 defaultProvider="provider name">
 <properties>...</properties>
 <providers>...</providers>
</profile>

The enabled attribute indicates whether user profiles are enabled. The default value is
true. The set of properties that is associated with each authenticated user is defined in the
 <properties> child element:

<profile>
 <properties>
 <add name="BackColor" type="string" />
 <add name="ForeColor" type="string" />
 </properties>
</profile>

Table 3-13 lists the attributes allowed on the Profile property.

TABLE 3-13 Attributes of the Profile Property
Attribute Description
allowAnonymous Allows storing values for anonymous users. It’s false by default.

customProviderData Contains data for a custom profile provider.

defaultValue Indicates the default value of the property.

name Name of the property.

provider Name of the provider to use to read and write the property.

readOnly Specifies whether the property value is read-only. It’s false by default.

serializeAs Indicates how to serialize the value of the property. Possible values are
Xml, Binary, String, and ProviderSpecific.

type The .NET Framework type of property. It is a string object by default.

All properties are packaged in a dynamically created class that is exposed to user code
through the Profile property on the HttpContext object. The Inherits attribute allows you
to define the base class of this dynamically created profile class. The automaticSaveEnabled

 Chapter 3 ASP.NET Configuration 97

 attribute specifies whether the user profile should be automatically saved at the end of the
execution of an ASP.NET page. (The default is true.) Note that the profile is saved only if the
HTTP module in charge of it detects that the profile has been modified.

The <providers> element lists all available profile providers. You use this section to register
custom providers. The defaultProvider attribute indicates the currently selected provider that
pages will use.

The <roleManager> Section
The <roleManager> section configures role management for an ASP.NET application. Role
management is carried out by two components: an HTTP module that intercepts incoming
requests, and a role provider that retrieves and sets role information for the authenticated
user. The provider acts as a proxy for the data store where the role information is stored. All
available providers are listed in the <providers> child section. A new provider should be add-
ed here. The default provider is specified in the defaultProvider attribute. The overall schema
of the section is shown here:

<roleManager
 cacheRolesInCookie="true|false"
 cookieName="name"
 cookiePath="/"
 cookieProtection="All|Encryption|Validation|None"
 cookieRequireSSL="true|false "
 cookieSlidingExpiration="true|false "
 cookieTimeout="number of minutes"
 createPersistentCookie="true|false"
 defaultProvider="provider name"
 domain="cookie domain">
 enabled="true|false"
 maxCachedResults="maximum number of role names cached"
 <providers>...</providers>
</roleManager>

After the HTTP module receives the role information from the currently selected provider, it
usually creates a cookie to cache the information for future requests. All cookie-related at-
tributes you see in the schema configure a different aspect of the cookie. The default name is
.ASPXROLES.

The <securityPolicy> Section
In the <securityPolicy> section, you define mappings between security levels and policy files.
The section can be configured at the application level but not in subdirectories. The section
contains one or more <trustLevel> elements with name and policyFile attributes. You also
can use the section to extend the security system by providing your own named trust levels
mapped to a custom security policy file.

98 Part I The ASP.NET Runtime Environment

Here’s an excerpt from the site’s root web.config file that ASP.NET installs:

<securityPolicy>
 <trustLevel name="Full" policyFile="internal" />
 <trustLevel name="High" policyFile="web_hightrust.config" />
 <trustLevel name="Medium" policyFile="web_mediumtrust.config" />
 <trustLevel name="Low" policyFile="web_lowtrust.config" />
 <trustLevel name="Minimal" policyFile="web_minimaltrust.config" />
</securityPolicy>

The name attribute can be set to Full, High, or Low in all versions of the .NET Framework.
Each trust level identifies a particular security level that you map to a policy file. Security
policy files are XML files located in the same folder as machine.config.

Notice that in ASP.NET the Full level of trust doesn’t need to have an associated policy file
full of permission sets and code-group definitions. The reason is that ASP.NET doesn’t add
extra security settings in the case of Full trust, so in such cases the content of the policyFile
 attribute is ignored.

The <sessionState>Section
The <sessionState> section stores session-state settings for the current application. The
 section determines the behavior and implementation details of the ASP.NET Session object.
The Session object can work in different modes to accommodate the application’s require-
ments for performance, robustness, and data reliability. In Table 3-14, you can see the list of
acceptable attributes for the element. The mode attribute is the only mandatory attribute.
Some attributes are mutually exclusive.

TABLE 3-14 Session-State Attributes
Attribute Description
allowCustomSqlDatabase If this is set to true, it enables you to specify a custom SQL Server

 database to store session data instead of using the default ASPState
database.

compressionEnabled Specifies whether compression is applied to the session-state data.

cookieless Specifies how to communicate the session ID to clients. Feasible values
are those listed in Table 3-5.

cookieName Name of the cookie, if cookies are used for session IDs.

customProvider Name of the custom session-state store provider to use for storing and
retrieving session-state data.

 Chapter 3 ASP.NET Configuration 99

Attribute Description
mode Specifies the implementation mode of the session state. Acceptable

values are Off, InProc, Custom, StateServer, and SQLServer. When it’s
set to Off, session-state management is disabled and the Session ob-
ject is not available to the application. InProc is the default working
mode, and it stores session data locally in the Web server’s memory.
Alternatively, the session state can be stored on a remote server
(StateServer) or in a SQL Server database (SQLServer). The Custom
 option indicates that the application is using a custom data store.

partitionResolverType Indicates the type and assembly of the partition resolver component
to be loaded to provide connection information when session state is
working in SQLServer or StateServer mode. If a partition resolver can
be correctly loaded, the sqlConnectionString and stateConnectionString
attributes are ignored.

regenerateExpiredSessionId When a request is made with a session ID that has expired, if this
 attribute is true, a new session ID is generated; otherwise, the expired
one is revived. The default is false.

sessionIDManagerType Null by default. If this attribute is set, it indicates the component to use
as the generator of session IDs.

sqlCommandTimeout Specifies the number of seconds a SQL command can be idle before it
is canceled. The default is 30.

sqlConnectionRetryInterval Specifies the time interval, in seconds, between attempts to connect to
the database. The default is 0.

sqlConnectionString Used when the mode is set to SQLServer; specifies the connection
string for the SQL Server database to use for storing session data.

stateConnectionString Used when the mode is set to StateServer; specifies the server name
and port where session state should be stored.

stateNetworkTimeout Specifies the number of seconds the TCP/IP network connection
 between the Web server and the state server can be idle before the
request is canceled. The default is 10.

timeout Specifies the number of minutes a session can be idle before it is
 abandoned. The default is 20.

useHostingIdentity Indicates that the ASP.NET process identity is impersonated to ac-
cess a custom state provider or the SQLServer provider configured for
 integrated security. It’s true by default.

In addition, the child <providers> section lists custom session-state store providers. ASP.NET
session state is designed to enable you to easily store user session data in different sources,
such as a Web server’s memory or SQL Server. A store provider is a component that manages
the storage of session-state information and stores it in alternative media (for example, an
Oracle database) and with an alternative layout.

The default connection string for the SQLServer mode is set to the following:

data source=127.0.0.1;Integrated Security=SSPI

100 Part I The ASP.NET Runtime Environment

As you can see, it doesn’t contain the database name, which defaults to AspState. You
 create this database before the application is released using either T-SQL scripts or the
aspnet_regsql command-line utility.

The default connection string for the StateServer mode is set to

tcpip=127.0.0.1:42424

You can change the TCP/IP address and the port used at will. Note, though, that to change
the port you must edit the Port entry under the registry key:

HKEY_LOCAL_MACHINE\
 SYSTEM\CurrentControlSet\Services\aspnet_state\Parameters

In other words, just writing the new port number in the configuration file is not enough.

The <siteMap> Section
The <siteMap> section configures settings and providers for the ASP.NET site navigation
 system. The schema of the section is quite simple:

<sitemap
 enabled="true|false"
 defaultProvider="provider name">
 <providers>...</providers>
</siteMap>

The feature relies on site-map providers—that is, made-to-measure components that return
information representing the structure of the site. ASP.NET comes with one predefined
provider: the AspNetXmlSiteMapProvider class. The default site-map provider is specified
through the defaultProvider attribute. All available providers, including custom providers, are
listed in the <providers> section.

The <trace> Section
Tracing refers to the program’s ability to send informative messages about the status of the
execution. In general, tracing is a way to monitor the behavior of an application in a produc-
tion environment, and debugging is used for development time testing. The <trace> section
defines attributes that can modify the behavior of application-level tracing. The attributes are
listed in Table 3-15.

TABLE 3-15 Application-Level ASP.NET Tracing Attributes
Attribute Description
enabled Specifies whether tracing is enabled for an application. The default is false.

Tracing must be enabled in order to use the trace viewer (trace.axd) and
other tracing facilities.

 Chapter 3 ASP.NET Configuration 101

localOnly If this attribute is set to true, the trace viewer is available only on the local
host; if it’s set to false, the trace viewer is also available remotely. The
 default is true. Note that trace.axd is one of the default HTTP handlers
registered at installation time.

pageOutput Specifies whether trace output is rendered at the end of each page. If this
attribute is set to false, trace output is accessible through the trace viewer
only. The default is false. Regardless of this global setting, individual pages
can enable tracing using the Trace attribute of the @Page directive.

requestLimit Indicates the maximum number of trace results to store on the server that
are subsequently available through trace.axd. The default value is 10. The
maximum is 10,000.

traceMode Indicates the criteria by which trace records are to be sorted and dis-
played. Acceptable values are SortByTime (the default) or SortByCategory.
Sorting by time means that records are displayed in the order in which
they are generated. A category, on the other hand, is a user-defined name
that can be optionally specified in the trace text.

writeToDiagnosticsTrace This is false by default. It specifies whether trace messages should be
 forwarded to the diagnostics tracing infrastructure, for any registered
 listeners.

In the .NET Framework, tracing is provided through a unified, abstract API that uses ad hoc
drivers to physically output the messages. These drivers are called listeners and redirect the
tracing output to the specified target—typically a log file or an output stream. Listeners are
defined in the <system.diagnostics> section. When writeToDiagnosticsTrace is true, any
ASP.NET-generated trace message is also forwarded to all registered listeners.

The <trust> Section
The <trust> section configures the trust level under which the application will be run and
determines the code-access security (CAS) restrictions applied to the application. By default,
all ASP.NET applications run on the Web server as fully trusted applications and are allowed
to do whatever their account is allowed to do. The CLR doesn’t sandbox the code. Hence, any
security restrictions applied to an application (for example, the inability to write files or write
to the registry) are not the sign of partial trust but simply the effect of the underprivileged
account under which ASP.NET applications normally run. Here’s the schema for the section:

<trust
 hostSecurityPolicyResolverType ="security policy resolution type"
 legacyCasModel = "[True|False]"

102 Part I The ASP.NET Runtime Environment

 level="[Full|High|Medium|Low|Minimal]"
 originUrl="URL"
 permissionSetName = "name of the permission set"
 processRequestInApplicationTrust = "[True|False]"
/>

You act on the <trust> section if you want to run a Web application with less than full trust.
The following code snippet shows the default <trust> setting in the site root web.config:

<trust level="Full" originUrl="" />

Allowable values for the level attribute are all the <trustLevel> entries defined in the
 <securityPolicy> section.

The originUrl attribute is a sort of misnomer. If you set it, what really happens is quite simple:
the application is granted the permission of accessing the specified URL over HTTP using
 either a Socket or WebRequest class. Of course, the Web permission is granted only if the
specified <trust> level supports that. Medium and higher trust levels do.

The <trust> section supports a Boolean attribute named processRequestInApplicationTrust. If
true (the default), the attribute dictates that page requests are automatically restricted to the
permissions in the trust policy file applied to the application. If it’s false, there’s the possibility
that a page request runs with higher privileges than set in the trust policy.

Note The <trust> section is allowed only at the machine level and application level because
of technical reasons, not because of security concerns. An ASP.NET application runs in its own
AppDomain, and the trust level for that application is set by applying the appropriate secu-
rity policy to the AppDomain. Although policy statements can target specific pieces of code,
the AppDomain is the lowest level at which a security policy can be applied. If the CLR has a
policy level more granular than the AppDomain, you can define different trust levels for various
 portions of the ASP.NET application.

The following script shows how to specify Medium trust-level settings for all applications on
a server. The script is excerpted from a site’s root web.config file. With allowOverride set to
false, the trust level is locked and cannot be modified by the application’s root web.config file.

<location allowOverride="false">
 <system.web>
 <trust level="Medium" originUrl="" />
 </system.web>
</location>

 Chapter 3 ASP.NET Configuration 103

By adding the following script, instead, you release the lock for a particular application on
the machine:

<location allowOverride="true" path="Default Web Site/MySite40">
 <system.web>
 <trust level="Medium" originUrl="" />
 </system.web>
</location>

With the .NET Framework 4, Microsoft made some significant changes to the CAS model for
managed applications. These changes might actually cause some ASP.NET applications to
fail. At risk are partial-trust ASP.NET applications that either rely on trusted code running in
the global assembly cache (GAC) or require extensive modifications to machine CAS policy
files. For this reason, the legacyCasModel attribute has been added to revert partial-trust ASP.
NET 4 applications to the behavior of earlier versions of ASP.NET built for earlier versions of
the CLR. All you do is set legacyCasModel to true if you want to include a legacy CAS-related
 behavior from your ASP.NET 4 application.

In ASP.NET 4, there are various ways of associating a permission set with any assemblies
 required by the application. As in earlier versions, you can shape up the permission set by
editing the partial-trust policy file for an individual trust level (for example,
web_mediumtrust.config). In addition, you can specify a permission set explicitly through
the PermissionSetName attribute. In ASP.NET 4, there are three possible permission sets:
FullTrust, ASP.Net, and Nothing.

The FullTrust permission set makes any code run as fully trusted. The ASP.Net permission
set is typically used for partial-trust applications and is the default name assigned to the
PermissionSetName attribute. Nothing is not really an alternate permission set; rather, it
is simply the empty permission set. The CLR throws a security exception for any assembly
 associated with the empty permission set. When you change the name of the permission set,
ASP.NET 4 will search the partial-trust policy file with the same name.

Note Changing the name of the default partial trust permission set is not an action you want to
take without a valid reason. The feature exists mostly for when you need a SharePoint application
to define its own set of permissions distinct from those of typical ASP.NET applications. Keep in
mind that with the new CAS model of the .NET Framework 4, you are no longer allowed to have
multiple named permission sets to define partial-trust permissions. So you can change the name
from ASP.Net to something else, but that won’t give you multiple partial trust permission sets for
each application.

Finally, you can also opt for a programmatic approach to the task of choosing the permission
set for an assembly. The CLR queries a HostSecurityManager object every time an assembly
is loaded. One of the tasks associated with the HostSecurityManager type is returning the
permission set for the assembly being loaded. In ASP.NET 4, you can gain control over
this process by defining your own resolver type. A resolver type is registered through the

104 Part I The ASP.NET Runtime Environment

hostSecurityPolicyResolverType attribute and consists of a type derived from the system’s
HostSecurityPolicyResolver type. I’ll return to CAS for ASP.NET 4 applications in Chapter 19.
You can find some good literature about this topic at http://msdn.microsoft.com/en-us/
library/dd984947%28VS.100%29.aspx.

The <urlMappings> Section
The <urlMappings> section contains a list of mappings between fake URLs and real
 endpoints in the application. Here’s a quick example that is worth a thousand words:

<urlMappings enabled="true">
 <add url="~/main.aspx" mappedUrl="~/default.aspx?tab=main" />
</urlMappings>

The url attribute indicates the URL that users request from their browser. The mappedUrl
 attribute indicates the corresponding URL that is passed on to the application. Both URLs are
application-relative. In addition to the <add> node, the <urlMappings> section also supports
the <remove> and <clear> nodes.

Note The <urlMappings> section was introduced as the declarative counterpart of the
RewritePath method defined on the HttpContext class. In ASP.NET 4, the URL-rewriting API
has been further improved with the introduction of routing. You might want to choose the
new routing API as your first option in an ASP.NET 4 application. (I’ll cover routing in the next
 chapter.)

The <webControls> Section
The <webControls> section contains only the clientScriptsLocation attribute that specifies
the default path to ASP.NET client script files. These files are included in the HTML code
 generated for .aspx pages when these pages require client-side functionalities such as smart
navigation and client-side control validation.

<webControls clientScriptsLocation="/aspnet_client/{0}/{1}/" />

The preceding code snippet represents the default contents of the <webControls> section.
The content of clientScriptsLocation, properly expanded, is the URL used for searching scripts
to be included. The aspnet_client directory is automatically created under the Web server’s
root when you install ASP.NET. The two placeholders in the string represent subdirectories
whose name might change in future versions of ASP.NET. The first placeholder is always set to
system_web. The second placeholder expands to a subdirectory name based on the version
of the .NET Framework.

http://msdn.microsoft.com/en-us/�library/dd984947%28VS.100%29.aspx
http://msdn.microsoft.com/en-us/�library/dd984947%28VS.100%29.aspx
http://msdn.microsoft.com/en-us/�library/dd984947%28VS.100%29.aspx

 Chapter 3 ASP.NET Configuration 105

ASP.NET 4 doesn’t use this folder to store client script files. Client script files are, in fact,
 embedded as resources in the system.web assembly and are injected in pages through the
webresource.axd HTTP handler.

You can use the client script folder to store script files employed by any custom ASP.NET
 controls you might write.

The <xhtmlConformance> Section
The <xhtmlConformance> section designates the XHTML rendering mode for an application.
The default rendering for pages and controls is XHTML 1.0 Transitional. This is also the
 default for new pages created in Microsoft Visual Studio 2010. You can configure the
 preferred rendering by setting options in the <xhtmlConformance> section, which enables
you to select XHTML 1.0 Transitional, XHTML1.0 Strict, and legacy rendering.

<xhtmlConformance mode="Transitional|Legacy|Strict"/>

If you opt for Legacy, pages and controls will render as in ASP.NET 1.x.

Other Top-Level Sections
The sections under the <system.web> element don’t exhaust the list of configuration
 elements that are useful to ASP.NET developers. At least three other sections should be
known and mastered.

The <appSettings> Section
The <appSettings> section stores custom application configuration data such as file paths,
URLs of interest, or any other application-wide information:

<configuration>
 <appSettings>
 <add key="DefaultCacheDurationForData" value="..." />
 </appSettings>
</configuration>

The syntax of the <appSettings> section is defined as follows:

<appSettings>
 <add key="..." value="..." />
 <remove key="..." />
 <clear />
</appSettings>

The <add> element adds a new setting to the internal collection. This new setting has a value
and is identified by a unique key. The <remove> element removes the specified setting from

106 Part I The ASP.NET Runtime Environment

the collection. The setting is identified using the key. Finally, the <clear> element clears all
settings that have previously been defined in the section.

As the name of the section implies, you should store in the section application-specific
 settings and avoid storing user-specific information. For user-specific information, you can
use the user profile API. (See Chapter 8, “Page Composition and Usability.”)

Any contents you design for storage in the <appSettings> section can be saved to an external
XML file that is linked to the section through the file attribute:

<appSettings file="myfile.config" />

The content of the file pointed to by the file attribute is read as if it is an <appSettings>
 section in the web.config file. Note that the root element of the file must match
<appSettings>.

Note Changes to the external file are not detected until the application is restarted. If you
 incorporate <appSettings> in the web.config file, any changes are instead detected in real time.

The <connectionStrings> Section
The section is specifically designed to contain connection strings and is laid out as follows:

<connectionStrings>
 <add name="NWind"
 connectionString="SERVER=...;DATABASE=...;UID=...;PWD=...;"
 providerName="System.Data.SqlClient" />
</connectionStrings>

You can manipulate the contents of the section by using <add>, <remove>, and <clear>
nodes. Each stored connection is identified with a name you set through the name
 attribute. The connection parameters are set in the connectionString attribute. Finally, the
 providerName attribute indicates the ADO.NET data provider to use.

Connection names are also used within the configuration file to link a connection string to
other sections, typically the <providers> section of <membership> and <profile> nodes.

Note You are not really forced to place all of your connection strings in the <connectionStrings>
section. You can place your strings in <appSettings> as well as in a custom section. Look at this
section as a system facility for a common task you would accomplish anyway.

 Chapter 3 ASP.NET Configuration 107

The <configProtectedData> Section
ASP.NET lets you encrypt specific sections of configuration files that might contain sensitive
data. It does that through industry-standard XML encryption. XML encryption (which you
can learn more about at http://www.w3.org/TR/xmlenc-core) is a way to encrypt data and
 represent the result in XML.

Encryption of configuration sections is optional, and you can enable it for any configuration
sections you want by running a command-line tool, as you’ll see later in this chapter in the
section “Managing Configuration Data.”

You can specify the type of encryption you want by selecting the appropriate provider from
the list of available encryption providers. The .NET Framework 4.0 comes with two predefined
providers: DPAPIProtectedConfigurationProvider and RSAProtectedConfigurationProvider. The
former uses the Windows Data Protection API (DPAPI) to encrypt and decrypt data; the latter
(the default provider) uses the RSA encryption algorithm to encrypt and decrypt data.

Most configuration sections that are processed by the managed configuration system are
eligible for protection. The <configProtectedData> section itself, though, can’t be protected.
In this case, clear text is necessary to describe the behavior of the system. Similarly, sections
consumed by the CLR from Win32 code or from ad hoc managed XML parsers can’t be
 protected by this system because they don’t employ section handlers to consume their
 configuration. This includes at least the following sections: <processModel>, <runtime>,
<mscorlib>, <startup>, and <system.runtime.remoting>.

The <system.web.extensions> Section
This section contains elements that configure AJAX-related services and control their
 behavior. The section is laid out as shown here:

<system.web.extensions>
 <scripting>
 <scriptResourceHandler
 enableCompression="true|false"
 enableCaching="true|false" />
 </scripting>
 <webServices>
 <jsonSerialization ... />
 <authenticationService ... />
 <roleService ... />
 <profileService ... />
 </webServices>
</system.web.extensions>

The scriptResourceHandler element allows you to specify whether script files embedded as
resources in a given application assembly are to be cached or compressed. Both options are
false by default.

http://www.w3.org/TR/xmlenc-core

108 Part I The ASP.NET Runtime Environment

The content of the <webServices> element is related to Web or WCF services used by
 AJAX-enabled applications. The <jsonSerialization> element configures JSON serialization
and is made of two attributes: maxJsonLength and recursionLimit. The former indicates the
maximum length of a JSON string; the latter sets the maximum level of nesting allowed in
the type being serialized.

The <authenticationService> element configures the ASP.NET authentication API exposed as
a Web service to ASP.NET AJAX applications. The section has only two Boolean attributes:
enabled and requireSSL. Both are false by default.

The <roleService> element configures the ASP.NET role management API exposed as a Web
service to ASP.NET AJAX applications. The section has only Boolean attribute—enabled—
which is false by default.

The <profileService> element configures the ASP.NET profile API exposed as a Web service to
ASP.NET AJAX applications. The section has three attributes—enabled, readAccessProperties,
and writeAccessProperties. The latter two properties consist of a list of comma-separated
names of properties to be read and written as part of the user’s profile.

The <system.webServer> Section
In general, the <system.webServer> section contains site-level settings for IIS 7.x. Defined
within the applicationHost.config file and edited via the user interface of IIS Manager, the
 section specifies any settings used by the Web server engine and modules. Full documenta-
tion is available at http://www.iis.net/ConfigReference/system.webServer.

The section can also be used within the application’s web.config file to make some of the
 settings specific to a given application. There’s a specific situation, though, that requires
you to have a <system.webServer> section in the application’s web.config file—an ASP.NET
 application that employs HTTP modules, HTTP handlers, or both and runs under IIS 7.x in
 integrated mode.

Before IIS 7 came along, any ASP.NET request had to go through two distinct pipelines: one
right at the IIS gate, and one mapped to the ASP.NET runtime environment. Subsequently,
an ASP.NET application in need of supporting special HTTP modules or handlers simply
registered them in the web.config file and waited for them to be invoked. In IIS 7 integrated
mode, instead, the request pipeline is unified at the IIS level. As a result, any HTTP handlers
and HTTP modules you might have registered in the <httpHandlers> and <httpModules>
 sections of the web.config file will be blissfully ignored.

For an IIS 7–integrated ASP.NET application to properly deal with HTTP modules and
 handlers, you have to move the <httpHandlers> and <httpModules> sections to a new
<system.webServer> section in the same application’s web.config file. There are some
snags though.

http://www.iis.net/ConfigReference/system.webServer

 Chapter 3 ASP.NET Configuration 109

Important When developing HTTP handlers and modules, you should be aware of a key
point. The ASP.NET Development Server (also known as Cassini) doesn’t honor the content of
the <webServer> section. This means that, for development purposes only, you should copy
the registration of your handlers and modules also in the <httpHandlers> and <httpModules>
 section, regardless of whether your application will actually be deployed on IIS 7. The ASP.NET
Development Server that comes with Visual Studio is designed to capture and process all re-
quests within its own pipeline; in this regard, its overall behavior is more similar to IIS 6 than IIS 7.

Under <system.webServer>, sections have been renamed <modules> and <handlers>
and have a slightly different set of attributes. In particular, each handler must have a
name attribute and support additional attributes, namely precondition and allowpolicy.
The precondition attribute lists what’s required for the handler to work: type of pipeline
(classicMode or integratedMode), bitness (32 or 64), and runtime version of ASP.NET (v2
or v4). The allowPolicy attribute sets the permissions granted to the handler: read, write,
 execute, or script.

The <modules> section counts a couple of Boolean attributes, such as
 runAllManagedModulesForAllRequests and runManagedModulesForWebDavRequests.
Both properties default to false. This is the typical content for <system.webServer> in a new
ASP.NET 4 application in Visual Studio 2010.

<modules runAllManagedModulesForAllRequests="true">
</modules>

The attribute runAllManagedModulesForAllRequests indicates that all managed modules can
process all requests, even if the request was not for managed content. Instead, the attribute
runManagedModulesForWebDavRequests specifies whether managed modules can process
WebDAV requests.

These differences between classic and integrated mode lead you toward using different
web.config files to set up handlers and modules for the same application deployed in
 different scenarios. By using the <validation> element, however, you can have a single
web.config file with settings for both classic and integrated IIS 7 working modes:

<system.webServer>
 <validation validateIntegratedModeConfiguration="false" />
 ...
 </system.webServer>

The <validation> element tells IIS not to validate the schema of the web.config file against
the known configuration schema of integrated mode. In this way, when you are working in
 integrated mode, <httpHandlers> and <httpModules> are ignored; and when you are in
 classic mode, the entire <system.webServer> section is ignored.

110 Part I The ASP.NET Runtime Environment

Note If you’re having trouble while hosting an ASP.NET application under IIS 7.x in integrated
mode, you might want to read the following article for more information and a very good
 background of the whole topic: http://learn.iis.net/page.aspx/381/aspnet-20-breaking-changes-
on-iis-70.

Managing Configuration Data
Configuration data can be managed by developers and administrators in two main ways:
programmatically through an ad hoc API, and manually through command-line utilities, XML
editors, or perhaps the Web Site Administration Tool (WSAT). Let’s take a closer look at these
options.

Using the Configuration API
ASP.NET includes a full configuration management API that enables you to navigate, read,
and write an application’s configuration files. Configuration settings are exposed as a set
of strongly typed objects that you can easily program against. These classes—one for each
 section in the overall schema—are all defined in the System.Configuration namespace.

The configuration API is smart enough to provide a merged view of all the settings that apply
to that level. When settings are modified, the API automatically writes changes to the correct
node in the correct configuration file. The management API can be used to read and write
configuration settings of local and remote applications. Custom configuration sections are
automatically manageable through the API.

Retrieving Web Configuration Settings
You use the WebConfigurationManager class to get access to the ASP.NET configuration files.
The class is the preferred way to work with configuration files related to Web applications.
The following code snippet illustrates how to retrieve the HTTP handlers in use in the current
application:

void Button1_Click(object sender, EventArgs e)
{
 var name = @"system.web/httpHandlers";
 var cfg = WebConfigurationManager.OpenWebConfiguration("/");
 var handlers = (HttpHandlersSection) cfg.GetSection(name);
 EnumerateHandlers(handlers);
}

void EnumerateHandlers(HttpHandlersSection section)
{
 foreach (var handler in section.Handlers)
 {
 ...
 }
}

http://learn.iis.net/page.aspx/381/aspnet-20-breaking-changes-on-iis-70
http://learn.iis.net/page.aspx/381/aspnet-20-breaking-changes-on-iis-70
http://learn.iis.net/page.aspx/381/aspnet-20-breaking-changes-on-iis-70

 Chapter 3 ASP.NET Configuration 111

You open the configuration file using the OpenWebConfiguration method. The parameter
you pass to the method indicates the level at which you want to retrieve information. If you
specify null or /, you intend to capture configuration data at the site’s root level. If you want
information at the machine level, you resort to the OpenMachineConfiguration method.

The OpenWebConfiguration method returns a Configuration object on which you can call
GetSection to retrieve the contents of a particular section. For HTTP handlers, you do as
follows:

HttpHandlersSection section;
section = (HttpHandlersSection) cfg.GetSection(@"system.web/httpHandlers");

Each section class has a programming interface that closely reflects the attributes and child
sections on the element.

To access configuration data at the application level, you pass the application’s URL to the
OpenWebConfiguration method:

var path = Request.CurrentExecutionFilePath;
Configuration cfg = WebConfigurationManager.OpenWebConfiguration(path);

To retrieve information about other sections, you use the same pattern illustrated earlier by
changing section names and section classes.

Note The .NET Framework offers two similar classes to achieve the same goals: the
 aforementioned WebConfigurationManager and ConfigurationManager. Their functionalities
overlap to a good extent, but they are not the same thing. In particular, they do the same thing if
all you need to do is read data from mapped sections such as AppSettings and ConnectionStrings
If you need to access a specific section, remember that WebConfigurationManager can be
 configured to open a Web configuration file, whereas ConfigurationManager is designed for
other types of applications.

Retrieving Application Settings
As mentioned, most ASP.NET applications need to access data in sections outside the
 <system.web> element. Canonical examples are <appSettings> and <connectionString>.
For sections not included in the <system.web> element, you normally use the
ConfigurationManager class. However, WebConfigurationManager contains a couple of helper
public properties to access AppSettings and ConnectionStrings collections. The following code
snippet shows the implementation of these properties in WebConfigurationManager:

public static NameValueCollection AppSettings
{
 get {return ConfigurationManager.AppSettings;}
}

112 Part I The ASP.NET Runtime Environment

public static NameValueCollection ConnectionStrings
{
 get {return ConfigurationManager.ConnectionStrings;}
}

As you can see, to access application settings and connection strings you can
 interchangeably use the AppSettings and ConnectionStrings collections on both
WebConfigurationManager and ConfigurationManager. Here’s how to obtain a registered
connection string named Northwind:

WebConfigurationManager.ConnectionStrings["Northwind"].ConnectionString

For a value stored in the <appSettings> section, you need the following:

WebConfigurationManager.AppSettings["CacheDurationForData"]

In case you need to access other sections outside <system.web>, the ConfigurationManager
class supplies the OpenMachineConfiguration method to access the tree of configuration
data. Here’s the code to retrieve the supported protocol prefixes for Web requests (https,
http, ftp, and the like):

var name = @"system.net/webRequestModules";
Configuration cfg = ConfigurationManager.OpenMachineConfiguration();
var section = (WebRequestModulesSection) cfg.GetSection(name);
foreach (WebRequestModuleElement m in section.WebRequestModules)
{
 ...
}

To explore the content of a section, you need to cast the return value of the GetSection
method to a specific type. A section type is defined for each system-provided support-
ed section in the system.configuration assembly. Note, though, that you won’t find any
such section classes for elements under the <system.webServer> section. If you need to
 programmatically read or write within the <system.webServer> section, you must reference
the Microsoft.Web.Administration assembly where such classes are defined. You find the
 assembly in the IIS folder, specifically under System32\inetsrv.

Updating Application Settings
The entire content of the configuration tree is exposed to applications through a sort of
Document Object Model (DOM). This DOM is modifiable in memory. After you’re done, you

 Chapter 3 ASP.NET Configuration 113

can persist changes by calling the Save method on the corresponding Configuration class.
The following code snippet shows how to programmatically add a new HTTP handler to the
current application:

var name = @"system.web/httpHandlers";
var path = "/myapp";

var config = WebConfigurationManager.OpenWebConfiguration(path);
var section = (HttpHandlersSection) config.GetSection(name);

var newHandler = new HttpHandlerAction("*.xyz", "System.Web.HttpForbiddenHandler", "*");
section.Handlers.Add(newHandler);
config.Save();

The newly added handler configures the system so that requests for .xyz files are blocked.
The application’s web.config file is modified as follows:

<httpHandlers>
 ...
 <add path="*.xyz"
 verb="*"
 type="System.Web.HttpForbiddenHandler" />
</httpHandlers>

To re-enable .xyz resources, you need to remove the handler that was just added. The
 following code shows how to proceed programmatically:

var name = @"system.web/httpHandlers";
var path = "/myapp";

var config = WebConfigurationManager.OpenWebConfiguration(path);
var section = (HttpHandlersSection) config.GetSection(name);

section.Handlers.Remove("*", "*.xyz");
config.Save();

After this, any request for an .xyz resource is likely to produce the, perhaps more familiar,
“ resource not found” message.

Encrypting a Section
With the exceptions listed earlier while discussing the <protectedData> section, all sections in
a configuration file can be encrypted both programmatically using the configuration API and
in offline mode using a command-line tool. Let’s tackle this latter option first.

114 Part I The ASP.NET Runtime Environment

Using a Command-Line Tool
You use the newest version of a popular system tool: aspnet_regiis.exe. Here’s a sample usage
of the utility to encrypt connection strings for the /MyApp application. Note that the section
names are case-sensitive.

aspnet_regiis.exe –pe connectionStrings –app /MyApp

After running this command, the web.config looks different. The <connectionStrings> section
now incorporates a child <EncryptedData> section, which is where the ciphered content
has been stored. If you open the web.config file after encryption, you see something like the
following:

<configuration>
 <connectionStrings
 configProtectionProvider="RsaProtectedConfigurationProvider">
 <EncryptedData ...>
 ...
 <CipherData>
 <CipherValue>cQyofWFQ ... =</CipherValue>
 </CipherData>
 </EncryptedData>
 </connectionStrings>
</configuration>

To restore the web.config file to its original clear state, you use the –pd switch in lieu of –pe in
the aforementioned command line. The nice part of the story is that this form of encryption
is completely transparent to applications, which continue working as before.

Using a Programmatic Approach
To encrypt and decrypt sections programmatically, you use the ProtectSection and
UnprotectSection methods defined on the SectionInformation object. Here’s how to proceed:

var name = "connectionStrings";
var path = "/myApp";
var provider = "RsaProtectedConfigurationProvider";

var config = WebConfigurationManager.OpenWebConfiguration(path);
var section = (ConnectionStringsSection) cfg.GetSection(name);

section.SectionInformation.ProtectSection(provider);
config.Save();

To unprotect, you change the call to ProtectSection with the following:

section.SectionInformation.UnprotectSection();
config.Save();

Note that to persist changes it is still essential to place a call to the Save method on the
Configuration object.

 Chapter 3 ASP.NET Configuration 115

Choosing the Encryption Provider
Any page that uses protected sections works like a champ as long as you run it inside the
local Web server embedded in Visual Studio. You might get an RSA provider configuration
error if you access the same page from within a canonical (and much more realistic) IIS virtual
folder. What’s up with that?

The RSA-based provider—the default protection provider, if you use the command-line
tool—needs a key container to work. A default key container is created upon installation
and is named NetFrameWorkConfigurationKey. The aspnet_regiis.exe utility provides a lot of
command-line switches for you to add, remove, and edit key containers. The essential point
is that you have a key container created before you dump the RSA-protected configuration
provider. The container must not only exist, but it also needs to be associated with the user
account attempting to call it. The system account (running the local Web server) is listed with
the container; the ASP.NET account on your Web server might not be. Note that granting
 access to the key container is necessary only if you use the RSA provider.

Assuming you run ASP.NET under the NETWORK SERVICE account (the default on Windows
Server 2003 machines), you need the following code to add access to the container for the
user:

aspnet_regiis.exe –pa "NetFrameworkConfigurationKey"
 "NT AUTHORITY\NETWORK SERVICE"

It is important that you specify a complete account name, as in the preceding code. In IIS 7.5
where ApplicationPoolIdentity is used by default in lieu of NETWORK SERVICE, how would
you identify the account exactly? Here’s how:

aspnet_regiis.exe –pa "NetFrameworkConfigurationKey"
 "IIS APPPOOL\YourAppPool"

You use IIS APPPOOL followed by the name of the IIS application pool whose identity you
want to retrieve.

Both the RSA and DPAPI providers are great options for encrypting sensitive data. The DPAPI
provider dramatically simplifies the process of key management—keys are generated based
on machine credentials and can be accessed by all processes running on the machine. For
the same reason, the DPAPI provider is not ideal to protect sections in a Web-farm scenario,
where the same encrypted web.config file will be deployed to several servers. In this case,
either you manually encrypt all web.config files on each machine or you copy the same con-
tainer key to all servers. To accomplish this, you create a key container for the application,
export it to an XML file, and import it on each server that will need to decrypt the encrypted
web.config file. To create a key container, you do as follows. Using the command-line utility is
mandatory here.

aspnet_regiis.exe –pc YourContainerName –exp

116 Part I The ASP.NET Runtime Environment

Next, you export the key container to an XML file:

aspnet_regiis.exe –px YourContainerName YourXmlFile.xml

Next, you move the XML file to each server and import it as follows:

aspnet_regiis.exe –pi YourContainerName YourXmlFile.xml

As a final step, grant the ASP.NET account permission to access the container.

Note For more information about the aspnet:_regiis tool and its command line, refer to the
 following URL: http://msdn.microsoft.com/en-us/library/k6h9cz8h(VS.80).aspx.

Creating Custom Configuration Sections
The predefined XML schema for configuration files fits the bill in most cases, but when you
have complex and structured information to persist, none of the existing schemas appear
to be powerful enough. At this point, you have two possible workarounds. You can simply
avoid using a standard configuration file and instead use a plain XML file written accord-
ing to the schema you feel is appropriate for the data. Alternatively, you can embed your
XML configuration data in the standard application configuration file but provide a tailor-
made configuration section handler to read it.

Creating a new section (plus an optional new section group) requires editing the web.config
file to register the section (or section group). While registering the new section, you need to
specify the section handler component—that is, the piece of software in charge of parsing
the contents of the section to processable data. Depending on what kind of data you’re
 going to store in the section, you can use one of the existing handlers or, more likely, create
your own section handler.

In ASP.NET, the configuration section handler is a class that ultimately inherits from the
ConfigurationSection class. The section handler class defines public properties and maps
them to attributes in the XML element. In addition, these class properties are decorated with
a special attribute named ConfigurationProperty. The following example shows how to create
the handler for a new <MyPages> section with just one attribute—pageBackColor:

public class MyPagesSection : ConfigurationSection
{
 private static readonly ConfigurationProperty propPageBackColor = null;

 static MyPagesSection()
 {
 MyPagesSection.propPageBackColor = new ConfigurationProperty(
 "PageBackColor", typeof(string), "yellow",
 ConfigurationPropertyOptions.IsRequired);
 }

http://msdn.microsoft.com/en-us/library/k6h9cz8h

 Chapter 3 ASP.NET Configuration 117

 [ConfigurationProperty("pageBackColor")]
 public string PageBackColor
 {
 get { return (string) base[MyPagesSection.propPageBackColor]; }
 set { base[MyPagesSection.propPageBackColor] = value; }
 }
}

The mapping between a property and a section attribute is established through the
ConfigurationProperty attribute. The parameter of the attribute constructor indicates the
name of the section attribute used to feed the decorated property.

A custom section must be registered to work properly. Here’s how to do it:

<configuration>
 <configSections>
 <section name="myPages"
 type="Samples.MyPagesSection, Samples" />
 </configSections>
 ...
<configuration>

The type property in the <section> tag indicates the class being used to read and write
the contents of the section. For the sample <myPages> section, the system will use the
MyPagesSection class in the specified assembly. If the assembly is strongly typed and located
in the GAC, you should indicate its full name.

Summary
ASP.NET applications have many configurable settings. The various settings can all be
 controlled at different levels and overridden, extended, or restricted as appropriate. ASP.NET
configuration is hierarchical by nature and lets you apply different configuration schemes at
various levels of granularity—the machine, the Web site, the application, and even the folder.

Configuration files are probably the most critical aspect to consider when preparing the de-
ployment of ASP.NET applications. Arranging a setup program has never been as easy as it is
with Visual Studio (not considering third-party products), but deciding how to replicate the
settings of the native environment might not be trivial. ASP.NET applications, in fact, can be
deployed on a Web farm or in an ISP scenario, which requires particular care of the machine.
config and web.config files.

Tweaking the content of the myriad sections you can have in a configuration file is a delicate
art that requires awareness of the IIS runtime environment, the ASP.NET process model, and
the endless list of settings and default values that this chapter attempted to cover in detail.

 119

Chapter 4

HTTP Handlers, Modules, and
Routing

Advice is what we ask for when we already know the answer but wish we didn’t.

—Erica Jong

HTTP handlers and modules are truly the building blocks of the ASP.NET platform. Any
 requests for a resource managed by ASP.NET are always resolved by an HTTP handler and
pass through a pipeline of HTTP modules. After the handler has processed the request, the
request flows back through the pipeline of HTTP modules and is finally transformed into
markup for the caller.

The Page class—the base class for all ASP.NET runtime pages—is ultimately an HTTP handler
that implements internally the page life cycle that fires the well-known set of page events,
 including postbacks, Init, Load, PreRender, and the like. An HTTP handler is designed to pro-
cess one or more URL extensions. Handlers can be given an application or machine scope,
which means they can process the assigned extensions within the context of the current
application or all applications installed on the machine. Of course, this is accomplished by
making changes to either the site’s web.config file or a local web.config file, depending on the
scope you desire.

HTTP modules are classes that handle runtime events. There are two types of public events
that a module can deal with. They are the events raised by HttpApplication (including asyn-
chronous events) and events raised by other HTTP modules. For example, SessionStateModule
is one of the built-in modules provided by ASP.NET to supply session-state services to an
 application. It fires the End and Start events that other modules can handle through the
 familiar Session_End and Session_Start signatures.

In Internet Information Services (IIS) 7 integrated mode, modules and handlers are resolved
at the IIS level; they operate, instead, inside the ASP.NET worker process in different runtime
configurations, such as IIS 7 classic mode or IIS 6.

HTTP modules and handlers are related to the theme of request routing. Originally
 developed for ASP.NET MVC, the URL routing engine has been incorporated into the over-
all ASP.NET platform with the .NET Framework 3.5 Service Pack 1. The URL routing engine
is a system-provided HTTP module that hooks up any incoming requests and attempts to
match the requested URL to one of the user-defined rewriting rules (known as routes). If a
match exists, the module locates the HTTP handler that is due to serve the route and goes
with it. If no match is found, the request is processed as usual in Web Forms, as if no URL
routing engine was ever in the middle. What makes the URL routing engine so beneficial to

120 Part I The ASP.NET Runtime Environment

 applications? It actually enables you to use free-hand and easy-to-remember URLs that are
not necessarily bound to physical files in the Web server.

In this chapter, we’ll explore the syntax and semantics of HTTP handlers, HTTP modules, and
the URL routing engine.

The ISAPI Extensibility Model of IIS
A Web server generally provides an application programming interface (API) for
 enhancing and customizing the server’s capabilities. Historically speaking, the first of
these extension APIs was the Common Gateway Interface (CGI). A CGI module is a new
application that is spawned from the Web server to service a request. Nowadays, CGI
applications are almost never used because they require a new process for each HTTP
request, and this approach poses severe scalability issues and is rather inadequate for
high-volume Web sites.

More recent versions of Web servers supply an alternate and more efficient model to
extend the capabilities of the server. In IIS, this alternative model takes the form of the
ISAPI interface. When the ISAPI model is used, instead of starting a new process for
each request, the Web server loads a made-to-measure component—namely, a Win32
dynamic-link library (DLL)—into its own process. Next, it calls a well-known entry
point on the DLL to serve the request. The ISAPI component stays loaded until IIS is
shut down and can service requests without any further impact on Web server activ-
ity. The downside to such a model is that because components are loaded within the
Web server process, a single faulty component can tear down the whole server and all
installed applications. Some effective countermeasures have been taken over the years
to smooth out this problem. Today, IIS installed applications are assigned to application
pools and each application pool is served by a distinct instance of a worker process.

From an extensibility standpoint, however, the ISAPI model is less than optimal because
it requires developers to create Win32 unmanaged DLLs to endow the Web server with
the capability of serving specific requests, such as those for ASPX resources. Until IIS 7
(and still in IIS 7 when the classic mode is configured), requests are processed by IIS and
then mapped to some ISAPI (unmanaged) component. This is exactly what happens
with plain ASPX requests, and the ASP.NET ISAPI component is aspnet_isapi.dll. In IIS 7.x
integrated mode, you can add managed components (HTTP handlers and HTTP mod-
ules) directly at the IIS level. More precisely, the IIS 7 integrated mode merges the
ASP.NET internal runtime pipeline with the IIS pipeline and enables you to write Web
server extensions using managed code. This is the way to go.

Today, if you learn how to write HTTP handlers and HTTP modules, you can use such
skills to customize how any requests that hit IIS are served, and not just requests that
would be mapped to ASP.NET. You’ll see a few examples in the rest of the chapter.

 Chapter 4 HTTP Handlers, Modules, and Routing 121

Writing HTTP Handlers
As the name suggests, an HTTP handler is a component that handles and processes a
 request. ASP.NET comes with a set of built-in handlers to accommodate a number of system
tasks. The model, however, is highly extensible. You can write a custom HTTP handler when-
ever you need ASP.NET to process certain types of requests in a nonstandard way. The list of
useful things you can do with HTTP handlers is limited only by your imagination.

Through a well-written handler, you can have your users invoke any sort of functionality via
the Web. For example, you could implement click counters and any sort of image manipula-
tion, including dynamic generation of images, server-side caching, or obstructing undesired
linking to your images. More in general, an HTTP handler is a way for the user to send a
 command to the Web application instead of just requesting a particular page.

In software terms, an HTTP handler is a relatively simple class that implements the
IHttpHandler interface. An HTTP handler can either work synchronously or operate in an
asynchronous way. When working synchronously, a handler doesn’t return until it’s done
with the HTTP request. An asynchronous handler, on the other hand, launches a potentially
lengthy process and returns immediately after. A typical implementation of asynchronous
handlers is asynchronous pages. An asynchronous HTTP handler is a class that implements a
different interface—the IHttpAsyncHandler interface.

HTTP handlers need be registered with the application. You do that in the application’s web.
config file in the <httpHandlers> section of <system.web>, in the <handlers> section of
 <system.webServer> as explained in Chapter 3, “ASP.NET Configuration,” or in both places. If
your application runs under IIS 7.x in integrated mode, you can also configure HTTP handlers
via the Handler Mappings panel of the IIS Manager.

The IHttpHandler Interface
Want to take the splash and dive into HTTP handler programming? Well, your first step is
getting the hang of the IHttpHandler interface. An HTTP handler is just a managed class
that implements that interface. As mentioned, a synchronous HTTP handler implements the
IHttpHandler interface; an asynchronous HTTP handler, on the other hand, implements the
IHttpAsyncHandler interface. Let’s tackle synchronous handlers first.

The contract of the IHttpHandler interface defines the actions that a handler needs to take to
process an HTTP request synchronously.

Members of the IHttpHandler Interface
The IHttpHandler interface defines only two members: ProcessRequest and IsReusable, as
shown in Table 4-1. ProcessRequest is a method, whereas IsReusable is a Boolean property.

122 Part I The ASP.NET Runtime Environment

TABLE 4-1 Members of the IHttpHandler Interface
Member Description
IsReusable This property provides a Boolean value indicating whether the HTTP

runtime can reuse the current instance of the HTTP handler while serving
another request.

ProcessRequest This method processes the HTTP request from start to finish and is
 responsible for processing any input and producing any output.

The IsReusable property on the System.Web.UI.Page class—the most common HTTP handler
in ASP.NET—returns false, meaning that a new instance of the HTTP request is needed to
serve each new page request. You typically make IsReusable return false in all situations
where some significant processing is required that depends on the request payload. Handlers
used as simple barriers to filter special requests can set IsReusable to true to save some CPU
cycles. I’ll return to this subject with a concrete example in a moment.

The ProcessRequest method has the following signature:

void ProcessRequest(HttpContext context);

It takes the context of the request as the input and ensures that the request is serviced. In
the case of synchronous handlers, when ProcessRequest returns, the output is ready for
 forwarding to the client.

A Very Simple HTTP Handler
The output for the request is built within the ProcessRequest method, as shown in the
 following code:
using System.Web;
namespace AspNetGallery.Extensions.Handlers
{
 public class SimpleHandler : IHttpHandler
 {
 public void ProcessRequest(HttpContext context)
 {
 const String htmlTemplate = "<html><head><title>{0}</title></head><body>" +
 "<h1>Hello I'm: " +
 "{1}</h1>" +
 "</body></html>";

 var response = String.Format(htmlTemplate,
 "HTTP Handlers", context.Request.Path);
 context.Response.Write(response);
 }
 public Boolean IsReusable
 {
 get { return false; }
 }
 }
}

 Chapter 4 HTTP Handlers, Modules, and Routing 123

You need an entry point to be able to call the handler. In this context, an entry point into the
handler’s code is nothing more than an HTTP endpoint—that is, a public URL. The URL must
be a unique name that IIS and the ASP.NET runtime can map to this code. When registered,
the mapping between an HTTP handler and a Web server resource is established through the
web.config file:

<configuration>
 <system.web>
 <httpHandlers>
 <add verb="*"
 path="hello.axd"
 type="Samples.Components.SimpleHandler" />
 </httpHandlers>
 </system.web>
 <system.webServer>
 <validation validateIntegratedModeConfiguration="false" />
 <handlers>
 <add name="Hello"
 preCondition="integratedMode"
 verb="*"
 path="hello.axd"
 type="Samples.Components.SimpleHandler" />
 </handlers>
 </system.webServer>
</configuration>

The <httpHandlers> section lists the handlers available for the current application. These
 settings indicate that SimpleHandler is in charge of handling any incoming requests for an
endpoint named hello.axd. Note that the URL hello.axd doesn’t have to be a physical resource
on the server; it’s simply a public resource identifier. The type attribute references the class
and assembly that contain the handler. Its canonical format is type[,assembly]. You omit the
assembly information if the component is defined in the App_Code or other reserved folders.

Important As noted in Chapter 3, you usually don’t need both forms of an HTTP handler
 declaration in <system.web> and <system.webServer>. You need the former only if your applica-
tion runs under IIS 6 (Windows Server 2003) or if it runs under IIS 7.x but is configured in classic
mode. You need the latter only if your application runs under IIS 7.x in integrated mode. If you
have both sections, you enable yourself to use a single web.config file for two distinct deploy-
ment scenarios. In this case, the <validation> element is key because it prevents IIS 7.x from
strictly parsing the content of the configuration file. Furthermore, as discussed in Chapter 3, the
<httpHandlers> and <httpModules> sections help in testing handlers and modules within Visual
Studio if you’re using the embedded ASP.NET Development Server (also known as, Cassini).

If you invoke the hello.axd URL, you obtain the results shown in Figure 4-1.

124 Part I The ASP.NET Runtime Environment

FIGURE 4-1 A sample HTTP handler that answers requests for hello.axd.

The technique discussed here is the quickest and simplest way of putting an HTTP handler to
work, but there is more to know about the registration of HTTP handlers and there are many
more options to take advantage of.

Note It’s more common to use the ASHX extension for a handler mapping. The AXD extension
is generally reserved for resource handlers that inject embedded content such as images, scripts,
and so forth.

Registering the Handler
An HTTP handler is a class and must be compiled to an assembly before you can use it. The
assembly must be deployed to the Bin directory of the application. If you plan to make this
handler available to all applications, you can copy it to the global assembly cache (GAC). The
next step is registering the handler with an individual application or with all the applications
running on the Web server.

You already saw the script you need to register an HTTP handler. Table 4-2 expands a bit
more on the attributes you can set up.

TABLE 4-2 Attributes Required to Register an HTTP Handler in <system.web>
Attribute Description
path A wildcard string, or a single URL, that indicates the resources the handler will

work on—for example, *.aspx.

type Specifies a comma-separated class/assembly combination. ASP.NET searches
for the assembly DLL first in the application’s private Bin directory and then in
the system global assembly cache.

validate If this attribute is set to false, ASP.NET loads the assembly with the handler on
demand. The default value is true.

verb Indicates the list of the supported HTTP verbs—for example, GET, PUT, and
POST. The wildcard character (*) is an acceptable value and denotes all verbs.

 Chapter 4 HTTP Handlers, Modules, and Routing 125

All attributes except for validate are mandatory. When validate is set to false, ASP.NET
 delays as much as possible loading the assembly with the HTTP handler. In other words, the
 assembly will be loaded only when a request for it arrives. ASP.NET will not try to preload the
assembly, thus catching earlier any errors or problems with it.

Additional attributes are available if you register the handler in <system.webServer>. They are
listed in Table 4-3.

TABLE 4-3 Attributes Required to Register an HTTP Handler in <system.webServer>
Attribute Description
allowPathInfo If this attribute is set to true, the handler processes full path information

in the URL or just the last section. It is set to false by default.

modules Indicates the list of HTTP modules (comma-separated list of names) that
are enabled to intercept requests for the current handler. The standard
list contains only the ManagedPipelineHandler module.

name Unique name of the handler.

path A wildcard string, or a single URL, that indicates the resources the
 handler will work on—for example, *.aspx.

preCondition Specifies conditions under which the handler will run. (More information
appears later in this section.)

requireAccess Indicates the type of access that a handler requires to the resource,
 either read, write, script, execute, or none. The default is script.

resourceType Indicates the type of resource to which the handler mapping applies: file,
directory, or both. The default option, however, is Unspecified, meaning
that the handler can handle requests for resources that map to physical
entries in the file system as well as to plain commands.

responseBufferLimit Specifies the maximum size, in bytes, of the response buffer. The default
value is 4 MB.

scriptProcessor Specifies the physical path of the ISAPI extension or CGI executable that
processes the request. It is not requested for managed handlers.

type Specifies a comma-separated class/assembly combination. ASP.NET
searches for the assembly DLL first in the application’s private Bin
 directory and then in the system global assembly cache.

verb Indicates the list of the supported HTTP verbs—for example, GET, PUT,
and POST. The wildcard character (*) is an acceptable value and denotes
all verbs.

The reason why the configuration of an HTTP handler might span a larger number of
 attributes in IIS is that the <handlers> section serves for both managed and unman-
aged handlers. If you configure a managed handler written using the ASP.NET API, you
need only preCondition and name in addition to the attributes you would specify in the
<httpHandlers> section.

126 Part I The ASP.NET Runtime Environment

Preconditions for Managed Handlers
The preCondition attribute sets prerequisites for the handler to run. Prerequisites touch
on three distinct areas: bitness, ASP.NET runtime version, and type of requests to respond.
Table 4-4 lists and explains the various options:

TABLE 4-4 Preconditions for an IIS 7.x HTTP Handler
Precondition Description
bitness32 The handler is 32-bit code and should be loaded only in 64-bit worker

processes running in 32-bit emulation.

bitness64 The handler is 64-bit and should be loaded only in native 64-bit
worker processes.

integratedMode The handler should respond only to requests in application pools
 configured in integrated mode.

ISAPIMode The handler should respond only to requests in application pools
 configured in classic mode.

runtimeVersionv1.1 The handler should respond only to requests in application pools
 configured for version 1.1 of the ASP.NET runtime.

runtimeVersionv2.0 The handler should respond only to requests in application pools
 configured for version 2.0 of the ASP.NET runtime.

Most of the time you use the integratedMode value only to set preconditions on a managed
HTTP handler.

Handlers Serving New Types of Resources
In ASP.NET applications, a common scenario when you want to use custom HTTP handlers is
that you want to loosen yourself from the ties of ASPX files. Sometimes you want to place a
request for a nonstandard ASP.NET resource (for example, a custom XML file) and expect the
handler to process the content and return some markup.

More in general, you use HTTP handlers in two main situations: when you want to custom-
ize how known resources are processed and when you want to introduce new resources. In
the latter case, you probably need to let IIS know about the new resource. Again, how you
achieve this depends on the configuration of the application pool that hosts your ASP.NET
applications.

Suppose you want your application to respond to requests for .report requests. For example,
you expect your application to be able to respond to a URL like /monthly.report?year=2010.
Let’s say that monthly.report is a server file that contains a description of the report your han-
dler will then create using any input parameters you provide.

In integrated mode, you need to do nothing special for this request to go successfully.
Moreover, you don’t even need to add a .report or any other analogous extension. You

 Chapter 4 HTTP Handlers, Modules, and Routing 127

can specify any custom URL (much like you do in ASP.NET MVC) and as long as you have a
 handler properly configured, it will work.

In classic mode, instead, two distinct pipelines exist in IIS and ASP.NET. The extension, in this
case, is mandatory to instruct IIS to recognize that request and map it to ASP.NET, where the
HTTP handler actually lives. As an example, consider that when you deploy ASP.NET MVC
in classic mode you have to tweak URLs so that each controller name has an .mvc suffix. To
force IIS to recognize a new resource, you must add a new script map via the IIS Manager, as
shown in Figure 4-2.

FIGURE 4-2 Adding an IIS script map for .report requests.

The executable is the ISAPI extension that will be bridging the request from the IIS world
to the ASP.NET space. You choose the aspnet_isapi DLL from the folder that points to the
 version of the .NET Framework you intend to target. In Figure 4-2, you see the path for
ASP.NET 4.

Note In Microsoft Visual Studio, if you test a sample .report resource using the local embedded
Web server, nothing happens that forces you to register the .report resource with IIS. This is just
the point, though. You’re not using IIS! In other words, if you use the local Web server, you have
no need to touch IIS; you do need to register any custom resource you plan to use with IIS before
you get to production.

Why didn’t we have to do anything special for our first example, hello.axd? Because AXD is
a system extension that ASP.NET registers on its own and that sometimes also can be used
for registering custom HTTP handlers. (AXD is not the recommended extension for custom
 handlers, however.)

Now let’s consider a more complex example of an HTTP handler.

128 Part I The ASP.NET Runtime Environment

The Picture Viewer Handler
To speed up processing, IIS claims the right to personally serve some typical Web resources
without going down to any particular ISAPI extensions. The list of resources served directly
by IIS includes static files such as images and HTML files.

What if you request a GIF or a JPG file directly from the address bar of the browser? IIS
 retrieves the specified resource, sets the proper content type on the response buffer, and
writes out the bytes of the file. As a result, you’ll see the image in the browser’s page. So far
so good.

What if you point your browser to a virtual folder that contains images? In this case, IIS
doesn’t distinguish the contents of the folder and returns a list of files, as shown in Figure 4-3.

FIGURE 4-3 The standard IIS-provided view of a folder.

Wouldn’t it be nice if you could get a preview of the contained pictures instead?

Designing the HTTP Handler
To start out, you need to decide how to let IIS know about your wishes. You can use a
 particular endpoint that, when appended to a folder’s name, convinces IIS to yield to
ASP.NET and provide a preview of contained images. Put another way, the idea is to bind
your picture viewer handler to a particular endpoint—say, folder.axd. As mentioned earlier in
the chapter, a fixed endpoint for handlers doesn’t have to be an existing, deployed resource.
You make the folder.axd endpoint follow the folder name, as shown here:

http://www.contoso.com/images/folder.axd

http://www.contoso.com/images/folder.axd

 Chapter 4 HTTP Handlers, Modules, and Routing 129

The handler processes the URL, extracts the folder name, and selects all the contained
pictures.

Note In ASP.NET, the .axd extension is commonly used for endpoints referencing a special
 service. Trace.axd for tracing and WebResource.axd for script and resources injection are
 examples of two popular uses of the extension. In particular, the Trace.axd handler implements
the same logic described here. If you append its name to the URL, it will trace all requests for
pages in that application.

Implementing the HTTP Handler
The picture viewer handler returns a page composed of a multirow table showing as many
images as there are in the folder. Here’s the skeleton of the class:

class PictureViewerInfo
{
 public PictureViewerInfo() {
 DisplayWidth = 200;
 ColumnCount = 3;
 }
 public int DisplayWidth;
 public int ColumnCount;
 public string FolderName;
}

public class PictureViewerHandler : IHttpHandler
{
 // Override the ProcessRequest method
 public void ProcessRequest(HttpContext context)
 {
 PictureViewerInfo info = GetFolderInfo(context);
 string html = CreateOutput(info);

 // Output the data
 context.Response.Write("<html><head><title>");
 context.Response.Write("Picture Web Viewer");
 context.Response.Write("</title></head><body>");
 context.Response.Write(html);
 context.Response.Write("</body></html>");
 }

 // Override the IsReusable property
 public bool IsReusable
 {
 get { return true; }
 }
 ...
}

130 Part I The ASP.NET Runtime Environment

Retrieving the actual path of the folder is as easy as stripping off the folder.axd string from
the URL and trimming any trailing slashes or backslashes. Next, the URL of the folder is
mapped to a server path and processed using the .NET Framework API for files and folders to
retrieve all image files:

private static IList<FileInfo> GetAllImages(DirectoryInfo di)
{
 String[] fileTypes = { "*.bmp", "*.gif", "*.jpg", "*.png" };
 var images = new List<FileInfo>();
 foreach (var files in fileTypes.Select(di.GetFiles).Where(files => files.Length > 0))
 {
 images.AddRange(files);
 }
 return images;
}

The DirectoryInfo class provides some helper functions on the specified directory; for
 example, the GetFiles method selects all the files that match the given pattern. Each file is
wrapped by a FileInfo object. The method GetFiles doesn’t support multiple search patterns;
to search for various file types, you need to iterate for each type and accumulate results in an
array list or equivalent data structure.

After you get all the images in the folder, you move on to building the output for the
 request. The output is a table with a fixed number of cells and a variable number of rows to
accommodate all selected images. For each image file, a new tag is created through
the Image control. The width attribute of this file is set to a fixed value (say, 200 pixels),
 causing browsers to automatically resize the image. Furthermore, the image is wrapped by
an anchor that links to the same image URL. As a result, when the user clicks on an image,
the page refreshes and shows the same image at its natural size.

private static String CreateOutputForFolder(PictureViewerInfo info, DirectoryInfo di)
{
 var images = GetAllImages(di);

 var t = new Table();
 var index = 0;
 var moreImages = true;

 while (moreImages)
 {
 var row = new TableRow();
 t.Rows.Add(row);

 for (var i = 0; i < info.ColumnCount; i++)
 {
 var cell = new TableCell();
 row.Cells.Add(cell);

 Chapter 4 HTTP Handlers, Modules, and Routing 131

 var img = new Image();
 var fi = images[index];
 img.ImageUrl = fi.Name;
 img.Width = Unit.Pixel(info.DisplayWidth);

 var a = new HtmlAnchor {HRef = fi.Name};
 a.Controls.Add(img);
 cell.Controls.Add(a);

 index++;
 moreImages = (index < images.Count);
 if (!moreImages)
 break;
 }
 }
}

You might want to make the handler accept some optional query string parameters, such
as the width of images and the column count. These values are packed in an instance of the
helper class PictureViewerInfo along with the name of the folder to view. Here’s the code to
process the query string of the URL to extract parameters if any are present:

var info = new PictureViewerInfo();
var p1 = context.Request.Params["Width"];
var p2 = context.Request.Params["Cols"];
if (p1 != null)
 info.DisplayWidth = p1.ToInt32();
if (p2 != null)
 info.ColumnCount = p2.ToInt32();

ToInt32 is a helper extension method that attempts to convert a numeric string to the
 corresponding integer. I find this method quite useful and a great enhancer of code readabil-
ity. Here’s the code:

public static Int32 ToInt32(this String helper, Int32 defaultValue = Int32.MinValue)
{
 Int32 number;
 var result = Int32.TryParse(helper, out number);
 return result ? number : defaultValue;
}

Figure 4-4 shows the handler in action.

132 Part I The ASP.NET Runtime Environment

FIGURE 4-4 The picture viewer handler in action with a given number of columns and a specified width.

Registering the handler is easy too. You just add the following script to the <httpHandlers>
section of the web.config file:

<add verb="*"
 path="folder.axd"
 type="PictureViewerHandler, AspNetGallery.Extensions" />

You place the assembly in the GAC and move the configuration script to the global
web.config to extend the settings to all applications on the machine. If you’re targeting IIS 7
integrated mode, you also need the following:

<system.webServer>
 <handlers>
 <add name="PictureFolder"
 preCondition="integratedMode"
 verb="*"

 Chapter 4 HTTP Handlers, Modules, and Routing 133

 path="folder.axd"
 type="PictureViewerHandler, AspNetGallery.Extensions" />
 </handlers>
</system.webServer>

Serving Images More Effectively
Any page you get from the Web these days is topped with so many images and is so well
conceived and designed that often the overall page looks more like a magazine advertise-
ment than an HTML page. Looking at the current pages displayed by portals, it’s rather hard
to imagine there ever was a time—and it was only a decade ago—when one could create
a Web site by using only a text editor and some assistance from a friend who had a bit of
 familiarity with Adobe PhotoShop.

In spite of the wide use of images on the Web, there is just one way in which a Web page can
reference an image—by using the HTML tag. By design, this tag points to a URL. As
a result, to be displayable within a Web page, an image must be identifiable through a URL
and its bits should be contained in the output stream returned by the Web server for that
URL.

In many cases, the URL points to a static resource such as a GIF or JPEG file. In this case, the
Web server takes the request upon itself and serves it without invoking external components.
However, the fact that many tags on the Web are bound to a static file does not mean
there’s no other way to include images in Web pages.

Where else can you turn to get images aside from picking them up from the server file
 system? One way to do it is to load images from a database, or you can generate or modify
images on the fly just before serving the bits to the browser.

Loading Images from Databases
The use of a database as the storage medium for images is controversial. Some people have
good reasons to push it as a solution; others tell you bluntly they would never do it and that
you shouldn’t either. Some people can tell you wonderful stories of how storing images in a
properly equipped database was the best experience of their professional life. With no fear
that facts could perhaps prove them wrong, other people will confess that they would never
use a database again for such a task.

The facts say that all database management systems (DBMS) of a certain reputation and
volume have supported binary large objects (BLOB) for quite some time. Sure, a BLOB field
doesn’t necessarily contain an image—it can contain a multimedia file or a long text file—
but overall there must be a good reason for having this BLOB supported in Microsoft SQL
Server, Oracle, and similar popular DBMS systems!

134 Part I The ASP.NET Runtime Environment

To read an image from a BLOB field with ADO.NET, you execute a SELECT statement on the
column and use the ExecuteScalar method to catch the result and save it in an array of bytes.
Next, you send this array down to the client through a binary write to the response stream.
Let’s write an HTTP handler to serve a database-stored image:

public class DbImageHandler : IHttpHandler
{
 public void ProcessRequest(HttpContext ctx)
 {
 // Ensure the URL contains an ID argument that is a number
 var id = -1;
 var p1 = context.Request.Params["id"];
 if (p1 != null)
 id = p1.ToInt32(-1);
 if (id < 0)
 {
 context.Response.End();
 return;
 }

 var connString = "...";
 const String cmdText = "SELECT photo FROM employees WHERE employeeid=@id";

 // Get an array of bytes from the BLOB field
 byte[] img = null;
 var conn = new SqlConnection(connString);
 using (conn)
 {
 var cmd = new SqlCommand(cmdText, conn);
 cmd.Parameters.AddWithValue("@id", id);
 conn.Open();
 img = (byte[])cmd.ExecuteScalar();
 }

 // Prepare the response for the browser
 if (img != null)
 {
 ctx.Response.ContentType = "image/jpeg";
 ctx.Response.BinaryWrite(img);
 }
 }

 public bool IsReusable
 {
 get { return true; }
 }
}

 Chapter 4 HTTP Handlers, Modules, and Routing 135

There are quite a few assumptions made in this code. First, we assume that the field named
photo contains image bits and that the format of the image is JPEG. Second, we assume that
images are to be retrieved from a fixed table of a given database through a predefined con-
nection string. Finally, we assume that the URL to invoke this handler includes a query string
parameter named id.

Notice the attempt to convert the value of the id query parameter to an integer before
 proceeding. This simple check significantly reduces the surface attack area for malicious users
by verifying that what is going to be used as a numeric ID is really a numeric ID. Especially
when you’re inoculating user input into SQL query commands, filtering out extra characters
and wrong data types is a fundamental measure for preventing attacks.

The BinaryWrite method of the HttpResponse object writes an array of bytes to the output
stream.

Note If the database you’re using is Northwind, an extra step might be required to ensure that
the images are correctly managed. For some reason, the SQL Server version of the Northwind
database stores the images in the photo column of the Employees table as OLE objects. This is
probably because of the conversion that occurred when the database was upgraded from the
Microsoft Access version. As a matter fact, the array of bytes you receive contains a 78-byte
 prefix that has nothing to do with the image. Those bytes are just the header created when the
image was added as an OLE object to the first version of Access.

Although the preceding code works like a champ with regular BLOB fields, it must undergo the
following modification to work with the photo field of the Northwind.Employees database:

Response.OutputStream.Write(img, 78, img.Length-78);

Instead of using the BinaryWrite call, which doesn’t let you specify the starting position, use the
code shown here.

A sample page to test BLOB field access is shown in Figure 4-5. The page lets users select an
employee ID and post back. When the page renders, the ID is used to complete the URL for
the ASP.NET Image control.

var url = String.Format("photo.axd?id={0}", DropDownList1.SelectedValue);
Image1.ImageUrl = url;

136 Part I The ASP.NET Runtime Environment

FIGURE 4-5 Downloading images stored within the BLOB field of a database.

An HTTP handler must be registered in the web.config file and bound to a public endpoint. In
this case, the endpoint is photo.axd and the script to enter in the configuration file is shown
next (in addition to a similar script in <system.webServer>:

<httpHandlers>
 <add verb="*"
 path="photo.axd"
 type=" NorthwindPhotoImageHandler, AspNetGallery.Extensions" />
</httpHandlers>

Note The preceding handler clearly has a weak point: it hard-codes a SQL command and the
related connection string. This means that you might need a different handler for each different
command or database to access. A more realistic handler would probably use an external and
configurable database-specific provider. Such a provider can be as simple as a class that imple-
ments an agreed-upon interface. At a minimum, the interface will supply a method to retrieve
and return an array of bytes.

Alternatively, if you want to keep the ADO.NET code in the handler itself, the interface will just
supply members that specify the command text and connection string. The handler will figure
out its default provider from a given entry in the web.config file.

 Chapter 4 HTTP Handlers, Modules, and Routing 137

Serving Dynamically Generated Images
Isn’t it true that an image is worth thousands of words? Many financial Web sites offer charts
and, more often than not, these charts are dynamically generated on the server. Next, they
are served to the browser as a stream of bytes and travel over the classic response out-
put stream. But can you create and manipulate server-side images? For these tasks, Web
 applications normally rely on ad hoc libraries or the graphic engine of other applications
(for example, Microsoft Office applications). ASP.NET applications are different and, to some
extent, luckier. ASP.NET applications, in fact, can rely on a powerful and integrated graphic
engine integrated in the .NET Framework.

In ASP.NET, writing images to disk might require some security adjustments. Normally, the
ASP.NET runtime runs under the aegis of the NETWORK SERVICE user account. In the case of
anonymous access with impersonation disabled—which are the default settings in ASP.NET—
the worker process lends its own identity and security token to the thread that executes the
user request of creating the file. With regard to the default scenario, an access-denied excep-
tion might be thrown if NETWORK SERVICE (or the selected application pool identity) lacks
writing permissions on virtual directories—a pretty common situation.

ASP.NET provides an interesting alternative to writing files on disk without changing security
settings: in-memory generation of images. In other words, the dynamically generated image
is saved directly to the output stream in the needed image format or in a memory stream.

Writing Copyright Notes on Images
The .NET Framework graphic engine supports quite a few image formats, including JPEG, GIF,
BMP, and PNG. The whole collection of image formats is in the ImageFormat structure of the
System.Drawing namespace. You can save a memory-resident Bitmap object to any of the
supported formats by using one of the overloads of the Save method:

Bitmap bmp = new Bitmap(file);
...
bmp.Save(outputStream, ImageFormat.Gif);

When you attempt to save an image to a stream or disk file, the system attempts to locate
an encoder for the requested format. The encoder is a module that converts from the native
format to the specified format. Note that the encoder is a piece of unmanaged code that
lives in the underlying Win32 platform. For each save format, the Save method looks up the
right encoder and proceeds.

The next example wraps up all the points we’ve touched on. This example shows how to load
an existing image, add some copyright notes, and serve the modified version to the user. In
doing so, we’ll load an image into a Bitmap object, obtain a Graphics for that bitmap, and use
graphics primitives to write. When finished, we’ll save the result to the page’s output stream
and indicate a particular MIME type.

138 Part I The ASP.NET Runtime Environment

The sample page that triggers the example is easily created, as shown in the following listing:

<html>
<body>

</body>
</html>

The page contains no ASP.NET code and displays an image through a static HTML
tag. The source of the image, though, is an HTTP handler that loads the image passed
through the query string and then manipulates and displays it. Here’s the source code for the
ProcessRequest method of the HTTP handler:

public void ProcessRequest (HttpContext context)
{
 var o = context.Request["url"];
 if (o == null)
 {
 context.Response.Write("No image found.");
 context.Response.End();
 return;
 }

 var file = context.Server.MapPath(o);
 var msg = ConfigurationManager.AppSettings["CopyrightNote"];
 if (File.Exists(file))
 {
 Bitmap bmp = AddCopyright(file, msg);
 context.Response.ContentType = "image/jpeg";
 bmp.Save(context.Response.OutputStream, ImageFormat.Jpeg);
 bmp.Dispose();
 }
 else
 {
 context.Response.Write("No image found.");
 context.Response.End();
 }
}

Note that the server-side page performs two different tasks indeed. First, it writes copyright
text on the image canvas; next, it converts whatever the original format was to JPEG:

Bitmap AddCopyright(String file, String msg)
{
 // Load the file and create the graphics
 var bmp = new Bitmap(file);
 var g = Graphics.FromImage(bmp);

 // Define text alignment
 var strFmt = new StringFormat();
 strFmt.Alignment = StringAlignment.Center;

 // Create brushes for the bottom writing
 // (green text on black background)
 var btmForeColor = new SolidBrush(Color.PaleGreen);
 var btmBackColor = new SolidBrush(Color.Black);

 Chapter 4 HTTP Handlers, Modules, and Routing 139

 // To calculate writing coordinates, obtain the size of the
 // text given the font typeface and size
 var btmFont = new Font("Verdana", 7);
 var textSize = g.MeasureString(msg, btmFont);

 // Calculate the output rectangle and fill
 float x = (bmp.Width-textSize.Width-3);
 float y = (bmp.Height-textSize.Height-3);
 float w = (x + textSize.Width);
 float h = (y + textSize.Height);
 var textArea = new RectangleF(x, y, w, h);
 g.FillRectangle(btmBackColor, textArea);

 // Draw the text and free resources
 g.DrawString(msg, btmFont, btmForeColor, textArea);
 btmForeColor.Dispose();
 btmBackColor.Dispose();
 btmFont.Dispose();
 g.Dispose();

 return bmp;
}

Figure 4-6 shows the results.

FIGURE 4-6 A server-resident image has been modified before being displayed.

140 Part I The ASP.NET Runtime Environment

Note that the additional text is part of the image the user downloads on her client browser.
If the user saves the picture by using the Save Picture As menu from the browser, the text (in
this case, the copyright note) is saved along with the image.

Important All examples demonstrating programmatic manipulation of images take advantage
of the classes in the System.Drawing assembly. The use of this assembly is not recommended in
ASP.NET and is explicitly not supported in ASP.NET Web services. (See http://msdn.microsoft.com/
en-us/library/system.drawing.aspx.) This fact simply means that you are advised not to use classes
in System.Drawing because Microsoft can’t guarantee it is always safe to use them in all possible
scenarios. If your code is currently using System.Drawing—the GDI+ subsystem—and it works
just fine, you’re probably OK. In any case, if you use GDI+ classes and encounter a malfunction,
Microsoft will not assist you. Forewarned is forearmed.

You might be better off using an alternative to GDI+, especially for new applications. Which
one? For both speed and reliability, you can consider the WPF Imaging API. Here’s an interesting
post that shows how to use Windows Presentation Foundation (WPF) for resizing images: http://
weblogs.asp.net/bleroy/archive/2010/01/21/server-side-resizing-with-wpf-now-with-jpg.aspx.

Controlling Images via an HTTP Handler
What if the user requests the JPG file directly from the address bar? And what if the image
is linked by another Web site or referenced in a blog post? By default, the original image is
served without any further modification. Why is this so?

For performance reasons, IIS serves static files, such as JPG images, directly without involving
any external module, including the ASP.NET runtime. In this way, the HTTP handler that does
the trick of adding a copyright note is therefore blissfully ignored when the request is made
via the address bar or a hyperlink. What can you do about it?

In IIS 6, you must register the JPG extension as an ASP.NET extension for a particular
 application using IIS Manager. In this case, each request for JPG resources is forwarded to
your application and resolved through the HTTP handler.

In IIS 7, things are even simpler for developers. All you have to do is add the following lines to
the application’s web.config file:

<system.webServer>
 <handlers>
 <add name="Jpeg"
 preCondition="integratedMode"
 verb="*"
 path="*.jpg"
 type="DynImageHandler, AspNetGallery.Extensions" />
 </handlers>
</system.webServer>

http://msdn.microsoft.com/
http://weblogs.asp.net/bleroy/archive/2010/01/21/server-side-resizing-with-wpf-now-with-jpg.aspx
http://weblogs.asp.net/bleroy/archive/2010/01/21/server-side-resizing-with-wpf-now-with-jpg.aspx

 Chapter 4 HTTP Handlers, Modules, and Routing 141

You might want to add the same setting also under <httpHandlers>, which will be read in
cases where IIS 7.x is configured in classic mode:

<httpHandlers>
 <add verb="*" path="*.jpg" type="DynImageHandler, AspNetGallery.Extensions"/>
</httpHandlers>

This is yet another benefit of the unified runtime pipeline we experience when the ASP.NET
application runs under IIS 7 integrated mode.

Note An HTTP handler that needs to access session-state values must implement the
IRequiresSessionState interface. Like INamingContainer, it’s a marker interface and requires no
method implementation. Note that the IRequiresSessionState interface indicates that the HTTP
handler requires read and write access to the session state. If read-only access is needed, use the
IReadOnlySessionState interface instead.

Advanced HTTP Handler Programming
HTTP handlers are not a tool for everybody. They serve a very neat purpose: changing the
way a particular resource, or set of resources, is served to the user. You can use handlers to
filter out resources based on runtime conditions or to apply any form of additional logic to
the retrieval of traditional resources such as pages and images. Finally, you can use HTTP
handlers to serve certain pages or resources in an asynchronous manner.

For HTTP handlers, the registration step is key. Registration enables ASP.NET to know about
your handler and its purpose. Registration is required for two practical reasons. First, it serves
to ensure that IIS forwards the call to the correct ASP.NET application. Second, it serves to
instruct your ASP.NET application on the class to load to handle the request. As mentioned,
you can use handlers to override the processing of existing resources (for example,
hello.aspx) or to introduce new functionalities (for example, folder.axd). In both cases, you’re
invoking a resource whose extension is already known to IIS—the .axd extension is registered
in the IIS metabase when you install ASP.NET. In both cases, though, you need to modify the
web.config file of the application to let the application know about the handler.

By using the ASHX extension and programming model for handlers, you can also save
 yourself the web.config update and deploy a new HTTP handler by simply copying a new file
in a new or existing application’s folder.

Deploying Handlers as ASHX Resources
An alternative way to define an HTTP handler is through an .ashx file. The file contains a
special directive, named @WebHandler, that expresses the association between the HTTP

142 Part I The ASP.NET Runtime Environment

handler endpoint and the class used to implement the functionality. All .ashx files must begin
with a directive like the following one:

<%@ WebHandler Language="C#" Class="AspNetGallery.Handlers.MyHandler" %>

When an .ashx endpoint is invoked, ASP.NET parses the source code of the file and figures
out the HTTP handler class to use from the @WebHandler directive. This automation removes
the need of updating the web.config file. Here’s a sample .ashx file. As you can see, it is the
plain class file plus the special @WebHandler directive:

<%@ WebHandler Language="C#" Class="MyHandler" %>

using System.Web;

public class MyHandler : IHttpHandler {

 public void ProcessRequest (HttpContext context) {
 context.Response.ContentType = "text/plain";
 context.Response.Write("Hello World");
 }

 public bool IsReusable {
 get {
 return false;
 }
 }
}

Note that the source code of the class can either be specified inline or loaded from any of the
assemblies referenced by the application. When .ashx resources are used to implement an
HTTP handler, you just deploy the source file and you’re done. Just as for XML Web services,
the source file is loaded and compiled only on demand. Because ASP.NET adds a special en-
try to the IIS metabase for .ashx resources, you don’t even need to enter changes to the Web
server configuration.

Resources with an .ashx extension are handled by an HTTP handler class named
SimpleHandleFactory. Note that SimpleHandleFactory is actually an HTTP handler factory
class, not a simple HTTP handler class. We’ll discuss handler factories in a moment.

The SimpleHandleFactory class looks for the @WebHandler directive at the beginning of the
file. The @WebHandler directive tells the handler factory the name of the HTTP handler class
to instantiate when the source code has been compiled.

Important You can build HTTP handlers both as regular class files compiled to an assembly and
via .ashx resources. There’s no significant difference between the two approaches except that
.ashx resources, like ordinary ASP.NET pages, will be compiled on the fly upon the first request.

 Chapter 4 HTTP Handlers, Modules, and Routing 143

Prevent Access to Forbidden Resources
If your Web application manages resources of a type that you don’t want to make publicly
available over the Web, you must instruct IIS not to display those files. A possible way to
 accomplish this consists of forwarding the request to aspnet_isapi and then binding the
 extension to one of the built-in handlers—the HttpForbiddenHandler class:

<add verb="*" path="*.xyz" type="System.Web.HttpForbiddenHandler" />

Any attempt to access an .xyz resource results in an error message being displayed. The same
trick can also be applied for individual resources served by your application. If you need to
deploy, say, a text file but do not want to take the risk that somebody can get to it, add the
following:

<add verb="*" path="yourFile.txt" type="System.Web.HttpForbiddenHandler" />

Should It Be Reusable or Not?
In a conventional HTTP handler, the ProcessRequest method takes the lion’s share of
the overall set of functionality. The second member of the IHttpHandler interface—the
IsReusable property—is used only in particular circumstances. If you set the IsReusable
 property to return true, the handler is not unloaded from memory after use and is repeat-
edly used. Put another way, the Boolean value returned by IsReusable indicates whether the
 handler object can be pooled.

Frankly, most of the time it doesn’t really matter what you return—be it true or false. If you
set the property to return false, you require that a new object be allocated for each request.
The simple allocation of an object is not a particularly expensive operation. However, the
initialization of the handler might be costly. In this case, by making the handler reusable, you
save much of the overhead. If the handler doesn’t hold any state, there’s no reason for not
making it reusable.

In summary, I’d say that IsReusable should be always set to true, except when you have
 instance properties to deal with or properties that might cause trouble if used in a concur-
rent environment. If you have no initialization tasks, it doesn’t really matter whether it re-
turns true or false. As a margin note, the System.Web.UI.Page class—the most popular HTTP
 handler ever—sets its IsReusable property to false.

The key point to determine is the following: Who’s really using IsReusable and, subsequently,
who really cares about its value?

Once the HTTP runtime knows the HTTP handler class to serve a given request, it simply
 instantiates it—no matter what. So when is the IsReusable property of a given handler
taken into account? Only if you use an HTTP handler factory—that is, a piece of code that
 dynamically decides which handler should be used for a given request. An HTTP handler

144 Part I The ASP.NET Runtime Environment

factory can query a handler to determine whether the same instance can be used to service
multiple requests and thus optionally create and maintain a pool of handlers.

ASP.NET pages and ASHX resources are served through factories. However, none of these
factories ever checks IsReusable. Of all the built-in handler factories in the whole ASP.NET
platform, very few check the IsReusable property of related handlers. So what’s the bottom
line?

As long as you’re creating HTTP handlers for AXD, ASHX, or perhaps ASPX resources, be
aware that the IsReusable property is blissfully ignored. Do not waste your time trying to
figure out the optimal configuration. Instead, if you’re creating an HTTP handler factory to
serve a set of resources, whether or not to implement a pool of handlers is up to you and
IsReusable is the perfect tool for the job.

But when should you employ an HTTP handler factory? You should do it in all situations in
which the HTTP handler class for a request is not uniquely identified. For example, for ASPX
pages, you don’t know in advance which HTTP handler type you have to use. The type might
not even exist (in which case, you compile it on the fly). The HTTP handler factory is used
whenever you need to apply some logic to decide which handler is the right one to use. In
other words, you need an HTTP handler factory when declarative binding between endpoints
and classes is not enough.

HTTP Handler Factories
An HTTP request can be directly associated with an HTTP handler or with an HTTP handler
factory object. An HTTP handler factory is a class that implements the IHttpHandlerFactory
interface and is in charge of returning the actual HTTP handler to use to serve the request.
The SimpleHandlerFactory class provides a good example of how a factory works. The factory
is mapped to requests directed at .ashx resources. When such a request comes in, the factory
determines the actual handler to use by looking at the @WebHandler directive in the source
file.

In the .NET Framework, HTTP handler factories are used to perform some preliminary tasks
on the requested resource prior to passing it on to the handler. Another good example of a
handler factory object is an internal class named PageHandlerFactory, which is in charge of
serving .aspx pages. In this case, the factory handler figures out the name of the handler to
use and, if possible, loads it up from an existing assembly.

HTTP handler factories are classes that implement a couple of methods on the
IHttpHandlerFactory interface—GetHandler and ReleaseHandler, as shown in Table 4-5.

 Chapter 4 HTTP Handlers, Modules, and Routing 145

TABLE 4-5 Members of the IHttpHandlerFactory Interface
Method Description
GetHandler Returns an instance of an HTTP handler to serve the request.

ReleaseHandler Takes an existing HTTP handler instance and frees it up or pools it.

The GetHandler method has the following signature:

public virtual IHttpHandler GetHandler(
 HttpContext context,
 String requestType,
 String url,
 String pathTranslated);

The requestType argument is a string that evaluates to GET or POST—the HTTP verb of the
request. The last two arguments represent the raw URL of the request and the physical path
behind it. The ReleaseHandler method is a mandatory override for any class that implements
IHttpHandlerFactory; in most cases, it will just have an empty body.

The following listing shows a sample HTTP handler factory that returns different handlers
based on the HTTP verb (GET or POST) used for the request:

class MyHandlerFactory : IHttpHandlerFactory
{
 public IHttpHandler GetHandler(HttpContext context,
 String requestType, String url, String pathTranslated)
 {
 // Feel free to create a pool of HTTP handlers here
 if(context.Request.RequestType.ToLower() == "get")
 return (IHttpHandler) new MyGetHandler();
 else if(context.Request.RequestType.ToLower() == "post")
 return (IHttpHandler) new MyPostHandler();
 return null;
 }

 public void ReleaseHandler(IHttpHandler handler)
 {
 // Nothing to do
 }
}

When you use an HTTP handler factory, it’s the factory (not the handler) that you want to
register in the ASP.NET configuration file. If you register the handler, it will always be used to
serve requests. If you opt for a factory, you have a chance to decide dynamically and based
on runtime conditions which handler is more appropriate for a certain request. In doing so,
you can use the IsReusable property of handlers to implement a pool.

146 Part I The ASP.NET Runtime Environment

Asynchronous Handlers
An asynchronous HTTP handler is a class that implements the IHttpAsyncHandler interface.
The system initiates the call by invoking the BeginProcessRequest method. Next, when the
method ends, a callback function is automatically invoked to terminate the call. In the .NET
Framework, the sole HttpApplication class implements the asynchronous interface. The
 members of the IHttpAsyncHandler interface are shown in Table 4-6.

TABLE 4-6 Members of the IHttpAsyncHandler Interface
Method Description
BeginProcessRequest Initiates an asynchronous call to the specified HTTP handler

EndProcessRequest Terminates the asynchronous call

The signature of the BeginProcessRequest method is as follows:

IAsyncResult BeginProcessRequest(
 HttpContext context,
 AsyncCallback cb,
 Object extraData);

The context argument provides references to intrinsic server objects used to service
HTTP requests. The second parameter is the AsyncCallback object to invoke when the
 asynchronous method call is complete. The third parameter is a generic cargo variable that
contains any data you might want to pass to the handler.

Note An AsyncCallback object is a delegate that defines the logic needed to finish processing
the asynchronous operation. A delegate is a class that holds a reference to a method. A
 delegate class has a fixed signature, and it can hold references only to methods that match that
 signature. A delegate is equivalent to a type-safe function pointer or a callback. As a result,
an AsyncCallback object is just the code that executes when the asynchronous handler has
 completed its job.

The AsyncCallback delegate has the following signature:

public delegate void AsyncCallback(IAsyncResult ar);

It uses the IAsyncResult interface to obtain the status of the asynchronous opera-
tion. To illustrate the plumbing of asynchronous handlers, I’ll show you what the HTTP
 runtime does when it deals with asynchronous handlers. The HTTP runtime invokes the
BeginProcessRequest method as illustrated here:

// Sets an internal member of the HttpContext class with
// the current instance of the asynchronous handler
context.AsyncAppHandler = asyncHandler;

// Invokes the BeginProcessRequest method on the asynchronous HTTP handler
asyncHandler.BeginProcessRequest(context, OnCompletionCallback, context);

 Chapter 4 HTTP Handlers, Modules, and Routing 147

The context argument is the current instance of the HttpContext class and represents
the context of the request. A reference to the HTTP context is also passed as the cus-
tom data sent to the handler to process the request. The extraData parameter in the
BeginProcessRequest signature is used to represent the status of the asynchronous operation.
The BeginProcessRequest method returns an object of type HttpAsyncResult—a class that
implements the IAsyncResult interface. The IAsyncResult interface contains a property named
AsyncState that is set with the extraData value—in this case, the HTTP context.

The OnCompletionCallback method is an internal method. It gets automatically triggered
when the asynchronous processing of the request terminates. The following listing illustrates
the pseudocode of the HttpRuntime private method:

// The method must have the signature of an AsyncCallback delegate
private void OnHandlerCompletion(IAsyncResult ar)
{
 // The ar parameter is an instance of HttpAsyncResult
 HttpContext context = (HttpContext) ar.AsyncState;

 // Retrieves the instance of the asynchronous HTTP handler
 // and completes the request
 IHttpAsyncHandler asyncHandler = context.AsyncAppHandler;
 asyncHandler.EndProcessRequest(ar);

 // Finalizes the request as usual
 ...
}

The completion handler retrieves the HTTP context of the request through the AsyncState
property of the IAsyncResult object it gets from the system. As mentioned, the actual
 object passed is an instance of the HttpAsyncResult class—in any case, it is the return value
of the BeginProcessRequest method. The completion routine extracts the reference to the
 asynchronous handler from the context and issues a call to the EndProcessRequest method:

void EndProcessRequest(IAsyncResult result);

The EndProcessRequest method takes the IAsyncResult object returned by the call to
BeginProcessRequest. As implemented in the HttpApplication class, the EndProcessRequest
method does nothing special and is limited to throwing an exception if an error occurred.

Implementing Asynchronous Handlers
Asynchronous handlers essentially serve one particular scenario—a scenario in which the
generation of the markup is subject to lengthy operations, such as time-consuming database
stored procedures or calls to Web services. In these situations, the ASP.NET thread in charge
of the request is stuck waiting for the operation to complete. Because threads are valuable
resources, lengthy tasks that keep threads occupied for too long are potentially the perfect
scalability killer. However, asynchronous handlers are here to help.

148 Part I The ASP.NET Runtime Environment

The idea is that the request begins on a thread-pool thread, but that thread is released as
soon as the operation begins. In BeginProcessRequest, you typically create your own thread
and start the lengthy operation. BeginProcessRequest doesn’t wait for the operation to
 complete; therefore, the thread is returned to the pool immediately.

There are a lot of tricky details that this bird’s-eye description just omitted. In the first place,
you should strive to avoid a proliferation of threads. Ideally, you should use a custom thread
pool. Furthermore, you must figure out a way to signal when the lengthy operation has
terminated. This typically entails creating a custom class that implements IAsyncResult and
returning it from BeginProcessRequest. This class embeds a synchronization object— typically
a ManualResetEvent object—that the custom thread carrying the work will signal upon
completion.

In the end, building asynchronous handlers is definitely tricky and not for novice developers.
Very likely, you are more interested in having asynchronous pages than in generic
 asynchronous HTTP handlers. With asynchronous pages, the “lengthy task” is merely the
ProcessRequest method of the Page class. (Obviously, you configure the page to execute
asynchronously only if the page contains code that starts I/O-bound and potentially lengthy
operations.)

ASP.NET offers ad hoc support for building asynchronous pages more easily and more
 comfortably than through HTTP handlers.

Caution I’ve seen several ASP.NET developers use an .aspx page to serve markup other than
HTML markup. This is not a good idea. An .aspx resource is served by quite a rich and sophis-
ticated HTTP handler—the System.Web.UI.Page class. The ProcessRequest method of this class
entirely provides for the page life cycle as we know it—Init, Load, and PreRender events, as well
as rendering stage, view state, and postback management. Nothing of the kind is really required
if you only need to retrieve and return, say, the bytes of an image. HTTP handlers are an excellent
way to speed up particular requests. HTTP handlers are also a quick way to serve AJAX requests
without writing (and spinning up) the whole machinery of Windows Communication Foundation
(WCF) services. At the very end of the day, an HTTP handler is an endpoint and can be used to
serve data to AJAX requests. In this regard, the difference between an HTTP handler and a WCF
service is that the HTTP handler doesn’t have a free serialization engine for input and output
values.

 Chapter 4 HTTP Handlers, Modules, and Routing 149

Writing HTTP Modules
So you’ve learned that any incoming requests for ASP.NET resources are handed over to
the worker process for the actual processing. The worker process is distinct from the Web
server executable so that even if one ASP.NET application crashes, it doesn’t bring down the
whole server.

On the way to the final HTTP handler, the request passes through a pipeline of special
 runtime modules—HTTP modules. An HTTP module is a .NET Framework class that imple-
ments the IHttpModule interface. The HTTP modules that filter the raw data within the
request are configured on a per-application basis within the web.config file. All ASP.NET
 applications, though, inherit a bunch of system HTTP modules configured in the global
web.config file. Applications hosted under IIS 7.x integrated mode can configure HTTP
 modules that run at the IIS level for any requests that comes in, not just for ASP.NET-related
resources.

An HTTP module can pre-process and post-process a request, and it intercepts and handles
system events as well as events raised by other modules.

The IHttpModule Interface
The IHttpModule interface defines only two methods: Init and Dispose. The Init method
 initializes a module and prepares it to handle requests. At this time, you subscribe to receive
notifications for the events of interest. The Dispose method disposes of the resources (all but
memory!) used by the module. Typical tasks you perform within the Dispose method are
closing database connections or file handles.

The IHttpModule methods have the following signatures:

void Init(HttpApplication app);
void Dispose();

The Init method receives a reference to the HttpApplication object that is serving the request.
You can use this reference to wire up to system events. The HttpApplication object also fea-
tures a property named Context that provides access to the intrinsic properties of the
ASP.NET application. In this way, you gain access to Response, Request, Session, and the like.

Table 4-7 lists the events that HTTP modules can listen to and handle.

150 Part I The ASP.NET Runtime Environment

TABLE 4-7 HttpApplication Events in Order of Appearance
Event Description
BeginRequest Occurs as soon as the HTTP pipeline begins to process the request.

AuthenticateRequest,
PostAuthenticateRequest

Occurs when a security module has established the identity of the user.

AuthorizeRequest,
PostAuthorizeRequest

Occurs when a security module has verified user authorization.

ResolveRequestCache,
PostResolveRequestCache

Occurs when the ASP.NET runtime resolves the request through the
output cache.

MapRequestHandler,
PostMapRequestHandler

Occurs when the HTTP handler to serve the request has been found. It
is fired only to applications running in classic mode or under IIS 6.

AcquireRequestState,
PostAcquireRequestState

Occurs when the handler that will actually serve the request acquires
the state information associated with the request.

PreRequestHandlerExecute Occurs just before the HTTP handler of choice begins to work.

PostRequestHandlerExecute Occurs when the HTTP handler of choice finishes execution. The
 response text has been generated at this point.

ReleaseRequestState,
PostReleaseRequestState

Occurs when the handler releases the state information associated with
the current request.

UpdateRequestCache,
PostUpdateRequestCache

Occurs when the ASP.NET runtime stores the response of the current
request in the output cache to be used to serve subsequent requests.

LogRequest,
PostLogRequest

Occurs when the ASP.NET runtime is ready to log the results of the
 request. Logging is guaranteed to execute even if errors occur. It is fired
only to applications running under IIS 7 integrated mode.

EndRequest Occurs as the last event in the HTTP pipeline chain of execution.

Another pair of events can occur during the request, but in a nondeterministic order. They
are PreSendRequestHeaders and PreSendRequestContent.

The PreSendRequestHeaders event informs the HttpApplication object in charge of the
 request that HTTP headers are about to be sent. The PreSendRequestContent event tells the
HttpApplication object in charge of the request that the response body is about to be sent.
Both these events normally fire after EndRequest, but not always. For example, if buffering
is turned off, the event gets fired as soon as some content is going to be sent to the client.
Speaking of nondeterministic application events, it must be said that a third nondeterministic
event is, of course, Error.

All these events are exposed by the HttpApplication object that an HTTP module receives as
an argument to the Init method. You can write handlers for such events in the global.asax file
of the application. You can also catch these events from within a custom HTTP module.

 Chapter 4 HTTP Handlers, Modules, and Routing 151

A Custom HTTP Module
Let’s come to grips with HTTP modules by writing a relatively simple custom module named
Marker that adds a signature at the beginning and end of each page served by the applica-
tion. The following code outlines the class we need to write:

using System;
using System.Web;

namespace AspNetGallery.Extensions.Modules
{
 public class MarkerModule : IHttpModule
 {
 public void Init(HttpApplication app)
 {
 // Register for pipeline events
 }

 public void Dispose()
 {
 // Nothing to do here
 }
 }
}

The Init method is invoked by the HttpApplication class to load the module. In the Init
 method, you normally don’t need to do more than simply register your own event handlers.
The Dispose method is, more often than not, empty. The heart of the HTTP module is really
in the event handlers you define.

Wiring Up Events
The sample Marker module registers a couple of pipeline events. They are BeginRequest
and EndRequest. BeginRequest is the first event that hits the HTTP application object when
the request begins processing. EndRequest is the event that signals the request is going to
be terminated, and it’s your last chance to intervene. By handling these two events, you
can write custom text to the output stream before and after the regular HTTP handler—the
Page-derived class.

The following listing shows the implementation of the Init and Dispose methods for the
sample module:

public void Init(HttpApplication app)
{
 // Register for pipeline events
 app.BeginRequest += OnBeginRequest;
 app.EndRequest += EndRequest;
}

public void Dispose()
{
}

152 Part I The ASP.NET Runtime Environment

The BeginRequest and EndRequest event handlers have a similar structure. They obtain a
 reference to the current HttpApplication object from the sender and get the HTTP context
from there. Next, they work with the Response object to append text or a custom header:

public void OnBeginRequest(Object sender, EventArgs e)
{
 var app = (HttpApplication) sender;
 var ctx = app.Context;

 // More code here
 ...

 // Add custom header to the HTTP response
 ctx.Response.AppendHeader("Author", "DinoE");

 // PageHeaderText is a constant string defined elsewhere
 ctx.Response.Write(PageHeaderText);
}

public void OnEndRequest(Object sender, EventArgs e)
{
 // Get access to the HTTP context
 var app = (HttpApplication) sender;
 var ctx = app.Context;

 // More code here
 ...

 // Append some custom text
 // PageFooterText is a constant string defined elsewhere
 ctx.Response.Write(PageFooterText);
}

OnBeginRequest writes standard page header text and also adds a custom HTTP header.
OnEndRequest simply appends the page footer. The effect of this HTTP module is visible in
Figure 4-7.

FIGURE 4-7 The Marker HTTP module adds a header and footer to each page within the application.

 Chapter 4 HTTP Handlers, Modules, and Routing 153

Registering with the Configuration File
You register a new HTTP module by adding an entry to the <httpModules> section of the
configuration file. The overall syntax of the <httpModules> section closely resembles that of
HTTP handlers. To add a new module, you use the <add> node and specify the name and
type attributes. The name attribute contains the public name of the module. This name is
used to select the module within the HttpApplication’s Modules collection. If the module fires
custom events, this name is also used as the prefix for building automatic event handlers in
the global.asax file:

<system.web>
 <httpModules>
 <add name="Marker"
 type="MarkerModule, AspNetGallery.Extensions" />
 </httpModules>
</system.web>

The order in which modules are applied depends on the physical order of the modules in
the configuration list. You can remove a system module and replace it with your own that
provides a similar functionality. In this case, in the application’s web.config file you use the
<remove> node to drop the default module and then use <add> to insert your own. If you
want to completely redefine the order of HTTP modules for your application, you can clear
all the default modules by using the <clear> node and then re-register them all in the order
you prefer.

Note HTTP modules are loaded and initialized only once, at the startup of the application.
Unlike HTTP handlers, they apply to any requests. So when you plan to create a new HTTP mod-
ule, you should first wonder whether its functionality should span all possible requests in the
application. Is it possible to choose which requests an HTTP module should process? The Init
method is called only once in the application’s lifetime, but the handlers you register are called
once for each request. So to operate only on certain pages, you can do as follows:

public void OnBeginRequest(object sender, EventArgs e)
{
 HttpApplication app = (HttpApplication) sender;
 HttpContext ctx = app.Context;
 if (!ShouldHook(ctx))
 return;
 ...
}

OnBeginRequest is your handler for the BeginRequest event. The ShouldHook helper function
returns a Boolean value. It is passed the context of the request—that is, any information that is
available on the request. You can code it to check the URL as well as any HTTP content type and
headers.

154 Part I The ASP.NET Runtime Environment

Accessing Other HTTP Modules
The sample just discussed demonstrates how to wire up pipeline events—that is, events
fired by the HttpApplication object. But what about events fired by other modules? The
HttpApplication object provides a property named Modules that gets the collection of
 modules for the current application.

The Modules property is of type HttpModuleCollection and contains the names of
the modules for the application. The collection class inherits from the abstract class
NameObjectCollectionBase, which is a collection of pairs made of a string and an object.
The string indicates the public name of the module; the object is the actual instance of the
module. To access the module that handles the session state, you need code like this:

var sessionModule = app.Modules["Session"];
sessionModule.Start += OnSessionStart;

As mentioned, you can also handle events raised by HTTP modules within the global.asax file
and use the ModuleName_EventName convention to name the event handlers. The name of
the module is just one of the settings you need to define when registering an HTTP module.

Examining a Real-World HTTP Module
The previous example gave us the gist of an HTTP module component. It was a simple (and
kind of pointless) example, but it was useful to demonstrate what you can do with HTTP
modules in a real application. First and foremost, not all applications need custom HTTP
modules. ASP.NET comes with a bunch of built-in modules, which are listed in Table 4-8.

TABLE 4-8 Native HTTP Modules
Event Description
AnonymousIdentificationModule Manages anonymous identifiers for the ASP.NET application

DefaultAuthenticationModule Ensures that the User object is always bound to some
 identity

FileAuthorizationModule Verifies that the user has permission to access the given file.

FormsAuthenticationModule Manages Forms authentication

OutputCacheModule Implements output page caching

ProfileModule Implements the data retrieval for profile data

RoleManagerModule Manages the retrieval of role information

ScriptModule Manages script requests placed through ASP.NET AJAX

SessionStateModule Manages session state

UrlAuthorizationModule Verifies that the user has permission to access the given URL

UrlRoutingModule Implements URL routing

WindowsAuthenticationModule Manages Windows authentication

 Chapter 4 HTTP Handlers, Modules, and Routing 155

All these HTTP modules perform a particular system-level operation and can be customized
by application-specific code. Because an HTTP module works on any incoming request, it
usually doesn’t perform application-specific tasks. From an application perspective, an HTTP
module is helpful when you need to apply filters on all requests for profiling, debugging, or
functional reasons.

Let’s dissect one of the system-provided HTTP modules, which will also slowly move us
 toward the next topic of this chapter. Enter the URL-routing HTTP module.

The UrlRoutingModule Class
In ASP.NET 3.5 Service Pack 1, Microsoft introduced a new and more effective API for
URL rewriting. Because of its capabilities, the new API got a better name—URL routing.
URL routing is built on top of the URL rewriting API, but it offers a richer and higher level
 programming model. (I’ll get to URL rewriting and URL routing in a moment.)

The URL routing engine is a system-provided HTTP module that wires up the
PostResolveRequestCache event. In a nutshell, the HTTP module matches the requested URL
to one of the user-defined rewriting rules (known as routes) and finds the HTTP handler that
is due to serve that route. If any HTTP handler is found, it becomes the actual handler for the
current request. Here’s the signature of the module class:

public class UrlRoutingModule : IHttpModule
{
 public virtual void PostResolveRequestCache(HttpContextBase context)
 {
 ...
 }

 void IHttpModule.Dispose()
 {
 ...
 }

 void IHttpModule.Init(HttpApplication application)
 {
 ...
 }
}

The class implements the IHttpModule interface implicitly, and in its initialization phase it
registers a handler for the system’s PostResolveRequestCache event.

The PostResolveRequestCache Event
The PostResolveRequestCache event fires right after the runtime environment (IIS or ASP.
NET, depending on the IIS working mode) has determined whether the response for the cur-
rent request can be served from the output cache or not. If the response is already cached,

156 Part I The ASP.NET Runtime Environment

there’s no need to process the request and, subsequently, no need to analyze the content
of the URL. Any system events that follow PostResolveRequestCache are part of the request
 processing cycle; therefore, hooking up PostResolveRequestCache is the optimal moment for
taking control of requests that require some work on the server.

The first task accomplished by the HTTP module consists of grabbing any route data
 contained in the URL of the current request. The module matches the URL to one of the reg-
istered routes and figures out the handler for the route.

The route handler is not the HTTP handler yet. It is simply the object responsible for handling
the route. The primary task of a route handler, however, is returning the HTTP handler to
serve the request.

In the end, HTTP modules are extremely powerful tools that give you control over every little
step taken by the system to process a request. For the same reason, however, HTTP modules
are delicate tools—every time you write one, it will be invoked for each and every request.
An HTTP module is hardly a tool for a specific application (with due exceptions), but it is
 often a formidable tool for implementing cross-cutting, system-level features.

URL Routing
The whole ASP.NET platform originally developed around the idea of serving requests for
physical pages. Look at the following URL:

http://northwind.com/news.aspx?id=1234

It turns out that most URLs used within an ASP.NET application are made of two parts: the
path to the physical Web page that contains the logic to apply, and some data stuffed in the
query string to provide parameters. In the URL just shown, the news.aspx page incorporates
the logic required to retrieve and display the data; the ID for the specific news to retrieve is
provided, instead, via a parameter on the query string.

This is the essence of the Page Controller pattern for Web applications. The request targets a
page whose logic and graphical layout are saved to disk. This approach has worked for a few
years and still works today. The content of the news is displayed correctly, and everybody is
generally happy. In addition, you have just one page to maintain, and you still have a way to
identify a particular piece of news via the URL.

A possible drawback of this approach is that the real intent of the page might not be clear to
users. And, more importantly, search engines usually assign higher ranks to terms contained
in the URL. Therefore, an expressive URL provides search engines with an effective set of
keywords that describe the page. To fix this, you need to make the entire URL friendlier and
more readable. But you don’t want to add new Web pages to the application or a bunch

http://northwind.com/news.aspx?id=1234

 Chapter 4 HTTP Handlers, Modules, and Routing 157

of made-to-measure HTTP handlers. Ideally, you should try to transform the request in a
 command sent to the server rather than having it be simply the virtual file path name of the
page to display.

Note The advent of Content Management Systems (CMS) raised the need to have friendlier
URLs. A CMS is an application not necessarily written for a single user and that likely manages
several pages created using semi-automatic algorithms. For these tools, resorting to pages
with an algorithmically editable URL was a great help. But, alas, it was not a great help for users
and search engines. This is where the need arises to expose user-friendly URLs while managing
 cryptic URLs internally. A URL rewriter API attempts to bridge precisely this gap.

The URL Routing Engine
To provide the ability to always expose friendly URLs to users, ASP.NET has supported a
 feature called URL rewriting since its inception. At its core, URL rewriting consists of an
HTTP module (or a global.asax event handler) that hooks up a given request, parses its
 original URL, and instructs the HTTP runtime environment to serve a “possibly related but
different” URL.

URL rewriting is a powerful feature; however, it’s not free of issues. For this reason, Microsoft
more recently introduced a new API in ASP.NET. Although it’s based on the same underlying
URL rewriting, the API offers a higher level of programmability and more features overall—
and the URL routing engine in particular.

Originally devised for ASP.NET MVC, URL routing gives you total freedom to organize the
layout of the URL recognized by your application. In a way, the URL becomes a command for
the Web application; the application is the only entity put in charge of parsing and validat-
ing the syntax of the command. The URL engine is the system-provided component that
validates the URL. The URL routing engine is general enough to be usable in both ASP.NET
MVC and ASP.NET Web Forms; in fact, it was taken out of the ASP.NET MVC framework and
 incorporated in the general ASP.NET system.web assembly a while ago.

URL routing differs in ASP.NET MVC and ASP.NET Web Forms only with regard to how you
express the final destination of the request. You use a controller-action pair in ASP.NET MVC;
you use an ASPX path in ASP.NET Web Forms.

Original URL Rewriting API
URL rewriting helps you in two ways. It makes it possible for you to use a generic front-end
page such as news.aspx and then redirect to a specific page whose actual URL is read from a
database or any other container. In addition, it also enables you to request user-friendly URLs
to be programmatically mapped to less intuitive, but easier to manage, URLs.

158 Part I The ASP.NET Runtime Environment

Here’s a quick example of how you can rewrite the requested URL as another one:

protected void Application_BeginRequest(object sender, EventArgs e)
{
 // Get the current request context
 var context = HttpContext.Current;

 // Get the URL to the handler that will physically handle the request
 var newURL = ParseOriginalUrl(context);

 // Overwrite the target URL of the current request
 context.RewritePath(newURL);
}

The RewritePath method of HttpContext lets you change the URL of the current request on
the fly, thus performing a sort of internal redirect. As a result, the user is provided the con-
tent generated for the URL you set through RewritePath. At the same time, the URL shown in
the address bar remains as the originally requested one.

In a nutshell, URL rewriting exists to let you decouple the URL from the physical Web form
that serves the requests.

Note The change of the final URL takes place on the server and, more importantly, within the
context of the same call. RewritePath should be used carefully and mainly from within the
global.asax file. In Web Forms, for example, if you use RewritePath in the context of a postback
event, you can experience some view-state problems.

One drawback of the URL rewriting API is that as the API changes the target URL of the
 request, any postbacks are directed to the rewritten URL. For example, if you rewrite
news.aspx?id=1234 to 1234.aspx, any postbacks from 1234.aspx are targeted to the same
1234.aspx instead of to the original URL.

This might or might not be a problem for you and, for sure, it doesn’t break any page
 behavior. However, the original URL has just been fully replaced while you likely want to use
the same, original URL as the front end. If this is the case (and most of the time, this is exactly
the case), URL rewriting just created a new problem.

In addition, the URL rewriting logic is intrinsically monodirectional because it doesn’t offer
any built-in mechanism to go from the original URL to the rewritten URL and then back.

URL Patterns and Routes
The URL routing module is a system component that intercepts any request and attempts to
match the URL to a predefined pattern. All requested URLs that match a given pattern are
processed in a distinct way; typically, they are rewritten to other URLs.

The URL patterns that you define are known as routes.

 Chapter 4 HTTP Handlers, Modules, and Routing 159

A route contains placeholders that can be filled up with values extracted from the URL. Often
referred to as a route parameter, a placeholder is a name enclosed in curly brackets { }. You
can have multiple placeholders in a route as long as they are separated by a constant or
 delimiter. The forward slash (/) character acts as a delimiter between the various parts of the
route. Here’s a sample route:

Category/{action}/{categoryName}

URLs that match the preceding route begin with the word “Category” followed by two
 segments. The first segment will be mapped to the action route parameter; the second
 segment will be mapped to the categoryName route parameter. As you might have guessed,
action and categoryName are just arbitrary names for parameters. A URL that matches the
preceding route is the following:

/Category/Edit/Beverages

The route is nothing more than a pattern and is not associated with any logic of its own.
Invoked by the routing module, the component that ultimately decides how to rewrite the
matching URL is another one entirely. Precisely, it is the route handler.

Technically speaking, a route handler is a class that implements the IRouteHandler interface.
The interface is defined as shown here:

public interface IRouteHandler
{
 IHttpHandler GetHttpHandler(RequestContext requestContext);
}

In its GetHttpHandler method, a route handler typically looks at route parameters to figure
out if any of the information available needs to be passed down to the HTTP handler (for
example, an ASP.NET page) that will handle the request. If this is the case, the route handler
adds this information to the Items collection of the HTTP context. Finally, the route handler
obtains an instance of a class that implements the IHttpHandler interface and returns that.

For Web Forms requests, the route handler—an instance of the PageRouteHandler class—
resorts to the ASP.NET build manager to identify the dynamic class for the requested page
resource and creates the handler on the fly.

Important The big difference between plain URL rewriting and ASP.NET routing is that with
ASP.NET routing, the URL is not changed when the system begins processing the request.
Instead, it’s changed later in the life cycle. In this way, the runtime environment can perform
most of its usual tasks on the original URL, which is an approach that maintains a consistent and
robust solution. In addition, a late intervention on the URL also gives developers a big chance to
extract values from the URL and the request context. In this way, the routing mechanism can be
driven by a set of rewriting rules or patterns. If the original URL matches a particular pattern, you
rewrite it to the associated URL. URL patterns are an external resource and are kept in one place,
which makes the solution more maintainable overall.

160 Part I The ASP.NET Runtime Environment

Routing in Web Forms
To introduce URL routing in your Web Forms application, you start by defining routes. Routes
go in the global.asax file to be processed at the very beginning of the application. To define
a route, you create an instance of the Route class by specifying the URL pattern, the handler,
and optionally a name for the route. However, you typically use helper methods that save
you a lot of details and never expose you directly to the API of the Route class. The next
 section shows some code that registers routes.

Note The vast majority of examples that illustrate routing in both ASP.NET MVC and Web Forms
explicitly register routes from within global.asax. Loading route information from an external file
is not be a bad idea, though, and will make your application a bit more resilient to changes.

Defining Routes for Specific Pages
In Application_Start, you invoke a helper method inside of which new routes are created and
added to a static route collection object. Here’s a sample global.asax class:

public class Global : System.Web.HttpApplication
{
 void Application_Start(object sender, EventArgs e)
 {
 RegisterRoutes(RouteTable.Routes);
 }

 public static void RegisterRoutes(RouteCollection routes)
 {
 routes.MapPageRoute("Category",
 "Category/{action}/{categoryName}",
 "~/categories.aspx",
 true,
 new RouteValueDictionary
 {
 { "categoryName", "beverages" },
 { "action", "edit" }
 });
 }
}

All routes for the application are stored in a global container: the static Routes property
of the RouteTable class. A reference to this property is passed to the helper RegisterRoutes
method invoked upon application start.

The structure of the code you just saw is optimized for testability; nothing prevents you from
stuffing all the code in the body of Application_Start.

 Chapter 4 HTTP Handlers, Modules, and Routing 161

The MapPageRoute method is a helper method that creates a Route object and adds it to the
Routes collection. Here’s a glimpse of its internal implementation:

public Route MapPageRoute(String routeName,
 String routeUrl,
 String physicalFile,
 Boolean checkPhysicalUrlAccess,
 RouteValueDictionary defaults,
 RouteValueDictionary constraints,
 RouteValueDictionary dataTokens)
{
 if (routeUrl == null)
 {
 throw new ArgumentNullException("routeUrl");
 }

 // Create the new route
 var route = new Route(routeUrl,
 defaults, constraints, dataTokens,
 new PageRouteHandler(physicalFile, checkPhysicalUrlAccess));

 // Add the new route to the global collection
 this.Add(routeName, route);
 return route;
}

The MapPageRoute method offers a simplified interface for creating a Route object. In
 particular, it requires you to specify the name of the route, the URL pattern for the route, and
the physical ASP.NET Web Forms page the URL will map to. In addition, you can specify a
Boolean flag to enforce the application of current authorization rules for the actual page. For
example, imagine that the user requests a URL such as customers/edit/alfki. Imagine also that
such a URL is mapped to customers.aspx and that this page is restricted to the admin role
only. If the aforementioned Boolean argument is false, all users are allowed to view the page
behind the URL. If the Boolean value is true, only admins will be allowed.

Finally, the MapPageRoute method can accept three dictionaries: the default values for URL
parameters, additional constraints on the URL parameters, plus custom data values to pass
on to the route handler.

In the previous example, we aren’t using constraints and data tokens. Instead, we are specify-
ing default values for the categoryName and action parameters. As a result, an incoming URL
such as /category will be automatically resolved as if it were /category/edit/beverages.

Programmatic Access to Route Values
The MapPageRoute method just configures routes recognized by the application. Its job
ends with the startup of the application. The URL routing HTTP module then kicks in for each
 request and attempts to match the request URL to any of the defined routes.

162 Part I The ASP.NET Runtime Environment

Routes are processed in the order in which they have been added to the Routes collection,
and the search stops at the first match. For this reason, it is extremely important that you list
your routes in decreasing order of importance—stricter rules must go first.

Beyond the order of appearance, other factors affect the process of matching URLs to routes.
One is the set of default values that you might have provided for a route. Default values are
simply values that are automatically assigned to defined placeholders in case the URL doesn’t
provide specific values. Consider the following two routes:

{Orders}/{Year}/{Month}
{Orders}/{Year}

If you assign the first route’s default values for both {Year} and {Month}, the second route will
never be evaluated because, thanks to the default values, the first route is always a match
regardless of whether the URL specifies a year and a month.

The URL-routing HTTP module also uses constraints (which I’ll say more about in a moment)
to determine whether a URL matches a given route. If a match is finally found, the routing
module gets the HTTP handler from the route handler and maps it to the HTTP context of
the request.

Given the previously defined route, any matching requests are mapped to the categories.aspx
page. How can this page know about the route parameters? How can this page know about
the action requested or the category name? There’s no need for the page to parse (again)
the URL. Route parameters are available through a new property on the Page class—the
RouteData property.

RouteData is a property of type RouteData and features the members listed in Table 4-9.

TABLE 4-9 Members of the RouteData Class
Member Description
DataTokens List of additional custom values that are passed to the route handler

GetRequiredString Method that takes the name of a route parameter and returns its value

Route Returns the current Route object

RouteHandler Returns the handler for the current route

Values Returns the dictionary of route parameter values

The following code snippet shows how you retrieve parameters in Page_Load:

protected void Page_Load(object sender, EventArgs e)
{
 var action = RouteData.GetRequiredString("action");
 ...
}

 Chapter 4 HTTP Handlers, Modules, and Routing 163

The only difference between using GetRequiredString and accessing the Values dictionary
is that GetRequiredString throws if the requested value is not found. In addition,
GetRequiredString uses protected access to the collection via TryGetValue instead of a
direct reading.

Structure of Routes
A route is characterized by the five properties listed in Table 4-10.

TABLE 4-10 Properties of the Route Class
Property Description
Constraints List of additional constraints the URL should fulfill to match the route.

DataTokens List of additional custom values that are passed to the route handler.
These values, however, are not used to determine whether the route
matches a URL pattern.

Defaults List of default values to be used for route parameters.

RouteHandler The object responsible for retrieving the HTTP handler to serve the
 request.

Url The URL pattern for the route.

Constraints, DataTokens, and Defaults are all properties of type RouteValueDictionary. In spite
of the fancy name, the RouteValueDictionary type is a plain <String, Object> dictionary.

Most of the time, the pattern defined by the route is sufficient to decide whether a given
URL matches or not. However, this is not always the case. Consider, for example, the situation
in which you are defining a route for recognizing requests for product details. You want to
make sure of the following two aspects.

First, make sure the incoming URL is of the type http://server/{category}/{productId}, where
{category} identifies the category of the product and {productId} indicates the ID of the
 product to retrieve.

Second, you also want to be sure that no invalid product ID is processed. You probably don’t
want to trigger a database call right from the URL routing module, but at the very least, you
want to rule out as early as possible any requests that propose a product ID in an incompat-
ible format. For example, if product IDs are numeric, you want to rule out anything passed in
as a product ID that is alphanumeric.

http://server/

164 Part I The ASP.NET Runtime Environment

Regular expressions are a simple way to filter requests to see if any segment of the URL
is acceptable. Here’s a sample route that keeps URLs with a string product ID off the
application:

routes.MapPageRoute(
 "ProductInfo",
 "Category/{category}/{productId}/{locale}",
 "~/categories.aspx",
 true,
 new { category = "Beverages", locale="en-us" },
 new { productId = @"\d{8}",
 locale = ""[a-z]{2}-[a-z]{2}" }
);

The sixth parameter to the MapPageRoute method is a dictionary object that sets regular
 expressions for productId and locale. In particular, the product ID must be a numeric
 sequence of exactly eight digits, whereas the locale must be a pair of two-letter strings
 separated by a dash. The filter doesn’t ensure that all invalid product IDs and locale codes are
stopped at the gate, but at least it cuts off a good deal of work. An invalid URL is presented
as an HTTP 404 failure and is subject to application-specific handling of HTTP errors.

More in general, a route constraint is a condition that a given URL parameter must fulfill
to make the URL match the route. A constraint is defined via either regular expressions or
 objects that implement the IRouteConstraint interface.

Preventing Routing for Defined URLs
The ASP.NET URL routing module gives you maximum freedom to keep certain URLs off the
routing mechanism. You can prevent the routing system from handling certain URLs in two
steps. First, you define a pattern for those URLs and save it to a route. Second, you link that
route to a special route handler—the StopRoutingHandler class.

Any request that belongs to a route managed by a StopRoutingHandler object is processed
as a plain ASP.NET Web Forms endpoint. The following code instructs the routing system to
ignore any .axd requests:

// In global.asax.cs
protected void Application_Start(Object sender, EventArgs e)
{
 RegisterRoutes(RouteTable.Routes);
}

public static void RegisterRoutes(RouteCollection routes)
{
 routes.IgnoreRoute("{resource}.axd/{*pathInfo}");
 ...
}

 Chapter 4 HTTP Handlers, Modules, and Routing 165

All that IgnoreRoute does is associate a StopRoutingHandler route handler to the route built
around the specified URL pattern, thus preventing all matching URLs from being processed.

A little explanation is required for the {*pathInfo} placeholder in the URL. The token pathInfo
simply represents a placeholder for any content following the .axd URL. The asterisk (*),
though, indicates that the last parameter should match the rest of the URL. In other words,
anything that follows the .axd extension goes into the pathInfo parameter. Such parameters
are referred to as catch-all parameters.

Note Earlier in this chapter, I presented HTTP handlers as a way to define your own commands
for the application through customized URLs. So what’s the difference between HTTP handlers
and URL routing? In ASP.NET, HTTP handlers remain the only way to process requests; URL rout-
ing is an intermediate layer that pre-processes requests and determines the HTTP handler for
them. In doing so, the routing module decides whether the URL meets the expectations of the
application or not. In a nutshell, URL routing offers a more flexible and extensible API; if you just
need one specially formatted URL, though, a direct HTTP handler is probably a simpler choice.

Summary
HTTP handlers and HTTP modules are the building blocks of the ASP.NET platform. ASP.NET
includes several predefined handlers and HTTP modules, but developers can write handlers
and modules of their own to perform a variety of tasks. HTTP handlers, in particular, are
faster than ordinary Web pages and can be used in all circumstances in which you don’t need
state maintenance and postback events. To generate images dynamically on the server, for
example, an HTTP handler is more efficient than a page.

Everything that occurs under the hood of the ASP.NET runtime environment occurs because
of HTTP handlers. When you invoke a Web page or an ASP.NET Web service method, an
 appropriate HTTP handler gets into the game and serves your request.

HTTP modules are good at performing a number of low-level tasks for which tight
 interaction and integration with the request/response mechanism is a critical factor. Modules
are sort of interceptors that you can place along an HTTP packet’s path, from the Web server
to the ASP.NET runtime and back. Modules have read and write capabilities, and they can
filter and modify the contents of both inbound and outbound requests.

In ASP.NET 4, a special HTTP module has been introduced to simplify the management of
application URLs and make the whole process more powerful. The URL routing HTTP module
offers a programmer-friendly API to define URL patterns, and it automatically blocks calls

166 Part I The ASP.NET Runtime Environment

for nonmatching URLs and redirects matching URLs to specific pages. It’s not much different
from old-fashioned URL rewriting, but it offers a greater level of control to the programmer.

With this chapter, our exploration of the ASP.NET and IIS runtime environment terminates.
With the next chapter, we’ll begin a tour of the ASP.NET page-related features.

Programming Microsoft® ASP.NET 4

 167

Part II

ASP.NET Pages and
Server Controls

In this part:
Chapter 5: Anatomy of an ASP.NET Page . 169
Chapter 6: ASP.NET Core Server Controls . 217
Chapter 7: Working with the Page . 269
Chapter 8: Page Composition and Usability . 319
Chapter 9: ASP.NET Input Forms. 365
Chapter 10: Data Binding. 411
Chapter 11: The ListView Control . 471
Chapter 12: Custom Controls . 513

 169

Chapter 5

Anatomy of an ASP.NET Page
The wise are instructed by reason; ordinary minds by experience; the stupid, by
necessity; and brutes by instinct.

—Cicero

ASP.NET pages are dynamically compiled on demand when first requested in the context of
a Web application. Dynamic compilation is not specific to ASP.NET pages alone (.aspx files);
it also occurs with services (.svc and asmx files), Web user controls (.ascx files), HTTP handlers
(.ashx files), and a few more ASP.NET application files such as the global.asax file. A pipeline of
run-time modules takes care of the incoming HTTP packet and makes it evolve from a simple
protocol-specific payload up to the rank of a server-side ASP.NET object—whether it’s an
 instance of a class derived from the system’s Page class or something else.

The ASP.NET HTTP runtime processes the page object and causes it to generate the markup
to insert in the response. The generation of the response is marked by several events handled
by user code and collectively known as the page life cycle.

In this chapter, we’ll review how an HTTP request for an .aspx resource is mapped to a page
object, the programming interface of the Page class, and how to control the generation of
the markup by handling events of the page life cycle.

Note By default in release mode, application pages are compiled in batch mode, meaning that
ASP.NET attempts to stuff as many uncompiled pages as possible into a single assembly. The
attributes maxBatchSize and maxBatchGeneratedFileSize in the <compilation> section let you
limit the number of pages packaged in a single assembly and the overall size of the assembly. By
default, you will have no more than 1000 pages per batched compilation and no assembly larger
than 1 MB. In general, you don’t want users to wait too long when a large number of pages are
compiled the first time. At the same time, you don’t want to load a huge assembly in memory to
serve only a small page, or to start compilation for each and every page. The maxBatchSize and
maxBatchGeneratedFileSize attributes help you find a good balance between first-hit delay and
memory usage.

170 Part II ASP.NET Pages and Server Controls

Invoking a Page
Let’s start by examining in detail how the .aspx page is converted into a class and then
 compiled into an assembly. Generating an assembly for a particular .aspx resource is a
 two-step process. First, the source code of the resource file is parsed and a corresponding
class is created that inherits either from Page or another class that, in turn, inherits from Page.
Second, the dynamically generated class is compiled into an assembly and cached in an
ASP.NET-specific temporary directory.

The compiled page remains in use as long as no changes occur to the linked .aspx source
file or the whole application is restarted. Any changes to the linked .aspx file invalidate the
 current page-specific assembly and force the HTTP runtime to create a new assembly on the
next request for the page.

Note Editing files such as web.config and global.asax causes the whole application to restart. In
this case, all the pages will be recompiled as soon as each page is requested. The same happens
if a new assembly is copied or replaced in the application’s Bin folder.

The Runtime Machinery
Most of the requests that hit Internet Information Services (IIS) are forwarded to a particular
run-time module for actual processing. The only exception to this model is made for static
resources (for example, images) that IIS can quickly serve on its own. A module that can
 handle Web resources within IIS is known as an ISAPI extension and can be made of man-
aged or unmanaged code. The worker process that serves the Web application in charge of
the request loads the pinpointed module and commands it through a contracted program-
ming interface.

For example, old-fashioned ASP pages are processed by an ISAPI extension named asp.dll
whereas files with an .aspx extension—classic Web Forms pages—are assigned to an ISAPI
extension named aspnet_isapi.dll, as shown in Figure 5-1. Extension-less requests like those
managed by an ASP.NET MVC application are intercepted at the gate and redirected to
 completely distinct runtime machinery. (At least this is what happens under IIS 7 in integrated
mode. In older configurations, you still need to register a specific extension for the requests
to be correctly handled by IIS.)

 Chapter 5 Anatomy of an ASP.NET Page 171

FIGURE 5-1 Setting the handler for resources with an .aspx extension.

Resource Mappings
IIS stores the list of recognized resources in the IIS metabase. Depending on the version of IIS
you are using, the metabase might be a hidden component or a plain configuration file that
an administrator can freely edit by hand. Regardless of the internal implementation, the IIS
manager tool provides a user interface to edit the content of the metabase.

Upon installation, ASP.NET modifies the IIS metabase to make sure that aspnet_isapi.dll can
handle some typical ASP.NET resources. Table 5-1 lists some of these resources.

TABLE 5-1 IIS Application Mappings for aspnet_isapi.dl
Extension Resource Type
.asax ASP.NET application files. Note, though, that any .asax file other than global.asax is

 ignored. The mapping is there only to ensure that global.asax can’t be requested directly.

.ascx ASP.NET user control files.

.ashx HTTP handlers—namely, managed modules that interact with the low-level request and
response services of IIS.

.asmx Files that represent the endpoint of old-fashioned .NET Web services.

.aspx Files that represent ASP.NET pages.

.axd Extension that identifies internal HTTP handlers used to implement system features such
as application-level tracing (trace.axd) or script injection (webresource.axd).

.svc Files that represent the endpoint of a Windows Communication Foundation (WCF)
 service.

172 Part II ASP.NET Pages and Server Controls

In addition, the aspnet_isapi.dll extension handles other typical Microsoft Visual Studio
 extensions such as .cs, .csproj, .vb, .vbproj, .config, and .resx.

As mentioned in Chapter 2, “ASP.NET and IIS,” the exact behavior of the ASP.NET ISAPI
 extension depends on the process model selected for the application—integrated pipe-
line (the default in IIS 7 and superior) or classic pipeline. Regardless of the model, at the
end of the processing pipeline the originally requested URL that refers to an .aspx resource
is mapped to, and served through, an instance of a class that represents an ASP.NET Web
Forms page. The base class is the System.Web.UI.Page class.

Representing the Requested Page
The aforementioned Page class is only the base class. The actual class being used by the
IIS worker process is a dynamically created derived class. So the ASP.NET HTTP runtime
 environment first determines the name of the class that will be used to serve the request.
A particular naming convention links the URL of the page to the name of the class. If the
requested page is, say, default.aspx, the associated class turns out to be ASP.default_aspx.
The transformation rule applies a fixed ASP namespace and replaces any dot (.) with an
underscore (_). If the URL contains a directory name, any slashes are also replaced with an
underscore.

If no class exists with the specified name in any of the assemblies currently loaded in the
AppDomain, the HTTP runtime orders that the class be created and compiled on the fly. This
step is often referred to as the dynamic compilation of ASP.NET pages.

The source code for the new class is created by parsing the source code of the .aspx resource,
and it’s temporarily saved in the ASP.NET temporary folder. The parser attempts to create
a class with an initializer method able to create instances of any referenced server controls
found in the ASPX markup. A referenced server control results from tags explicitly decorated
with the runat=server attribute and from contiguous literals, including blanks and carriage
returns. For example, consider the following short piece of markup:

<html>
<body>
<asp:button runat="server" ID="Button1" text="Click" />
</body>
</html>

When parsed, it sparks three distinct server control instances: two literal controls and a
Button control. The first literal comprehends the text “<html><body>” plus any blanks and
carriage returns the editor has put in. The second literal includes “</body></html>”.

 Chapter 5 Anatomy of an ASP.NET Page 173

Next, the Page-derived class is compiled and loaded in memory to serve the request. When
a new request for the same page arrives, the class is ready and no compile step will ever take
place. (The class will be re-created and recompiled only if the source code of the .aspx source
changes at some point.)

The ASP.default_aspx class inherits from Page or, more likely, from a class that in turn
 inherits from Page. More precisely, the base class for ASP.default_aspx will be a combina-
tion of the code-behind, partial class you created through Visual Studio and a second partial
class dynamically arranged by the ASP.NET HTTP runtime. The second, implicit partial class
 contains the declaration of protected properties for any explicitly referenced server controls.
This second partial class is the key that allows you to write the following code successfully:

// No member named Button1 has ever been explicitly declared in any code-behind
// class. It is silently added at compile time through a partial class.
Button1.Text = ...;

Partial classes are a hot feature of .NET compilers. When partially declared, a class has its
source code split over multiple source files, each of which appears to contain an ordinary
class definition from beginning to end. The keyword partial, though, informs the compiler
that the class declaration being processed is incomplete. To get full and complete source
code, the compiler must look into other files specified on the command line.

Partial Classes in ASP.NET Projects
Partial classes are a compiler feature originally designed to overcome the brittleness of
 tool-generated code back in Visual Studio 2003 projects. Ideal for team development, partial
classes simplify coding and avoid manual file synchronization in all situations in which many
authors work on distinct segments of the class logical class.

Generally, partial classes are a source-level, assembly-limited, non-object-oriented way to
extend the behavior of a class. A number of advantages are derived from intensive use of
partial classes. As mentioned, you can have multiple teams at work on the same component
at the same time. In addition, you have a neat and elegant way to add functionality to a class
incrementally. In the end, this is just what the ASP.NET runtime does.

The ASPX markup defines server controls that will be handled by the code in the code-
behind class. For this model to work, the code-behind class needs to incorporate references
to these server controls as internal members—typically, protected members. In Visual Studio,
the code-behind class is a partial class that just lacks members’ declaration. Missing declara-
tions are incrementally added at run time via a second partial class created by the ASP.NET
HTTP runtime. The compiler of choice (C#, Microsoft Visual Basic .NET, or whatever) will then
merge the two partial classes to create the real parent of the dynamically created page class.

174 Part II ASP.NET Pages and Server Controls

Processing the Request
So to serve a request for a page named default.aspx, the ASP.NET runtime gets or creates a
reference to a class named ASP.default_aspx. Next, the HTTP runtime environment invokes
the class through the methods of a well-known interface—IHttpHandler. The root Page class
implements this interface, which includes a couple of members: the ProcessRequest method
and the Boolean IsReusable property. After the HTTP runtime has obtained an instance of the
class that represents the requested resource, invoking the ProcessRequest method—a public
method—gives birth to the process that culminates in the generation of the final response
for the browser. As mentioned, the steps and events that execute and trigger out of the call
to ProcessRequest are collectively known as the page life cycle.

Although serving pages is the ultimate goal of the ASP.NET runtime, the way in which the
resultant markup code is generated is much more sophisticated than in other platforms and
involves many objects. The IIS worker process passes any incoming HTTP requests to the
 so-called HTTP pipeline. The HTTP pipeline is a fully extensible chain of managed objects
that works according to the classic concept of a pipeline. All these objects form what is often
referred to as the ASP.NET HTTP runtime environment.

This ASP.NET-specific pipeline is integrated with the IIS pipeline in place for any requests
when the Web application is configured to work in IIS 7 Integrated mode. Otherwise, IIS
and ASP.NET use distinct pipelines—an unmanaged pipeline for IIS and a managed pipeline
for ASP.NET.

A page request passes through a pipeline of objects that process the original HTTP payload
and, at the end of the chain, produce some markup code for the browser. The entry point in
this pipeline is the HttpRuntime class.

The HttpRuntime Class
The ASP.NET worker process activates the HTTP pipeline in the beginning by creating a new
instance of the HttpRuntime class and then calling its ProcessRequest method for each incom-
ing request. For the sake of clarity, note that despite the name, HttpRuntime.ProcessRequest
has nothing to do with the IHttpHandler interface.

The HttpRuntime class contains a lot of private and internal methods and only three public
static methods: Close, ProcessRequest, and UnloadAppDomain, as detailed in Table 5-2.

 Chapter 5 Anatomy of an ASP.NET Page 175

TABLE 5-2 Public Methods in the HttpRuntime Class
Method Description
Close Removes all items from the ASP.NET cache, and terminates the Web

 application. This method should be used only when your code implements its
own hosting environment. There is no need to call this method in the course of
normal ASP.NET request processing.

ProcessRequest Drives all ASP.NET Web processing execution.

UnloadAppDomain Terminates the current ASP.NET application. The application restarts the next
time a request is received for it.

Note that all the methods shown in Table 5-2 have limited applicability in user applications.
In particular, you’re not supposed to use ProcessRequest in your own code, whereas Close
is useful only if you’re hosting ASP.NET in a custom application. Of the three methods in
Table 5-2, only UnloadAppDomain can be considered for use if, under certain run-time
conditions, you realize you need to restart the application. (See the sidebar “What Causes
Application Restarts?” later in this chapter.)

Upon creation, the HttpRuntime object initializes a number of internal objects that will
help carry out the page request. Helper objects include the cache manager and the file
system monitor used to detect changes in the files that form the application. When the
ProcessRequest method is called, the HttpRuntime object starts working to serve a page
to the browser. It creates a new empty context for the request and initializes a specialized
text writer object in which the markup code will be accumulated. A context is given by an
 instance of the HttpContext class, which encapsulates all HTTP-specific information about the
request.

After that, the HttpRuntime object uses the context information to either locate or create a
Web application object capable of handling the request. A Web application is searched using
the virtual directory information contained in the URL. The object used to find or create
a new Web application is HttpApplicationFactory—an internal-use object responsible for
 returning a valid object capable of handling the request.

Before we get to discover more about the various components of the HTTP pipeline, a look
at Figure 5-2 is in order.

176 Part II ASP.NET Pages and Server Controls

default.aspx

ASP.NET Work Process — AppDomain

Based on the URL,
creates/selects the application
object to serve the request

Determines the type of the
request and invokes the proper
handler factory

Determines the page class
required to serve the request
and creates it if it doesn’t exist

HttpApplicationFactory

HttpApplication

PageHandlerFactory

ASP.default_aspx

HttpRuntime
Initializes the ASP.NET cache and HTTP context

Cache
HTTP

Context

IHttpHandler

HttpRuntime invokes ProcessRequest
on ASP.default_aspx

FIGURE 5-2 The HTTP pipeline processing for a page.

The Application Factory
During the lifetime of the application, the HttpApplicationFactory object maintains a pool
of HttpApplication objects to serve incoming HTTP requests. When invoked, the application
 factory object verifies that an AppDomain exists for the virtual folder the request targets.
If the application is already running, the factory picks an HttpApplication out of the pool
of available objects and passes it the request. A new HttpApplication object is created if an
 existing object is not available.

If the virtual folder has not yet been called for the first time, a new HttpApplication object
for the virtual folder is created in a new AppDomain. In this case, the creation of an
HttpApplication object entails the compilation of the global.asax application file, if one is

 Chapter 5 Anatomy of an ASP.NET Page 177

present, and the creation of the assembly that represents the actual page requested. This
event is actually equivalent to the start of the application. An HttpApplication object is used
to process a single page request at a time; multiple objects are used to serve simultaneous
requests.

The HttpApplication Object
HttpApplication is the base class that represents a running ASP.NET application. A derived
HTTP application class is dynamically generated by parsing the contents of the global.asax
file, if any is present. If global.asax is available, the application class is built and named after
it: ASP.global_asax. Otherwise, the base HttpApplication class is used.

An instance of an HttpApplication-derived class is responsible for managing the entire
 lifetime of the request it is assigned to. The same instance can be reused only after the
 request has been completed. The HttpApplication maintains a list of HTTP module objects
that can filter and even modify the content of the request. Registered modules are called
during various moments of the elaboration as the request passes through the pipeline.

The HttpApplication object determines the type of object that represents the resource
being requested—typically, an ASP.NET page, a Web service, or perhaps a user control.
HttpApplication then uses the proper handler factory to get an object that represents the
requested resource. The factory either instantiates the class for the requested resource from
an existing assembly or dynamically creates the assembly and then an instance of the class.
A handler factory object is a class that implements the IHttpHandlerFactory interface and is
responsible for returning an instance of a managed class that can handle the HTTP request—
an HTTP handler. An ASP.NET page is simply a handler object—that is, an instance of a class
that implements the IHttpHandler interface.

Let’s see what happens when the resource requested is a page.

The Page Factory
When the HttpApplication object in charge of the request has figured out the proper handler,
it creates an instance of the handler factory object. For a request that targets a page, the
 factory is a class named PageHandlerFactory. To find the appropriate handler, HttpApplication
uses the information in the <httpHandlers> section of the configuration file as a complement
to the information stored in the IIS handler mappings list, as shown in Figure 5-3.

178 Part II ASP.NET Pages and Server Controls

FIGURE 5-3 The HTTP pipeline processing for a page.

Bear in mind that handler factory objects do not compile the requested resource each time
it is invoked. The compiled code is stored in an ASP.NET temporary directory on the Web
server and used until the corresponding resource file is modified.

So the page handler factory creates an instance of an object that represents the particular
page requested. As mentioned, the actual object inherits from the System.Web.UI.Page class,
which in turn implements the IHttpHandler interface. The page object is returned to the
 application factory, which passes that back to the HttpRuntime object. The final step accom-
plished by the ASP.NET runtime is calling the IHttpHandler’s ProcessRequest method on the
page object. This call causes the page to execute the user-defined code and generate the
markup for the browser.

In Chapter 17, “ASP.NET State Management,” we’ll return to the initialization of an ASP.NET
application, the contents of global.asax, and the information stuffed into the HTTP context—
a container object, created by the HttpRuntime class, that is populated, passed along the
pipeline, and finally bound to the page handler.

 Chapter 5 Anatomy of an ASP.NET Page 179

What Causes Application Restarts?
There are a few reasons why an ASP.NET application can be restarted. For the most
part, an application is restarted to ensure that latent bugs or memory leaks don’t affect
the overall behavior of the application in the long run. Another reason is that too many
changes dynamically made to deployed ASPX pages might have caused too large a
number of assemblies (typically, one per page) to be loaded in memory.

Note that any applications that consume more than a certain share of virtual memory
are automatically killed and restarted by IIS. In IIS 7, you can even configure a periodic
recycle to ensure that your application is always lean, mean, and in good shape.

Furthermore, the hosting environment (IIS or ASP.NET, depending on the configuration)
implements a good deal of checks and automatically restarts an application if any the
following scenarios occur:

■ The maximum limit of dynamic page compilations is reached. This limit is
 configurable through the web.config file.

■ The physical path of the Web application has changed, or any directory under
the Web application folder is renamed.

■ Changes occurred in global.asax, machine.config, or web.config in the
 application root, or in the Bin directory or any of its subdirectories.

■ Changes occurred in the code-access security policy file, if one exists.

■ Too many files are changed in one of the content directories. (Typically, this
happens if files are generated on the fly when requested.)

■ You modified some of the properties for the application pool hosting the Web
application.

In addition to all this, in ASP.NET an application can be restarted programmatically by
calling HttpRuntime.UnloadAppDomain.

The Processing Directives of a Page
Processing directives configure the run-time environment that will execute the page. In
ASP.NET, directives can be located anywhere in the page, although it’s a good and common
practice to place them at the beginning of the file. In addition, the name of a directive is case
insensitive and the values of directive attributes don’t need to be quoted. The most impor-
tant and most frequently used directive in ASP.NET is @Page. The complete list of ASP.NET
directives is shown in Table 5-3.

180 Part II ASP.NET Pages and Server Controls

TABLE 5-3 Directives Supported by ASP.NET Pages
Directive Description
@ Assembly Links an assembly to the current page or user control.

@ Control Defines control-specific attributes that guide the behavior of the control
compiler.

@ Implements Indicates that the page, or the user control, implements a specified .NET
Framework interface.

@ Import Indicates a namespace to import into a page or user control.

@ Master Identifies an ASP.NET master page. (See Chapter 8, “Page Composition and
Usability.”)

@ MasterType Provides a way to create a strongly typed reference to the ASP.NET master
page when the master page is accessed from the Master property. (See
Chapter 8.)

@ OutputCache Controls the output caching policies of a page or user control. (See
Chapter 18, “ASP.NET Caching.”)

@ Page Defines page-specific attributes that guide the behavior of the page
 compiler and the language parser that will preprocess the page.

@ PreviousPageType Provides a way to get strong typing against the previous page, as accessed
through the PreviousPage property.

@ Reference Links a page or user control to the current page or user control.

@ Register Creates a custom tag in the page or the control. The new tag (prefix and
name) is associated with the namespace and the code of a user-defined
control.

With the exception of @Page, @PreviousPageType, @Master, @MasterType, and @Control,
all directives can be used both within a page and a control declaration. @Page and @Control
are mutually exclusive. @Page can be used only in .aspx files, while the @Control directive
can be used only in user control .ascx files. @Master, in turn, is used to define a very special
type of page—the master page.

The syntax of a processing directive is unique and common to all supported types of
 directives. Multiple attributes must be separated with blanks, and no blank can be placed
around the equal sign (=) that assigns a value to an attribute, as the following line of code
demonstrates:

<%@ Directive_Name attribute="value" [attribute="value"...] %>

Each directive has its own closed set of typed attributes. Assigning a value of the wrong type
to an attribute, or using a wrong attribute with a directive, results in a compilation error.

 Chapter 5 Anatomy of an ASP.NET Page 181

Important The content of directive attributes is always rendered as plain text. However,
 attributes are expected to contain values that can be rendered to a particular .NET Framework
type, specific to the attribute. When the ASP.NET page is parsed, all the directive attributes
are extracted and stored in a dictionary. The names and number of attributes must match the
 expected schema for the directive. The string that expresses the value of an attribute is valid as
long as it can be converted into the expected type. For example, if the attribute is designed to
take a Boolean value, true and false are its only feasible values.

The @Page Directive
The @Page directive can be used only in .aspx pages and generates a compile error if used
with other types of ASP.NET files such as controls and Web services. Each .aspx file is allowed
to include at most one @Page directive. Although not strictly necessary from the syntax
point of view, the directive is realistically required by all pages of some complexity.

@Page features over 40 attributes that can be logically grouped in three categories:
 compilation (defined in Table 5-4), overall page behavior (defined in Table 5-5), and page
output (defined in Table 5-6). Each ASP.NET page is compiled upon first request, and the
HTML actually served to the browser is generated by the methods of the dynamically
 generated class. The attributes listed in Table 5-4 let you fine-tune parameters for the
 compiler and choose the language to use.

TABLE 5-4 @Page Attributes for Page Compilation
Attribute Description
ClassName Specifies the name of the class that will be dynamically compiled when the

page is requested. It must be a class name without namespace information.

CodeFile Indicates the path to the code-behind class for the current page. The source
class file must be deployed to the Web server.

CodeBehind Attribute consumed by Visual Studio, indicates the path to the code-behind
class for the current page. The source class file will be compiled to a deployable
assembly.

CodeFileBaseClass Specifies the type name of a base class for a page and its associated code-
behind class. The attribute is optional, but when it is used the CodeFile attribute
must also be present.

CompilationMode Indicates whether the page should be compiled at run time.

CompilerOptions A sequence of compiler command-line switches used to compile the page.

Debug A Boolean value that indicates whether the page should be compiled with
 debug symbols.

Explicit A Boolean value that determines whether the page is compiled with the Visual
Basic Option Explicit mode set to On. Option Explicit forces the programmer to
explicitly declare all variables. The attribute is ignored if the page language is
not Visual Basic .NET.

182 Part II ASP.NET Pages and Server Controls

Attribute Description
Inherits Defines the base class for the page to inherit. It can be any class derived from

the Page class.

Language Indicates the language to use when compiling inline code blocks (<% … %>)
and all the code that appears in the page <script> section. Supported languag-
es include Visual Basic .NET, C#, JScript .NET, and J#. If not otherwise specified,
the language defaults to Visual Basic .NET.

LinePragmas Indicates whether the run time should generate line pragmas in the source
code to mark specific locations in the file for the sake of debugging tools.

MasterPageFile Indicates the master page for the current page.

Src Indicates the source file that contains the implementation of the base class
specified with Inherits. The attribute is not used by Visual Studio and other
Rapid Application Development (RAD) designers.

Strict A Boolean value that determines whether the page is compiled with the Visual
Basic Option Strict mode set to On. When this attribute is enabled, Option Strict
permits only type-safe conversions and prohibits implicit conversions in which
loss of data is possible. (In this case, the behavior is identical to that of C#.) The
attribute is ignored if the page language is not Visual Basic .NET.

Trace A Boolean value that indicates whether tracing is enabled. If tracing is enabled,
extra information is appended to the page’s output. The default is false.

TraceMode Indicates how trace messages are to be displayed for the page when tracing is
enabled. Feasible values are SortByTime and SortByCategory. The default, when
tracing is enabled, is SortByTime.

WarningLevel Indicates the compiler warning level at which you want the compiler to abort
compilation for the page. Possible values are 0 through 4.

Attributes listed in Table 5-5 allow you to control to some extent the overall behavior of the
page and the supported range of features. For example, you can set a custom error page,
disable session state, and control the transactional behavior of the page.

Note The schema of attributes supported by @Page is not as strict as for other directives. In
particular, any public properties defined on the page class can be listed as an attribute, and
 initialized, in a @Page directive.

TABLE 5-5 @Page Attributes for Page Behavior
Attribute Description
AspCompat A Boolean attribute that, when set to true, allows the page to

be executed on a single-threaded apartment (STA) thread. The
setting allows the page to call COM+ 1.0 components and com-
ponents developed with Microsoft Visual Basic 6.0 that require
access to the unmanaged ASP built-in objects. (I’ll return to this
topic in Chapter 16, “The HTTP Request Context.”)

Async If this attribute is set to true, the generated page class derives
from IHttpAsyncHandler rather than having IHttpHandler add
some built-in asynchronous capabilities to the page.

 Chapter 5 Anatomy of an ASP.NET Page 183

Attribute Description
AsyncTimeOut Defines the timeout in seconds used when processing

 asynchronous tasks. The default is 45 seconds.

AutoEventWireup A Boolean attribute that indicates whether page events are
 automatically enabled. It’s set to true by default. Pages devel-
oped with Visual Studio .NET have this attribute set to false, and
page events for these pages are individually tied to handlers.

Buffer A Boolean attribute that determines whether HTTP response
buffering is enabled. It’s set to true by default.

Description Provides a text description of the page. The ASP.NET page
parser ignores the attribute, which subsequently has only a
documentation purpose.

EnableEventValidation A Boolean value that indicates whether the page will emit
a hidden field to cache available values for input fields that
 support event data validation. It’s set to true by default.

EnableSessionState Defines how the page should treat session data. If this attribute
is set to true, the session state can be read and written to. If
it’s set to false, session data is not available to the application.
Finally, if this attribute is set to ReadOnly, the session state can
be read but not changed.

EnableViewState A Boolean value that indicates whether the page view state is
maintained across page requests. The view state is the page call
context—a collection of values that retain the state of the page
and are carried back and forth. View state is enabled by default.
(I’ll cover this topic in Chapter 17.
“ASP.NET State Management.”)

EnableTheming A Boolean value that indicates whether the page will support
themes for embedded controls. It’s set to true by default.

EnableViewStateMac A Boolean value that indicates ASP.NET should calculate a
machine- specific authentication code and append it to the view
state of the page (in addition to Base64 encoding). The Mac
in the attribute name stands for machine authentication check.
When the attribute is true, upon postbacks ASP.NET will check
the authentication code of the view state to make sure that it
hasn’t been tampered with on the client.

ErrorPage Defines the target URL to which users will be automatically
 redirected in case of unhandled page exceptions.

MaintainScrollPositionOnPostback A Boolean value that indicates whether to return the user to the
same position in the client browser after postback.

SmartNavigation A Boolean value that indicates whether the page supports the
Microsoft Internet Explorer 5 or later smart navigation feature.
Smart navigation allows a page to be refreshed without losing
scroll position and element focus.

Theme, StylesheetTheme Indicates the name of the theme (or style-sheet theme) selected
for the page.

184 Part II ASP.NET Pages and Server Controls

Attribute Description
Transaction Indicates whether the page supports or requires transactions.

Feasible values are Disabled, NotSupported, Supported, Required,
and RequiresNew. Transaction support is disabled by default.

ValidateRequest A Boolean value that indicates whether request validation
should occur. If this attribute is set to true, ASP.NET checks all
input data against a hard-coded list of potentially dangerous
values. This functionality helps reduce the risk of cross-site
scripting attacks for pages. The value is true by default.

Attributes listed in Table 5-6 allow you to control the format of the output being generated
for the page. For example, you can set the content type of the page or localize the output to
the extent possible.

TABLE 5-6 @Page Directives for Page Output
Attribute Description
ClientTarget Indicates the target browser for which ASP.NET server controls should

render content.

ClientIDMode Specifies the algorithm to use to generate client ID values for server
controls. This attribute requires ASP.NET 4.

CodePage Indicates the code page value for the response. Set this attribute only
if you created the page using a code page other than the default code
page of the Web server on which the page will run. In this case, set the
attribute to the code page of your development machine. A code page
is a character set that includes numbers, punctuation marks, and other
glyphs. Code pages differ on a per-language basis.

ContentType Defines the content type of the response as a standard MIME type.
Supports any valid HTTP content type string.

Culture Indicates the culture setting for the page. Culture information includes
the writing and sorting system, calendar, and date and currency for-
mats. The attribute must be set to a non-neutral culture name, which
means it must contain both language and country/region information.
For example, en-US is a valid value, unlike en alone, which is considered
country/region neutral.

LCID A 32-bit value that defines the locale identifier for the page. By default,
ASP.NET uses the locale of the Web server.

MetaDescription Sets the “description” meta element for the page. The value set through
the @Page directive overrides any similar values you might have
 specified as literal text in the markup. This attribute requires ASP.NET 4.

MetaKeywords Sets the “keywords” meta element for the page. The value set through
the @Page directive overrides any similar values you might have speci-
fied as literal text in the markup. This attribute requires ASP.NET 4.

ResponseEncoding Indicates the character encoding of the page. The value is used to set
the CharSet attribute on the content type HTTP header. Internally,
ASP.NET handles all strings as Unicode.

 Chapter 5 Anatomy of an ASP.NET Page 185

Attribute Description
UICulture Specifies the default culture name used by Resource Manager to look

up culture-specific resources at run time.

ViewStateEncryptionMode Determines how and if the view state is encrypted. Feasible values are
Auto, Always, or Never. The default is Auto, meaning that view state will
be encrypted only if an individual control requests that.

ViewStateMode Determines the value for the page’s ViewStateMode property that
 influences the way in which the page treats the view state of child
 controls. (More details are available in Chapter 17.) This attribute
 requires ASP.NET 4.

As you can see, many attributes discussed in Table 5-6 are concern with page localization.
Building multilanguage and international applications is a task that ASP.NET, and the .NET
Framework in general, greatly simplify.

The @Assembly Directive
The @Assembly directive adds an assembly to a collection of assembly names that are used
during the compilation of the ASP.NET page so that classes and interfaces in the assembly are
available for early binding to the code. You use the @Assembly directive when you want to
reference a given assembly only from a specific page.

Some assemblies are linked by default for any ASP.NET application. The complete list can be
found in the root web.config file of the Web server machine. The list is pretty long in
ASP.NET 4, but it no longer includes the System.Web.Mobile assembly that was there for older
versions of ASP.NET. The mobile assembly is now deprecated, but if you’re trying to upgrade
an existing application to ASP.NET 4 that uses the assembly, you are required to add the
 assembly explicitly via an @Assembly directive or via a custom <compilation> section in the
application.

Table 5-7 lists some of the assemblies that are automatically provided to the compiler for an
ASP.NET 4 application.

TABLE 5-7 Assemblies Linked by Default in ASP.NET 4
Assembly File Name Description
mscorlib Provides the core functionality of the .NET Framework,

 including types, AppDomains, and run-time services

System.dll Provides another bunch of system services, including regular
expressions, compilation, native methods, file I/O, and
 networking

System.Configuration.dll Defines classes to read and write configuration data.

System.Core.dll Provides some other core functionality of the .NET Framework,
including LINQ-to-Objects, the time-zone API, and some
 security and diagnostic classes

186 Part II ASP.NET Pages and Server Controls

System.Data.dll Defines data container and data access classes, including the
whole ADO.NET framework

System.Data.DataSetExtensions.dll Defines additional functions built over the ADO.NET DataSet
object

System.Drawing.dll Implements the GDI+ features

System.EnterpriseServices.dll Provides the classes that allow for serviced components and
COM+ interaction

System.Web.dll Indicates the assembly implements the core ASP.NET services,
controls, and classes

System.Web.ApplicationServices.dll Provides classes that enable you to access ASP.NET
 authentication, roles, and profile functions via a bunch of
 built-in WCF services

System.Web.DynamicData.dll Provides classes behind the ASP.NET Dynamic Data framework

System.Web.Entity.dll Contains the code for the EntityDataSource component that
supports Entity Framework

System.Web.Extensions.dll Contains the code for AJAX extensions to ASP.NET

System.Web.Services.dll Contains the core code that makes Web services run

System.Xml.dll Implements the .NET Framework XML features

System.Xml.Linq.dll Contains the code for the LINQ-to-XML parser

Note that you can modify, extend, or restrict the list of default assemblies by editing the
global settings in the root web.config file under

%Windows%\Microsoft.NET\Framework\v4.0.30319\Config

If you do so, changes will apply to all ASP.NET applications run on that Web server.
Alternatively, you can modify the assembly list on a per-application basis by editing the
 <assemblies> section under <compilation> in the application’s specific web.config file. Note
also that the <compilation> section should be used only for global assembly cache (GAC)
resident assemblies, not for the private assemblies that you deploy to the Bin folder.

By default, the <compilation> section in the root web.config file contains the following entry:

<add assembly="*" />

It means that any assembly found in the binary path of the application should be treated as
if it were registered through the @Assembly directive. To prevent all assemblies found in the
Bin directory from being linked to the page, remove the entry from the root configuration
file. To link a needed assembly to the page, use the following syntax:

<%@ Assembly Name="AssemblyName" %>
<%@ Assembly Src="assembly_code.cs" %>

 Chapter 5 Anatomy of an ASP.NET Page 187

The @Assembly directive supports two mutually exclusive attributes: Name and Src. Name
indicates the name of the assembly to link to the page. The name cannot include the path or
the extension. Src indicates the path to a source file to dynamically compile and link against
the page. The @Assembly directive can appear multiple times in the body of the page. In
fact, you need a new directive for each assembly to link. Name and Src cannot be used in the
same @Assembly directive, but multiple directives defined in the same page can use either.

Note In terms of performance, the difference between Name and Src is minimal, although
Name points to an existing and ready-to-load assembly. The source file referenced by Src
is compiled only the first time it is requested. The ASP.NET runtime maps a source file with
a dynamically compiled assembly and keeps using the compiled code until the original file
 undergoes changes. This means that after the first application-level call, the impact on the page
performance is identical whether you use Name or Src.

Any assemblies you register through the @Assembly directive are used by the compiler at
compile time, which allows for early binding. After the compilation of the requested ASP.NET
file is complete, the assembly is loaded into the application domain, thus allowing late bind-
ing. In the end, any assemblies listed through the directive (implicitly through the root con-
figuration or explicitly through the application configuration) is loaded into the AppDomain
and referenced on demand.

Important Removing an assembly from the Visual Studio project doesn’t help much to keep
the AppDomain lean and mean. To ensure you load all the assemblies you want and only the
ones you want, you should insert the following code in your configuration file:

<assemblies>
 <clear />
 <add assembly="..." />
 ...
 <add assembly="*" />
</assemblies>

The <clear /> tag removes all default configurations; the subsequent tags add just the assemblies
your application needs. As you can verify for yourself, the default list will likely load assemblies
you don’t need.

In debug mode, you can track the list of assemblies actually loaded in the AppDomain for the
site using the following code:

var assemblies1 = Assembly.GetExecutingAssembly().GetReferencedAssemblies();
var assemblies2 = AppDomain.CurrentDomain.GetAssemblies();

The size of the two arrays can vary quite a bit. The former counts just the dynamically refer-
enced assemblies at the current stage of execution. The latter counts the number of assemblies
 physically loaded in the AppDomain (which can’t be unloaded unless you recycle the application).

188 Part II ASP.NET Pages and Server Controls

The @Import Directive
The @Import directive links the specified namespace to the page so that all the types defined
can be accessed from the page without specifying the fully qualified name. For example,
to create a new instance of the ADO.NET DataSet class, you either import the System.Data
namespace or specify the fully qualified class name whenever you need it, as in the following
code:

System.Data.DataSet ds = new System.Data.DataSet();

After you’ve imported the System.Data namespace into the page, you can use more natural
coding, as shown here:

DataSet ds = new DataSet();

The syntax of the @Import directive is rather self-explanatory:

<%@ Import namespace="value" %>

@Import can be used as many times as needed in the body of the page. The @Import
 directive is the ASP.NET counterpart of the C# using statement and the Visual Basic .NET
Imports statement. Looking back at unmanaged C/C++, we could say the directive plays
a role nearly identical to the #include directive. For example, to be able to connect to a
Microsoft SQL Server database and grab some disconnected data, you need to import the
following two namespaces:

<%@ Import namespace="System.Data" %>
<%@ Import namespace="System.Data.SqlClient" %>

You need the System.Data namespace to work with the DataSet and DataTable classes,
and you need the System.Data.SqlClient namespace to prepare and issue the command. In
this case, you don’t need to link against additional assemblies because the System.Data.dll
 assembly is linked by default.

Note @Import helps the compiler only to resolve class names; it doesn’t automatically link
required assemblies. Using the @Import directive allows you to use shorter class names, but as
long as the assembly that contains the class code is not properly referenced, the compiler will
generate a type error. In this case, using the fully qualified class name is of no help because the
compiler lacks the type definition. You might have noticed that, more often than not, assembly
and namespace names coincide. The latest version of Visual Studio (as well as some commercial
products such as JetBrains ReSharper) is able to detect when you lack a reference and offers
to import the namespace and reference the assembly with a single click. This is pure tooling
 activity—namespaces and assemblies are totally different beasts.

 Chapter 5 Anatomy of an ASP.NET Page 189

The @Implements Directive
The directive indicates that the current page implements the specified .NET Framework
 interface. An interface is a set of signatures for a logically related group of functions. An
 interface is a sort of contract that shows the component’s commitment to expose that group
of functions. Unlike abstract classes, an interface doesn’t provide code or executable func-
tionality. When you implement an interface in an ASP.NET page, you declare any required
methods and properties within the <script> section. The syntax of the @Implements directive
is as follows:

<%@ Implements interface="InterfaceName" %>

The @Implements directive can appear multiple times in the page if the page has to
 implement multiple interfaces. Note that if you decide to put all the page logic in a separate
class file, you can’t use the directive to implement interfaces. Instead, you implement the
 interface in the code-behind class.

The @Reference Directive
The @Reference directive is used to establish a dynamic link between the current page and
the specified page or user control. This feature has significant implications for the way you
set up cross-page communication. It also lets you create strongly typed instances of user
controls. Let’s review the syntax.

The directive can appear multiple times in the page. The directive features two mutually
exclusive attributes: Page and Control. Both attributes are expected to contain a path to a
source file:

<%@ Reference page="source_page" %>
<%@ Reference control="source_user_control" %>

The Page attribute points to an .aspx source file, whereas the Control attribute contains the
path of an .ascx user control. In both cases, the referenced source file will be dynamically
compiled into an assembly, thus making the classes defined in the source programmatically
available to the referencing page. When running, an ASP.NET page is an instance of a .NET
Framework class with a specific interface made of methods and properties. When the refer-
encing page executes, a referenced page becomes a class that represents the .aspx source file
and can be instantiated and programmed at will. For the directive to work, the referenced
page must belong to the same domain as the calling page. Cross-site calls are not allowed,
and both the Page and Control attributes expect to receive a relative virtual path.

190 Part II ASP.NET Pages and Server Controls

Note Cross-page posting can be considered as an alternate approach to using the @Reference
directive. Cross-page posting is an ASP.NET feature through which you force an ASP.NET button
control to post the content of its parent form to a given target page. I’ll demonstrate cross-page
posting in Chapter 9, “Input Forms.”

The Page Class
In the .NET Framework, the Page class provides the basic behavior for all objects that an
ASP.NET application builds by starting from .aspx files. Defined in the System.Web.UI
namespace, the class derives from TemplateControl and implements the IHttpHandler
interface:

public class Page : TemplateControl, IHttpHandler
{
 ...
}

In particular, TemplateControl is the abstract class that provides both ASP.NET pages and
user controls with a base set of functionality. At the upper level of the hierarchy, you find the
Control class. It defines the properties, methods, and events shared by all ASP.NET server-side
elements—pages, controls, and user controls.

Derived from a class—TemplateControl—that implements INamingContainer, the Page
class also serves as the naming container for all its constituent controls. In the .NET
Framework, the naming container for a control is the first parent control that implements the
INamingContainer interface. For any class that implements the naming container interface,
ASP.NET creates a new virtual namespace in which all child controls are guaranteed to have
unique names in the overall tree of controls. (This is a very important feature for iterative
data-bound controls, such as DataGrid, and for user controls.)

The Page class also implements the methods of the IHttpHandler interface, thus qualifying it
as the handler of a particular type of HTTP requests—those for .aspx files. The key element
of the IHttpHandler interface is the ProcessRequest method, which is the method the ASP.NET
runtime calls to start the page processing that will actually serve the request.

Note INamingContainer is a marker interface that has no methods. Its presence alone, though,
forces the ASP.NET runtime to create an additional namespace for naming the child controls of
the page (or the control) that implements it. The Page class is the naming container of all the
page’s controls, with the clear exception of those controls that implement the INamingContainer
interface themselves or are children of controls that implement the interface.

 Chapter 5 Anatomy of an ASP.NET Page 191

Properties of the Page Class
The properties of the Page class can be classified in three distinct groups: intrinsic objects,
worker properties, and page-specific properties. The tables in the following sections
 enumerate and describe them.

Intrinsic Objects
Table 5-8 lists all properties that return a helper object that is intrinsic to the page. In other
words, objects listed here are all essential parts of the infrastructure that allows for the page
execution.

TABLE 5-8 ASP.NET Intrinsic Objects in the Page Class
Property Description
Application Instance of the HttpApplicationState class; represents the state of the application.

It is functionally equivalent to the ASP intrinsic Application object.

Cache Instance of the Cache class; implements the cache for an ASP.NET applica-
tion. More efficient and powerful than Application, it supports item priority and
 expiration.

Profile Instance of the ProfileCommon class; represents the user-specific set of data
 associated with the request.

Request Instance of the HttpRequest class; represents the current HTTP request.

Response Instance of the HttpResponse class; sends HTTP response data to the client.

RouteData Instance of the RouteData class; groups information about the selected route (if
any) and its values and tokens. (Routing in Web Forms is covered in Chapter 4,
“xxx.”) The object is supported only in ASP.NET 4.

Server Instance of the HttpServerUtility class; provides helper methods for processing
Web requests.

Session Instance of the HttpSessionState class; manages user-specific data.

Trace Instance of the TraceContext class; performs tracing on the page.

User An IPrincipal object that represents the user making the request.

I’ll cover Request, Response, and Server in Chapter 16; Application and Session are covered
in Chapter 17; Cache will be the subject of Chapter 19. Finally, User and security will be the
 subject of Chapter 19, “ASP.NET Security.”

Worker Properties
Table 5-9 details page properties that are both informative and provide the foundation
for functional capabilities. You can hardly write code in the page without most of these
properties.

192 Part II ASP.NET Pages and Server Controls

TABLE 5-9 Worker Properties of the Page Class
Property Description
AutoPostBackControl Gets a reference to the control within the page that caused the postback

event.

ClientScript Gets a ClientScriptManager object that contains the client script used on
the page.

Controls Returns the collection of all the child controls contained in the current
page.

ErrorPage Gets or sets the error page to which the requesting browser is redirected
in case of an unhandled page exception.

Form Returns the current HtmlForm object for the page.

Header Returns a reference to the object that represents the page’s header. The
object implements IPageHeader.

IsAsync Indicates whether the page is being invoked through an asynchronous
handler.

IsCallback Indicates whether the page is being loaded in response to a client script
callback.

IsCrossPagePostBack Indicates whether the page is being loaded in response to a postback
made from within another page.

IsPostBack Indicates whether the page is being loaded in response to a client
 postback or whether it is being loaded for the first time.

IsValid Indicates whether page validation succeeded.

Master Instance of the MasterPage class; represents the master page that
 determines the appearance of the current page.

MasterPageFile Gets and sets the master file for the current page.

NamingContainer Returns null.

Page Returns the current Page object.

PageAdapter Returns the adapter object for the current Page object.

Parent Returns null.

PreviousPage Returns the reference to the caller page in case of a cross-page postback.

TemplateSourceDirectory Gets the virtual directory of the page.

Validators Returns the collection of all validation controls contained in the page.

ViewStateUserKey String property that represents a user-specific identifier used to hash
the view-state contents. This trick is a line of defense against one-click
 attacks.

In the context of an ASP.NET application, the Page object is the root of the hierarchy. For
this reason, inherited properties such as NamingContainer and Parent always return null. The
Page property, on the other hand, returns an instance of the same object (this in C# and Me
in Visual Basic .NET).

The ViewStateUserKey property deserves a special mention. A common use for the user key
is to stuff user-specific information that is then used to hash the contents of the view state

 Chapter 5 Anatomy of an ASP.NET Page 193

along with other information. A typical value for the ViewStateUserKey property is the name
of the authenticated user or the user’s session ID. This contrivance reinforces the security
level for the view state information and further lowers the likelihood of attacks. If you employ
a user-specific key, an attacker can’t construct a valid view state for your user account unless
the attacker can also authenticate as you. With this configuration, you have another barrier
against one-click attacks. This technique, though, might not be effective for Web sites that
allow anonymous access, unless you have some other unique tracking device running.

Note that if you plan to set the ViewStateUserKey property, you must do that during
the Page_Init event. If you attempt to do it later (for example, when Page_Load fires), an
 exception will be thrown.

Context Properties
Table 5-10 lists properties that represent visual and nonvisual attributes of the page, such as
the URL’s query string, the client target, the title, and the applied style sheet.

TABLE 5-10 Page-Specific Properties of the Page Class
Property Description
ClientID Always returns the empty string.

ClientIDMode Determines the algorithm to use to generate the ID of HTML
elements being output as part of a control’s markup. This prop-
erty requires ASP.NET 4.

ClientQueryString Gets the query string portion of the requested URL.

ClientTarget Set to the empty string by default; allows you to specify the
type of browser the HTML should comply with. Setting this
property disables automatic detection of browser capabilities.

EnableViewState Indicates whether the page has to manage view-state data. You
can also enable or disable the view-state feature through the
EnableViewState attribute of the @Page directive.

EnableViewStateMac Indicates whether ASP.NET should calculate a machine-specific
authentication code and append it to the page view state.

EnableTheming Indicates whether the page supports themes.

ID Always returns the empty string.

MetaDescription Gets and sets the content of the description meta tag. This
 property requires ASP.NET 4.

MetaKeywords Gets and sets the content of the keywords meta tag. This
 property requires ASP.NET 4.

MaintainScrollPositionOnPostback Indicates whether to return the user to the same position in the
client browser after postback.

SmartNavigation Indicates whether smart navigation is enabled. Smart navigation
exploits a bunch of browser-specific capabilities to enhance the
user’s experience with the page.

194 Part II ASP.NET Pages and Server Controls

Property Description
StyleSheetTheme Gets or sets the name of the style sheet applied to this page.

Theme Gets and sets the theme for the page. Note that themes can be
programmatically set only in the PreInit event.

Title Gets or sets the title for the page.

TraceEnabled Toggles page tracing on and off.

TraceModeValue Gets or sets the trace mode.

UniqueID Always returns the empty string.

ViewStateEncryptionMode Indicates if and how the view state should be encrypted.

ViewStateMode Enables the view state for an individual control even if the view
state is disabled for the page. This property requires ASP.NET 4.

Visible Indicates whether ASP.NET has to render the page. If you set
Visible to false, ASP.NET doesn’t generate any HTML code for
the page. When Visible is false, only the text explicitly written
using Response.Write hits the client.

The three ID properties (ID, ClientID, and UniqueID) always return the empty string from a
Page object. They make sense only for server controls.

Methods of the Page Class
The whole range of Page methods can be classified in a few categories based on the tasks
each method accomplishes. A few methods are involved with the generation of the markup
for the page; others are helper methods to build the page and manage the constituent
 controls. Finally, a third group collects all the methods related to client-side scripting.

Rendering Methods
Table 5-11 details the methods that are directly or indirectly involved with the generation of
the markup code.

TABLE 5-11 Methods for Markup Generation
Method Description
DataBind Binds all the data-bound controls contained in the page to their

data sources. The DataBind method doesn’t generate code itself but
prepares the ground for the forthcoming rendering.

RenderControl Outputs the HTML text for the page, including tracing information if
tracing is enabled.

VerifyRenderingInServerForm Controls call this method when they render to ensure that they are
included in the body of a server form. The method does not return a
value, but it throws an exception in case of error.

 Chapter 5 Anatomy of an ASP.NET Page 195

In an ASP.NET page, no control can be placed outside a <form> tag with the runat attribute
set to server. The VerifyRenderingInServerForm method is used by Web and HTML controls to
ensure that they are rendered correctly. In theory, custom controls should call this method
during the rendering phase. In many situations, the custom control embeds or derives an
 existing Web or HTML control that will make the check itself.

Not directly exposed by the Page class, but strictly related to it, is the GetWebResourceUrl
method on the ClientScriptManager class. (You get a reference to the current client script
manager through the ClientScript property on Page.) When you develop a custom control,
you often need to embed static resources such as images or client script files. You can make
these files be separate downloads; however, even though it’s effective, the solution looks
poor and inelegant. Visual Studio allows you to embed resources in the control assembly, but
how would you retrieve these resources programmatically and bind them to the control? For
example, to bind an assembly-stored image to an tag, you need a URL for the im-
age. The GetWebResourceUrl method returns a URL for the specified resource. The URL refers
to a new Web Resource service (webresource.axd) that retrieves and returns the requested
 resource from an assembly.

// Bind the tag to the given GIF image in the control's assembly
img.ImageUrl = Page.GetWebResourceUrl(typeof(TheControl), GifName));

GetWebResourceUrl requires a Type object, which will be used to locate the assembly that
contains the resource. The assembly is identified with the assembly that contains the defini-
tion of the specified type in the current AppDomain. If you’re writing a custom control, the
type will likely be the control’s type. As its second argument, the GetWebResourceUrl method
requires the name of the embedded resource. The returned URL takes the following form:

WebResource.axd?a=assembly&r=resourceName&t=timestamp

The timestamp value is the current timestamp of the assembly, and it is added to make the
browser download resources again if the assembly is modified.

Controls-Related Methods
Table 5-12 details a bunch of helper methods on the Page class architected to let you
 manage and validate child controls and resolve URLs.

TABLE 5-12 Helper Methods of the Page Object
Method Description
DesignerInitialize Initializes the instance of the Page class at design time, when the

page is being hosted by RAD designers such as Visual Studio.

FindControl Takes a control’s ID and searches for it in the page’s naming
 container. The search doesn’t dig out child controls that are naming
containers themselves.

196 Part II ASP.NET Pages and Server Controls

Method Description
GetTypeHashCode Retrieves the hash code generated by ASP.xxx_aspx page objects at

run time. In the base Page class, the method implementation sim-
ply returns 0; significant numbers are returned by classes used for
actual pages.

GetValidators Returns a collection of control validators for a specified validation
group.

HasControls Determines whether the page contains any child controls.

LoadControl Compiles and loads a user control from an .ascx file, and returns
a Control object. If the user control supports caching, the object
 returned is PartialCachingControl.

LoadTemplate Compiles and loads a user control from an .ascx file, and returns
it wrapped in an instance of an internal class that implements the
ITemplate interface. The internal class is named SimpleTemplate.

MapPath Retrieves the physical, fully qualified path that an absolute or
 relative virtual path maps to.

ParseControl Parses a well-formed input string, and returns an instance of the
control that corresponds to the specified markup text. If the string
contains more controls, only the first is taken into account. The
runat attribute can be omitted. The method returns an object of
type Control and must be cast to a more specific type.

RegisterRequiresControlState Registers a control as one that requires control state.

RegisterRequiresPostBack Registers the specified control to receive a postback han-
dling notice, even if its ID doesn’t match any ID in the col-
lection of posted data. The control must implement the
IPostBackDataHandler interface.

RegisterRequiresRaiseEvent Registers the specified control to handle an incoming postback
event. The control must implement the IPostBackEventHandler
 interface.

RegisterViewStateHandler Mostly for internal use, the method sets an internal flag that causes
the page view state to be persisted. If this method is not called in
the prerendering phase, no view state will ever be written. Typically,
only the HtmlForm server control for the page calls this method.
There’s no need to call it from within user applications.

ResolveUrl Resolves a relative URL into an absolute URL based on the value of
the TemplateSourceDirectory property.

Validate Instructs any validation controls included in the page to validate
their assigned information. If defined in the page, the method
 honors ASP.NET validation groups.

 Chapter 5 Anatomy of an ASP.NET Page 197

The methods LoadControl and LoadTemplate share a common code infrastructure but return
different objects, as the following pseudocode shows:

public Control LoadControl(string virtualPath)
{
 Control ascx = GetCompiledUserControlType(virtualPath);
 ascx.InitializeAsUserControl();
 return ascx;
}
public ITemplate LoadTemplate(string virtualPath)
{
 Control ascx = GetCompiledUserControlType(virtualPath);
 return new SimpleTemplate(ascx);
}

Both methods differ from the ParseControl method in that the latter never causes compila-
tion but simply parses the string and infers control information. The information is then used
to create and initialize a new instance of the control class. As mentioned, the runat attribute
is unnecessary in this context. In ASP.NET, the runat attribute is key, but in practice, it has no
other role than marking the surrounding markup text for parsing and instantiation. It does
not contain information useful to instantiate a control, and for this reason it can be omitted
from the strings you pass directly to ParseControl.

Script-Related Methods
Table 5-13 enumerates all the methods in the Page class related to HTML and script code to
be inserted in the client page.

TABLE 5-13 Script-Related Methods
Method Description
GetCallbackEventReference Obtains a reference to a client-side function that, when invoked,

initiates a client callback to server-side events.

GetPostBackClientEvent Calls into GetCallbackEventReference.

GetPostBackClientHyperlink Appends javascript: to the beginning of the return string received
from GetPostBackEventReference. For example:
javascript:__doPostBack(‘CtlID’,’’)

GetPostBackEventReference Returns the prototype of the client-side script function that
causes, when invoked, a postback. It takes a Control and an
 argument, and it returns a string like this:
__doPostBack(‘CtlID’,’’)

IsClientScriptBlockRegistered Determines whether the specified client script is registered with
the page. It’s marked as obsolete.

IsStartupScriptRegistered Determines whether the specified client startup script is
 registered with the page. It’s marked as obsolete.

198 Part II ASP.NET Pages and Server Controls

Method Description
RegisterArrayDeclaration Use this method to add an ECMAScript array to the client page.

This method accepts the name of the array and a string that will
be used verbatim as the body of the array. For example, if you
call the method with arguments such as theArray and “’a’, ‘b’”,
you get the following JavaScript code:
var theArray = new Array(‘a’, ‘b’);
It’s marked as obsolete.

RegisterClientScriptBlock An ASP.NET page uses this method to emit client-side script
blocks in the client page just after the opening tag of the HTML
<form> element. It’s marked as obsolete.

RegisterHiddenField Use this method to automatically register a hidden field on the
page. It’s marked as obsolete.

RegisterOnSubmitStatement Use this method to emit client script code that handles the client
OnSubmit event. The script should be a JavaScript function call to
client code registered elsewhere. It’s marked as obsolete.

RegisterStartupScript An ASP.NET page uses this method to emit client-side script
blocks in the client page just before closing the HTML <form>
element. It’s marked as obsolete.

SetFocus Sets the browser focus to the specified control.

As you can see, some methods in Table 5-13, which are defined and usable in ASP.NET 1.x,
are marked as obsolete. In ASP.NET 4 applications, you should avoid calling them and resort
to methods with the same name exposed out of the ClientScript property.

// Avoid this in ASP.NET 4
Page.RegisterArrayDeclaration(...);

// Use this in ASP.NET 4
Page.ClientScript.RegisterArrayDeclaration(...);

The ClientScript property returns an instance of the ClientScriptManager class and represents
the central console for registering script code to be programmatically emitted within the
page.

Methods listed in Table 5-13 let you emit JavaScript code in the client page. When you use
any of these methods, you actually tell the page to insert that script code when the page is
rendered. So when any of these methods execute, the script-related information is simply
cached in internal structures and used later when the page object generates its HTML text.

Events of the Page Class
The Page class fires a few events that are notified during the page life cycle. As Table 5-14
shows, some events are orthogonal to the typical life cycle of a page (initialization, postback,

 Chapter 5 Anatomy of an ASP.NET Page 199

and rendering phases) and are fired as extra-page situations evolve. Let’s briefly review the
events and then attack the topic with an in-depth discussion of the page life cycle.

TABLE 5-14 Events a Page Can Fire
Event Description
AbortTransaction Occurs for ASP.NET pages marked to participate in an automatic transaction

when a transaction aborts

CommitTransaction Occurs for ASP.NET pages marked to participate in an automatic transaction
when a transaction commits

DataBinding Occurs when the DataBind method is called on the page to bind all the child
controls to their respective data sources

Disposed Occurs when the page is released from memory, which is the last stage of
the page life cycle

Error Occurs when an unhandled exception is thrown.

Init Occurs when the page is initialized, which is the first step in the page life
cycle

InitComplete Occurs when all child controls and the page have been initialized

Load Occurs when the page loads up, after being initialized

LoadComplete Occurs when the loading of the page is completed and server events have
been raised

PreInit Occurs just before the initialization phase of the page begins

PreLoad Occurs just before the loading phase of the page begins

PreRender Occurs when the page is about to render

PreRenderComplete Occurs just before the pre-rendering phase begins

SaveStateComplete Occurs when the view state of the page has been saved to the persistence
medium

Unload Occurs when the page is unloaded from memory but not yet disposed of

The Eventing Model
When a page is requested, its class and the server controls it contains are responsible for
 executing the request and rendering HTML back to the client. The communication between
the client and the server is stateless and disconnected because it’s based on the HTTP proto-
col. Real-world applications, though, need some state to be maintained between successive
calls made to the same page. With ASP, and with other server-side development platforms
such as Java Server Pages and PHP, the programmer is entirely responsible for persisting the
state. In contrast, ASP.NET provides a built-in infrastructure that saves and restores the state
of a page in a transparent manner. In this way, and in spite of the underlying stateless proto-
col, the client experience appears to be that of a continuously executing process. It’s just an
illusion, though.

200 Part II ASP.NET Pages and Server Controls

Introducing the View State
The illusion of continuity is created by the view state feature of ASP.NET pages and is based
on some assumptions about how the page is designed and works. Also, server-side Web
controls play a remarkable role. In brief, before rendering its contents to HTML, the page en-
codes and stuffs into a persistence medium (typically, a hidden field) all the state information
that the page itself and its constituent controls want to save. When the page posts back, the
state information is deserialized from the hidden field and used to initialize instances of the
server controls declared in the page layout.

The view state is specific to each instance of the page because it is embedded in the HTML.
The net effect of this is that controls are initialized with the same values they had the last
time the view state was created—that is, the last time the page was rendered to the cli-
ent. Furthermore, an additional step in the page life cycle merges the persisted state with
any updates introduced by client-side actions. When the page executes after a postback, it
finds a stateful and up-to-date context just as it is working over a continuous point-to-point
connection.

Two basic assumptions are made. The first assumption is that the page always posts to itself
and carries its state back and forth. The second assumption is that the server-side controls
have to be declared with the runat=server attribute to spring to life when the page posts
back.

The Single Form Model
ASP.NET pages are built to support exactly one server-side <form> tag. The form must
 include all the controls you want to interact with on the server. Both the form and the
 controls must be marked with the runat attribute; otherwise, they will be considered plain
text to be output verbatim.

A server-side form is an instance of the HtmlForm class. The HtmlForm class does not ex-
pose any property equivalent to the Action property of the HTML <form> tag. The reason is
that an ASP.NET page always posts to itself. Unlike the Action property, other common form
 properties such as Method and Target are fully supported.

Valid ASP.NET pages are also those that have no server-side forms and those that run HTML
forms—a <form> tag without the runat attribute. In an ASP.NET page, you can also have
both HTML and server forms. In no case, though, can you have more than one <form> tag
with the runat attribute set to server. HTML forms work as usual and let you post to any page
in the application. The drawback is that in this case no state will be automatically restored. In
other words, the ASP.NET Web Forms model works only if you use exactly one server <form>
element. We’ll return to this topic in Chapter 9.

 Chapter 5 Anatomy of an ASP.NET Page 201

Asynchronous Pages
ASP.NET pages are served by an HTTP handler like an instance of the Page class. Each request
takes up a thread in the ASP.NET thread pool and releases it only when the request com-
pletes. What if a frequently requested page starts an external and particularly lengthy task?
The risk is that the ASP.NET process is idle but has no free threads in the pool to serve incom-
ing requests for other pages. This happens mostly because HTTP handlers, including page
classes, work synchronously. To alleviate this issue, ASP.NET has supported asynchronous
handlers since version 1.0 through the IHTTPAsyncHandler interface. Starting with
ASP.NET 2.0, creating asynchronous pages was made easier thanks to specific support from
the framework.

Two aspects characterize an asynchronous ASP.NET page: a tailor-made attribute on the
@Page directive, and one or more tasks registered for asynchronous execution. The asyn-
chronous task can be registered in either of two ways. You can define a Begin/End pair of
asynchronous handlers for the PreRenderComplete event or create a PageAsyncTask object to
represent an asynchronous task. This is generally done in the Page_Load event, but any time
is fine provided that it happens before the PreRender event fires.

In both cases, the asynchronous task is started automatically when the page has progressed
to a well-known point. Let’s dig out more details.

Note An ASP.NET asynchronous page is still a class that derives from Page. There are no special
base classes to inherit for building asynchronous pages.

The Async Attribute
The new Async attribute on the @Page directive accepts a Boolean value to enable or disable
asynchronous processing. The default value is false.

<%@ Page Async="true" ... %>

The Async attribute is merely a message for the page parser. When used, the page parser
implements the IHttpAsyncHandler interface in the dynamically generated class for the
.aspx resource. The Async attribute enables the page to register asynchronous handlers for
the PreRenderComplete event. No additional code is executed at run time as a result of the
attribute.

Let’s consider a request for a TestAsync.aspx page marked with the Async directive attribute.
The dynamically created class, named ASP.TestAsync_aspx, is declared as follows:

public class TestAsync_aspx : TestAsync, IHttpHandler, IHttpAsyncHandler
{
 ...
}

202 Part II ASP.NET Pages and Server Controls

TestAsync is the code file class and inherits from Page or a class that in turn inherits from
Page. IHttpAsyncHandler is the canonical interface that has been used for serving resources
asynchronously since ASP.NET 1.0.

The AddOnPreRenderCompleteAsync Method
The AddOnPreRenderCompleteAsync method adds an asynchronous event handler for the
page’s PreRenderComplete event. An asynchronous event handler consists of a Begin/End pair
of event handler methods, as shown here:

AddOnPreRenderCompleteAsync (
 new BeginEventHandler(BeginTask),
 new EndEventHandler(EndTask)
);

The call can be simplified as follows:

AddOnPreRenderCompleteAsync(BeginTask, EndTask);

BeginEventHandler and EndEventHandler are delegates defined as follows:

IAsyncResult BeginEventHandler(
 object sender,
 EventArgs e,
 AsyncCallback cb,
 object state)
void EndEventHandler(
 IAsyncResult ar)

In the code file, you place a call to AddOnPreRenderCompleteAsync as soon as you can, and
always earlier than the PreRender event can occur. A good place is usually the Page_Load
event. Next, you define the two asynchronous event handlers.

The Begin handler is responsible for starting any operation you fear can block the underlying
thread for too long. The handler is expected to return an IAsyncResult object to describe the
state of the asynchronous task. When the lengthy task has completed, the End handler final-
izes the original request and updates the page’s user interface and controls. Note that you
don’t necessarily have to create your own object that implements the IAsyncResult interface.
In most cases, in fact, to start lengthy operations you just use built-in classes that already
implement the asynchronous pattern and provide IAsyncResult ready-made objects.

The page progresses up to entering the PreRenderComplete stage. You have a pair of asyn-
chronous event handlers defined here. The page executes the Begin event, starts the lengthy
operation, and is then suspended until the operation terminates. When the work has been
completed, the HTTP runtime processes the request again. This time, though, the request
processing begins at a later stage than usual. In particular, it begins exactly where it left
off—that is, from the PreRenderComplete stage. The End event executes, and the page finally

 Chapter 5 Anatomy of an ASP.NET Page 203

completes the rest of its life cycle, including view-state storage, markup generation, and
unloading.

Important The Begin and End event handlers are called at different times and generally on
different pooled threads. In between the two methods calls, the lengthy operation takes place.
From the ASP.NET runtime perspective, the Begin and End events are similar to serving distinct
requests for the same page. It’s as if an asynchronous request is split in two distinct steps: a Begin
step and End step. Each request is always served by a pooled thread. Typically, the Begin and
End steps are served by threads picked up from the ASP.NET thread pool. The lengthy operation,
instead, is not managed by ASP.NET directly and doesn’t involve any of the pooled threads. The
lengthy operation is typically served by a thread selected from the operating system completion
thread pool.

The Significance of PreRenderComplete
So an asynchronous page executes up until the PreRenderComplete stage is reached and
then blocks while waiting for the requested operation to complete asynchronously. When the
operation is finally accomplished, the page execution resumes from the PreRenderComplete
stage. A good question to ask would be the following: “Why PreRenderComplete?” What
makes PreRenderComplete such a special event?

By design, in ASP.NET there’s a single unwind point for asynchronous operations (also
familiarly known as the async point). This point is located between the PreRender and
PreRenderComplete events. When the page receives the PreRender event, the async point
hasn’t been reached yet. When the page receives PreRenderComplete, the async point has
passed.

Building a Sample Asynchronous Page
Let’s roll a first asynchronous test page to download and process some RSS feeds. The page
markup is quite simple indeed:

<%@ Page Async="true" Language="C#" AutoEventWireup="true"
 CodeFile="TestAsync.aspx.cs" Inherits="TestAsync" %>
<html>
<body>
 <form id="form1" runat="server">
 <% = RssData %>
 </form>
</body>
</html>

204 Part II ASP.NET Pages and Server Controls

The code file is shown next, and it attempts to download the RSS feed from my personal
blog:

public partial class TestAsync : System.Web.UI.Page
{
 const String RSSFEED = "http://weblogs.asp.net/despos/rss.aspx";
 private WebRequest req;

 public String RssData { get; set; }

 void Page_Load (Object sender, EventArgs e)
 {
 AddOnPreRenderCompleteAsync(BeginTask, EndTask);
 }

 IAsyncResult BeginTask(Object sender,
 EventArgs e, AsyncCallback cb, Object state)
 {
 // Trace
 Trace.Warn("Begin async: Thread=" +
 Thread.CurrentThread.ManagedThreadId.ToString());

 // Prepare to make a Web request for the RSS feed
 req = WebRequest.Create(RSSFEED);

 // Begin the operation and return an IAsyncResult object
 return req.BeginGetResponse(cb, state);
 }

 void EndTask(IAsyncResult ar)
 {
 // This code will be called on a(nother) pooled thread

 using (var response = req.EndGetResponse(ar))
 {
 String text;
 using (var reader = new StreamReader(response.GetResponseStream()))
 {
 text = reader.ReadToEnd();
 }

 // Process the RSS data
 rssData = ProcessFeed(text);
 }

 // Trace
 Trace.Warn("End async: Thread=" +
 Thread.CurrentThread.ManagedThreadId.ToString());

 // The page is updated using an ASP-style code block in the ASPX
 // source that displays the contents of the rssData variable
 }

http://weblogs.asp.net/despos/rss.aspx

 Chapter 5 Anatomy of an ASP.NET Page 205

 String ProcessFeed(String feed)
 {
 // Build the page output from the XML input
 ...
 }
}

As you can see, such an asynchronous page differs from a standard one only for the
 aforementioned elements—the Async directive attribute and the pair of asynchronous event
handlers. Figure 5-4 shows the sample page in action.

FIGURE 5-4 A sample asynchronous page downloading links from a blog.

It would also be interesting to take a look at the messages traced by the page. Figure 5-5
provides visual clues of it. The Begin and End stages are served by different threads and take
place at different times.

Note the time elapsed between the Exit BeginTask and Enter EndTask stages. It is much
 longer than intervals between any other two consecutive operations. It’s in that interval that
the lengthy operation—in this case, downloading and processing the RSS feed—took place.
The interval also includes the time spent to pick up another thread from the pool to serve the
second part of the original request.

206 Part II ASP.NET Pages and Server Controls

FIGURE 5-5 The traced request details clearly show the two steps needed to process a request
asynchronously.

The RegisterAsyncTask Method
The AddOnPreRenderCompleteAsync method is not the only tool you have to register an
asynchronous task. The RegisterAsyncTask method is, in most cases, an even better solu-
tion. RegisterAsyncTask is a void method and accepts a PageAsyncTask object. As the name
 suggests, the PageAsyncTask class represents a task to execute asynchronously.

The following code shows how to rework the sample page that reads some RSS feed and
make it use the RegisterAsyncTask method:

void Page_Load (object sender, EventArgs e)
{
 PageAsyncTask task = new PageAsyncTask(
 new BeginEventHandler(BeginTask),
 new EndEventHandler(EndTask),
 null,
 null);
 RegisterAsyncTask(task);
}

 Chapter 5 Anatomy of an ASP.NET Page 207

 The constructor accepts up to five parameters, as shown in the following code:

public PageAsyncTask(
 BeginEventHandler beginHandler,
 EndEventHandler endHandler,
 EndEventHandler timeoutHandler,
 object state,
 bool executeInParallel)

The beginHandler and endHandler parameters have the same prototype as the corresponding
handlers you use for the AddOnPreRenderCompleteAsync method. Compared to the
AddOnPreRenderCompleteAsync method, PageAsyncTask lets you specify a timeout function
and an optional flag to enable multiple registered tasks to execute in parallel.

The timeout delegate indicates the method that will get called if the task is not completed
within the asynchronous timeout interval. By default, an asynchronous task times out if it’s
not completed within 45 seconds. You can indicate a different timeout in either the configu-
ration file or the @Page directive. Here’s what you need if you opt for the web.config file:

<system.web>
 <pages asyncTimeout="30" />
</system.web>

The @Page directive contains an integer AsyncTimeout attribute that you set to the desired
number of seconds.

Just as with the AddOnPreRenderCompleteAsync method, you can pass some state to the
 delegates performing the task. The state parameter can be any object.

The execution of all tasks registered is automatically started by the Page class code just be-
fore the async point is reached. However, by placing a call to the ExecuteRegisteredAsyncTasks
method on the Page class, you can take control of this aspect.

Choosing the Right Approach
When should you use AddOnPreRenderCompleteAsync, and when is RegisterAsyncTask a
 better option? Functionally speaking, the two approaches are nearly identical. In both cases,
the execution of the request is split in two parts: before and after the async point. So where’s
the difference?

The first difference is logical. RegisterAsyncTask is an API designed to run tasks
 asynchronously from within a page—and not just asynchronous pages with
Async=true. AddOnPreRenderCompleteAsync is an API specifically designed for
 asynchronous pages. That said, a couple of further differences exist.

One is that RegisterAsyncTask executes the End handler on a thread with a richer context
than AddOnPreRenderCompleteAsync. The thread context includes impersonation and

208 Part II ASP.NET Pages and Server Controls

HTTP context information that is missing in the thread serving the End handler of a classic
 asynchronous page. In addition, RegisterAsyncTask allows you to set a timeout to ensure that
any task doesn’t run for more than a given number of seconds.

The other difference is that RegisterAsyncTask makes the implementation of multiple calls
to remote sources significantly easier. You can have parallel execution by simply setting a
Boolean flag, and you don’t need to create and manage your own IAsyncResult object.

The bottom line is that you can use either approach for a single task, but you should opt for
RegisterAsyncTask when you have multiple tasks to execute simultaneously.

Async-Compliant Operations
Which required operations force, or at least strongly suggest, the adoption of an asynchro-
nous page? Any operation can be roughly labeled in either of two ways: CPU bound or I/O
bound. CPU bound indicates an operation whose completion time is mostly determined by
the speed of the processor and amount of available memory. I/O bound indicates the oppo-
site situation, where the CPU mostly waits for other devices to terminate.

The need for asynchronous processing arises when an excessive amount of time is spent
getting data in and out of the computer in relation to the time spent processing it. In such
situations, the CPU is idle or underused and spends most of its time waiting for something to
happen. In particular, I/O-bound operations in the context of ASP.NET applications are even
more harmful because serving threads are blocked too, and the pool of serving threads is a
finite and critical resource. You get real performance advantages if you use the asynchronous
model on I/O-bound operations.

Typical examples of I/O-bound operations are all operations that require access to some sort
of remote resource or interaction with external hardware devices. Operations on non-local
databases and non-local Web service calls are the most common I/O-bound operations for
which you should seriously consider building asynchronous pages.

Important Asynchronous operations exist to speed up lengthy operations, but the benefits
they provide are entirely enjoyed on the server side. There’s no benefit for the end user in adopt-
ing asynchronous solutions. The “time to first byte” doesn’t change for the user in a synchronous
or asynchronous scenario. Using AJAX solutions would give you at least the means to (easily)
 display temporary messages to provide information about the progress. However, if it’s not
coded asynchronously on the server, any lengthy operation that goes via AJAX is more harmful
for the system than a slow-but-asynchronous classic Web Forms page.

 Chapter 5 Anatomy of an ASP.NET Page 209

The Page Life Cycle
A page instance is created on every request from the client, and its execution causes itself
and its contained controls to iterate through their life-cycle stages. Page execution begins
when the HTTP runtime invokes ProcessRequest, which kicks off the page and control life
cycles. The life cycle consists of a sequence of stages and steps. Some of these stages can be
controlled through user-code events; some require a method override. Some other stages—
or more exactly, substages—are just not public, are out of the developer’s control, and are
mentioned here mostly for completeness.

The page life cycle is articulated in three main stages: setup, postback, and finalization. Each
stage might have one or more substages and is composed of one or more steps and points
where events are raised. The life cycle as described here includes all possible paths. Note that
there are modifications to the process depending upon cross-page posts, script callbacks,
and postbacks.

Page Setup
When the HTTP runtime instantiates the page class to serve the current request, the page
constructor builds a tree of controls. The tree of controls ties into the actual class that the
page parser created after looking at the ASPX source. Note that when the request processing
begins, all child controls and page intrinsics—such as HTTP context, request objects, and
 response objects—are set.

The very first step in the page lifetime is determining why the run time is processing the page
request. There are various possible reasons: a normal request, postback, cross-page post-
back, or callback. The page object configures its internal state based on the actual reason,
and it prepares the collection of posted values (if any) based on the method of the request—
either GET or POST. After this first step, the page is ready to fire events to the user code.

The PreInit Event
This event is the entry point in the page life cycle. When the event fires, no master page or
theme has been associated with the page as yet. Furthermore, the page scroll position has
been restored, posted data is available, and all page controls have been instantiated and
default to the properties values defined in the ASPX source. (Note that at this time controls
have no ID, unless it is explicitly set in the .aspx source.) Changing the master page or the
theme programmatically is possible only at this time. This event is available only on the page.
IsCallback, IsCrossPagePostback, and IsPostback are set at this time.

210 Part II ASP.NET Pages and Server Controls

The Init Event
The master page, if one exists, and the theme have been set and can’t be changed anymore.
The page processor—that is, the ProcessRequest method on the Page class—proceeds and
iterates over all child controls to give them a chance to initialize their state in a context-
sensitive way. All child controls have their OnInit method invoked recursively. For each control
in the control collection, the naming container and a specific ID are set, if not assigned in the
source.

The Init event reaches child controls first and the page later. At this stage, the page and
controls typically begin loading some parts of their state. At this time, the view state is not
restored yet.

The InitComplete Event
Introduced with ASP.NET 2.0, this page-only event signals the end of the initialization
 substage. For a page, only one operation takes place in between the Init and InitComplete
events: tracking of view-state changes is turned on. Tracking view state is the operation
that ultimately enables controls to really persist in the storage medium any values that are
 programmatically added to the ViewState collection. Simply put, for controls not tracking
their view state, any values added to their ViewState are lost across postbacks.

All controls turn on view-state tracking immediately after raising their Init event, and the
page is no exception. (After all, isn’t the page just a control?)

Important In light of the previous statement, note that any value written to the ViewState
 collection before InitComplete won’t be available on the next postback.

View-State Restoration
If the page is being processed because of a postback—that is, if the IsPostBack property is
true—the contents of the __VIEWSTATE hidden field is restored. The __VIEWSTATE hidden
field is where the view state of all controls is persisted at the end of a request. The overall
view state of the page is a sort of call context and contains the state of each constituent
 control the last time the page was served to the browser.

At this stage, each control is given a chance to update its current state to make it identical to
what it was on last request. There’s no event to wire up to handle the view-state restoration.
If something needs be customized here, you have to resort to overriding the LoadViewState
method, defined as protected and virtual on the Control class.

 Chapter 5 Anatomy of an ASP.NET Page 211

Processing Posted Data
All the client data packed in the HTTP request—that is, the contents of all input fields defined
with the <form> tag—are processed at this time. Posted data usually takes the following
form:

TextBox1=text&DropDownList1=selectedItem&Button1=Submit

It’s an &-separated string of name/value pairs. These values are loaded into an internal-use
collection. The page processor attempts to find a match between names in the posted col-
lection and ID of controls in the page. Whenever a match is found, the processor checks
whether the server control implements the IPostBackDataHandler interface. If it does, the
methods of the interface are invoked to give the control a chance to refresh its state in light
of the posted data. In particular, the page processor invokes the LoadPostData method on
the interface. If the method returns true—that is, the state has been updated—the control is
added to a separate collection to receive further attention later.

If a posted name doesn’t match any server controls, it is left over and temporarily parked in a
separate collection, ready for a second try later.

Note As mentioned, during the processing of posted data, posted names are matched against
the ID of controls in the page. Which ID? Is it the ClientID property, or rather, is it the UniqueID
property? Posted names are matched against the unique ID of page controls. Client IDs are
 irrelevant in this instance because they are not posted back to the server.

The PreLoad Event
The PreLoad event merely indicates that the page has terminated the system-level
 initialization phase and is going to enter the phase that gives user code in the page a chance
to further configure the page for execution and rendering. This event is raised only for pages.

The Load Event
The Load event is raised for the page first and then recursively for all child controls. At this
time, controls in the page tree are created and their state fully reflects both the previous
state and any data posted from the client. The page is ready to execute any initialization
code related to the logic and behavior of the page. At this time, access to control properties
and view state is absolutely safe.

Handling Dynamically Created Controls
When all controls in the page have been given a chance to complete their initialization
before display, the page processor makes a second try on posted values that haven’t been
matched to existing controls. The behavior described earlier in the “Processing Posted Data”

212 Part II ASP.NET Pages and Server Controls

section is repeated on the name/value pairs that were left over previously. This apparently
weird approach addresses a specific scenario—the use of dynamically created controls.

Imagine adding a control to the page tree dynamically—for example, in response to a certain
user action. As mentioned, the page is rebuilt from scratch after each postback, so any in-
formation about the dynamically created control is lost. On the other hand, when the page’s
form is submitted, the dynamic control there is filled with legal and valid information that is
regularly posted. By design, there can’t be any server control to match the ID of the dynamic
control the first time posted data is processed. However, the ASP.NET framework recognizes
that some controls could be created in the Load event. For this reason, it makes sense to give
it a second try to see whether a match is possible after the user code has run for a while.

If the dynamic control has been re-created in the Load event, a match is now possible and
the control can refresh its state with posted data.

Handling the Postback
The postback mechanism is the heart of ASP.NET programming. It consists of posting form
data to the same page using the view state to restore the call context—that is, the same state
of controls existing when the posting page was last generated on the server.

After the page has been initialized and posted values have been taken into account, it’s
about time that some server-side events occur. There are two main types of events. The first
type of event signals that certain controls had the state changed over the postback. The sec-
ond type of event executes server code in response to the client action that caused the post.

Detecting Control State Changes
The whole ASP.NET machinery works around an implicit assumption: there must be a one-to-
one correspondence between some HTML input tags that operate in the browser and some
other ASP.NET controls that live and thrive in the Web server. The canonical example of this
correspondence is between <input type=”text”> and TextBox controls. To be more technically
precise, the link is given by a common ID name. When the user types some new text into an
input element and then posts it, the corresponding TextBox control—that is, a server control
with the same ID as the input tag—is called to handle the posted value. I described this step
in the “Processing Posted Data” section earlier in the chapter.

For all controls that had the LoadPostData method return true, it’s now time to execute the
second method of the IPostBackDataHandler interface: the RaisePostDataChangedEvent
method. The method signals the control to notify the ASP.NET application that the state of
the control has changed. The implementation of the method is up to each control. However,
most controls do the same thing: raise a server event and give page authors a way to kick

 Chapter 5 Anatomy of an ASP.NET Page 213

in and execute code to handle the situation. For example, if the Text property of a TextBox
changes over a postback, the TextBox raises the TextChanged event to the host page.

Executing the Server-Side Postback Event
Any page postback starts with some client action that intends to trigger a server-side action.
For example, clicking a client button posts the current contents of the displayed form to
the server, thus requiring some action and a new, refreshed page output. The client button
 control—typically, a hyperlink or a submit button—is associated with a server control that
implements the IPostBackEventHandler interface.

The page processor looks at the posted data and determines the control that caused the
postback. If this control implements the IPostBackEventHandler interface, the processor
 invokes the RaisePostBackEvent method. The implementation of this method is left to the
control and can vary quite a bit, at least in theory. In practice, though, any posting con-
trol raises a server event letting page authors write code in response to the postback. For
 example, the Button control raises the onclick event.

There are two ways a page can post back to the server—by using a submit button (that is,
<input type=”submit”>) or through script. A submit HTML button is generated through the
Button server control. The LinkButton control, along with a few other postback controls, in-
serts some script code in the client page to bind an HTML event (for example, onclick) to the
form’s submit method in the browser’s HTML object model. We’ll return to this topic in the
next chapter.

Note The UseSubmitBehavior property exists on the Button class to let page developers control
the client behavior of the corresponding HTML element as far as form submission is concerned.
By default, a Button control behaves like a submit button. By setting UseSubmitBehavior to
false, you change the output to <input type=”button”>, but at the same time the onclick prop-
erty of the client element is bound to predefined script code that just posts back. In the end,
the output of a Button control remains a piece of markup that ultimately posts back; through
UseSubmitBehavior, you can gain some more control over that.

The LoadComplete Event
The page-only LoadComplete event signals the end of the page-preparation phase. Note that
no child controls will ever receive this event. After firing LoadComplete, the page enters its
rendering stage.

214 Part II ASP.NET Pages and Server Controls

Page Finalization
After handling the postback event, the page is ready for generating the output for the
browser. The rendering stage is divided in two parts: pre-rendering and markup generation.
The pre-rendering substage is in turn characterized by two events for pre-processing and
post-processing.

The PreRender Event
By handling this event, pages and controls can perform any updates before the output
is rendered. The PreRender event fires for the page first and then recursively for all con-
trols. Note that at this time the page ensures that all child controls are created. This step is
 important, especially for composite controls.

The PreRenderComplete Event
Because the PreRender event is recursively fired for all child controls, there’s no way for the
page author to know when the pre-rendering phase has been completed. For this reason,
ASP.NET supports an extra event raised only for the page. This event is PreRenderComplete.

The SaveStateComplete Event
The next step before each control is rendered out to generate the markup for the page
is saving the current state of the page to the view-state storage medium. Note that every
 action taken after this point that modifies the state could affect the rendering, but it is not
persisted and won’t be retrieved on the next postback. Saving the page state is a recur-
sive process in which the page processor walks its way through the whole page tree, call-
ing the SaveViewState method on constituent controls and the page itself. SaveViewState
is a protected and virtual (that is, overridable) method that is responsible for persisting the
 content of the ViewState dictionary for the current control. (We’ll come back to the ViewState
 dictionary in Chapter 19.)

ASP.NET server controls can provide a second type of state, known as a “control state.” A
control state is a sort of private view state that is not subject to the application’s control. In
other words, the control state of a control can’t be programmatically disabled, as is the case
with the view state. The control state is persisted at this time, too. Control state is another
state storage mechanism whose contents are maintained across page postbacks much like
the view state, but the purpose of the control state is to maintain necessary information for
a control to function properly. That is, state behavior property data for a control should be
kept in the control state, while user interface property data (such as the control’s contents)
should be kept in the view state.

The SaveStateComplete event occurs when the state of controls on the page have been
 completely saved to the persistence medium.

 Chapter 5 Anatomy of an ASP.NET Page 215

Note The view state of the page and all individual controls is accumulated in a unique
memory structure and then persisted to storage medium. By default, the persistence medium
is a hidden field named __VIEWSTATE. Serialization to, and deserialization from, the per-
sistence medium is handled through a couple of overridable methods on the Page class:
SavePageStateToPersistenceMedium and LoadPageStateFromPersistenceMedium. For example, by
overriding these two methods you can persist the page state in a server-side database or in the
session state, dramatically reducing the size of the page served to the user. Hold on, though. This
option is not free of issues, and we’ll talk more about it in Chapter 19.

Generating the Markup
The generation of the markup for the browser is obtained by calling each constituent control
to render its own markup, which will be accumulated in a buffer. Several overridable methods
allow control developers to intervene in various steps during the markup generation—begin
tag, body, and end tag. No user event is associated with the rendering phase.

The Unload Event
The rendering phase is followed by a recursive call that raises the Unload event for each
control, and finally for the page itself. The Unload event exists to perform any final clean-
up before the page object is released. Typical operations are closing files and database
connections.

Note that the unload notification arrives when the page or the control is being unloaded but
has not been disposed of yet. Overriding the Dispose method of the Page class—or more
simply, handling the page’s Disposed event—provides the last possibility for the actual page
to perform final clean up before it is released from memory. The page processor frees the
page object by calling the method Dispose. This occurs immediately after the recursive call to
the handlers of the Unload event has completed.

Summary
ASP.NET is a complex technology built on top of a substantially thick—and, fortunately,
solid and stable—Web infrastructure. To provide highly improved performance and a richer
 programming toolset, ASP.NET builds a desktop-like abstraction model, but it still has to rely
on HTTP and HTML to hit the target and meet end-user expectations.

It is exactly this thick abstraction layer that has been responsible for the success of Web
Forms for years, but it’s being questioned these days as ASP.NET MVC gains acceptance
and prime-time use. A thick abstraction layer makes programming quicker and easier, but it
 necessarily takes some control away from developers. This is not necessarily a problem, but
its impact depends on the particular scenario you are considering.

216 Part II ASP.NET Pages and Server Controls

There are two relevant aspects in the ASP.NET Web Forms model: the process model and
the page object model. Each request of a URL that ends with .aspx is assigned to an applica-
tion object working within the CLR hosted by the worker process. The request results in a
dynamically compiled class that is then instantiated and put to work. The Page class is the
base class for all ASP.NET pages. An instance of this class runs behind any URL that ends with
.aspx. In most cases, you won’t just build your ASP.NET pages from the Page class directly,
but you’ll rely on derived classes that contain event handlers and helper methods, at the very
 minimum. These classes are known as code-behind classes.

The class that represents the page in action implements the ASP.NET eventing model based
on two pillars: the single form model (page reentrancy) and server controls. The page life
cycle, fully described in this chapter, details the various stages (and related substages) a page
passes through on the way to generate the markup for the browser. A deep understand-
ing of the page life cycle and eventing model is key to diagnosing possible problems and
 implementing advanced features quickly and efficiently.

In this chapter, I mentioned controls several times. Server controls are components that get
input from the user, process the input, and output a response as HTML. In the next chapter,
we’ll explore the internal architecture of server controls and other working aspects of Web
Forms pages.

 217

Chapter 6

ASP.NET Core Server Controls
“Everything happens to everybody sooner or later if there is time enough.”

—George Bernard Shaw

ASP.NET Web Forms pages are typically made of a markup template—the ASPX file—and a
back-end class—the code-behind class. In the ASPX template, you find literal text mixed with
special markup tags (featuring the runat attribute) that identify server controls. In the code-
behind class, you insert some request-processing logic—mostly presentation logic. So what’s
the role of server controls?

Server controls are components with a declarative and programming interface used to
 generate a specific piece of HTML markup based on the request and associated presenta-
tion logic. As you saw in Chapter 5, “Anatomy of an ASP.NET Page,” anything you place in
the ASPX template is mapped to a server control. The ASP.NET runtime then combines the
output of all controls and serves the client an HTML response to display in a browser. The
programming richness of ASP.NET springs from the wide library of server controls that covers
the basic tasks of HTML interaction—for example, collecting text through input tags—as
well as more advanced functionalities such as calendaring, menus, tree views, and grid-based
data display.

There are two main families of server controls: HTML server controls and Web server controls.
HTML server controls are implemented through server-side classes whose programming
interface faithfully represents the standard set of attributes for the corresponding HTML
tag. Web controls, in turn, are a more abstract library of controls in which adherence of the
proposed API to HTML syntax is much less strict. As a result, Web and HTML controls share
a large common subset of functionalities and, in spite of a few exceptions, we could say that
Web controls, functionally speaking, are a superset of HTML controls. Web controls also
 feature a richer development environment with a larger set of methods, properties, and
events, and they participate more actively in the page life cycle.

Let’s start looking at the generalities of ASP.NET server controls.

218 Part II ASP.NET Pages and Server Controls

Generalities of ASP.NET Server Controls
All ASP.NET server controls, including HTML and Web controls plus any custom controls you
create or download, descend from the Control class. Defined in the System.Web.UI namespace,
the class is also the foundation for all ASP.NET pages. The Control class is declared as follows:

public class Control : IComponent, IDisposable, IParserAccessor,
 IUrlResolutionService, IDataBindingsAccessor,
 IControlBuilderAccessor, IControlDesignerAccessor,
 IExpressionsAccessor

The IComponent interface defines the way in which the control interacts with the other
 components running in the common language runtime (CLR), whereas IDisposable
 implements the common pattern for releasing managed objects deterministically. Table 6-1
explains the role of the other interfaces that the Control class implements.

TABLE 6-1 Interfaces Implemented by the Control Class
Interface Goal
IControlBuilderAccessor Internal-use interface; provides members to support the page parser

in building a control and the child controls it contains

IControlDesignerAccessor Internal-use interface; provides members to make the control interact
with the designer

IDataBindingsAccessor Makes the control capable of supporting data-binding expressions at
design time

IExpressionsAccessor Internal use interface; defines the properties a class must implement
to support collections of expressions

IParserAccessor Enables the control to work as the container of child controls and to
be notified when a block of child markup is parsed

IUrlResolutionService Provides members to resolve relative URLs both at run time and
 design time

The IDataBindingsAccessor interface defines a read-only collection—the DataBindings
 property—that contains all the data bindings for the controls available to Rapid Application
Development (RAD) designers such as Microsoft Visual Studio. Note that the collection
of data bindings exists only at design time and, as such, is useful only if you write a RAD
 designer for the control.

Properties of the Control Class
The properties of the Control class have no user interface–specific features. The class, in fact,
represents the minimum set of functionalities expected from a server control. The list of
properties for the Control class is shown in Table 6-2.

 Chapter 6 ASP.NET Core Server Controls 219

TABLE 6-2 Properties Common to All Server Controls
Property Description
AppRelativeTemplateSourceDirectory Gets or sets the application-relative virtual directory of the

page (or user control) that contains the control.

BindingContainer Gets the control that represents the logical parent of the
 current control as far as data binding is concerned.

ClientID Gets the ID assigned to the control in the HTML page. In
ASP.NET 4, the composition of the string can be very differ-
ent depending on the value of the ClientIDMode property.

ClientIDMode Indicates the algorithm being used to determine the ID of
HTML elements being created for the output of the control.
This property requires ASP.NET 4.

Controls Gets a collection filled with references to all the child
 controls.

DataItemContainer Gets a reference to the naming container if the naming
 container implements the IDataItemContainer interface. This
property requires ASP.NET 4.

DataKeysContainer Gets a reference to the naming container if the naming
 container implements the IDataKeysControl interface. This
property requires ASP.NET 4.

EnableTheming Indicates whether themes apply to the control.

EnableViewState Gets or sets whether the control should persist its view
state—and the view state of any child controls across multi-
ple requests—to the configured medium (for example, HTML
hidden field, session state, and server-side databases or files).

ID Gets or sets the name that will be used to programmatically
identify the control in the page.

NamingContainer Gets a reference to the control’s naming container.
The naming container for a given control is the parent
control above it in the hierarchy that implements the
INamingContainer interface. If no such control exists, the
naming container is the host page.

Page Gets a reference to the Page instance that contains the
 control.

Parent Gets a reference to the parent of the control in the page
 hierarchy.

RenderingCompatibility Indicates the version of ASP.NET that the rendered HTML of
the control will be compatible with. This property requires
ASP.NET 4.

Site Gets information about the container that hosts the current
control when rendered on a design surface. For example, you
use this property to access the Visual Studio designer when
the control is being composed in a Web form.

SkinID Gets or sets the name of the skin to apply to the control.
A skin is a particular subset of attributes in a theme.

220 Part II ASP.NET Pages and Server Controls

Property Description
TemplateControl Gets a reference to the template that contains the current

control.

TemplateSourceDirectory Gets the virtual directory of the host page.

UniqueID Gets a hierarchically qualified ID for the control.

ViewStateMode Indicates how to treat the view state for the control
 regardless of the settings defined at the page level. This
property requires ASP.NET 4.

Visible Gets or sets whether ASP.NET has to render the control.

The Control class is the ideal base class for new controls that have no user interface and don’t
require ASP.NET-based style information.

Important As you can see in the preceding table, ASP.NET 4 still supports themes and skins.
These are features through which you can style server controls using a fluent, .NET-based API.
All in all, an ASP.NET theme is a superset of a cascading style sheet (CSS) and ultimately works
by applying CSS styles to HTML elements being output by controls. Introduced with great pomp
and ceremony, ASP.NET themes are today commonly deprecated in favor of plain HTML-level
CSS styles.

Identifying a Server Control
A server control usually generates a piece of HTML markup. The root HTML element in the
markup is always given a unique client-side ID. In ASP.NET 4, the client ID of a control can be
generated in a number of different ways that I’ll cover in a moment.

In older versions, the client ID is always generated from the value of the UniqueID property—
the truly server-side identifier that ASP.NET generates for each control. In versions of ASP.NET
prior to version 4, the content of the ClientID property differs from UniqueID simply in that
all occurrences of the dollar symbol ($), if any, are replaced with the underscore (_). Note that
dollar symbols in the UniqueID string are possible only if the control belongs to a naming
container different from the page.

In turn, ASP.NET generates the value for the UniqueID property based on the value of the
ID property that the programmer indicates. If no ID has been specified, ASP.NET autogen-
erates a name such as _ctlX, where X is a progressive 0-based index. If the control’s naming
container is the host page, UniqueID simply takes the value of ID. Otherwise, the value of ID
is prefixed with the string representing the naming container and the result is assigned to
UniqueID.

What if the returned markup contains multiple elements that need a client ID? The author of
the control is responsible for ensuring that any required ID is available and unique. The need
for multiple IDs arises when multiple individual controls are aggregated in a hierarchy. Since

 Chapter 6 ASP.NET Core Server Controls 221

its first version, ASP.NET has implemented a built-in algorithm that prevents name conflicts
on hierarchies of controls. As an example, think of a DataGrid control where the first cell of
each column contains a text box. In your server template for the grid, you put a TextBox con-
trol with a given ID. However, that ID is going to be repeated for each row added to the grid.

An ASP.NET control that can contain child controls and is at risk of having conflicting IDs
should be created as a naming container—that is, it should implement the INamingContainer
(marker) interface. A naming container has an effect on the default algorithm used for ID
generation.

Note A naming container is primarily a control that acts as a container for other controls. In
doing so, the naming container generates a sort of virtual namespace so that ASP.NET roots the
actual ID of contained controls in the ID of the naming container.

To fully understand the role and importance of naming containers, consider the following
 example. Imagine you have a composite control, such as a user control, that includes a child
 control like a button. Entirely wrapped by the user control, the button is not directly accessible
by the page code and can’t be given a distinct and per-instance ID. In the end, the ID of the
 button is hard-coded in the outermost control that creates it.

What happens when two or more instances of the composite control are placed on a page? Are
you going to have two button child controls with the same ID? This is exactly what will happen
unless you configure the composite control to be a naming container. A naming container is
taken seriously by ASP.NET when it generates IDs automatically to avoid conflicts.

To see the ASP.NET ID autogeneration mechanism in action, consider the following code
fragment. It features an ASP.NET Repeater control—a data-bound control whose content
consists of repeating the item template for each object in a bound collection. (Data binding
is the topic of Chapter 10, “Data Binding.”)

<asp:Repeater runat="server" ID="Repeater1">
 <ItemTemplate>

 <%# DataBinder.Eval(Container.DataItem, "CustomerID") %>

 </ItemTemplate>
</asp:Repeater>

You populate the Repeater control using the following sample code:

protected void Page_Load(object sender, EventArgs e)
{
 // Load some data into the Repeater
 var customerIds = new Object[] {
 new { CustomerID = "ALFKI" },
 new { CustomerID = "ANATR" },
 new { CustomerID = "BOTTM" }
 };

222 Part II ASP.NET Pages and Server Controls

 Repeater1.DataSource = customerIds;
 Repeater1.DataBind();
}

The Repeater then produces the HTML markup shown here:

 ALFKI
 ANATR
 BOTTM

The ’s ID is simply emitted as is for each data bound item. As a result, the page DOM
will contain multiple elements with the same ID. This conflict violates the HTML standard but
doesn’t prevent a successful page display. However, it will make it hard to script ele-
ments if you need to.

In this example, though, the Repeater control doesn’t embed any other ASP.NET control. As a
further step, let’s try adding some server controls, instead, in the repeatable template:

<asp:Repeater runat="server" ID="Repeater2">
 <ItemTemplate>
 <asp:Label runat="server" ID="Element">
 <%# DataBinder.Eval(Container.DataItem, "CustomerID") %>
 </asp:Label>
 </ItemTemplate>
</asp:Repeater>

Bound to the same data source as in the previous example, the Repeater control for any ver-
sion of ASP.NET older than version 4 produces a slightly different markup:

 ALFKI
 ANATR
 BOTTM

Note that if the ASPX markup is hosted by the content placeholder of a master page, the
composed ID will be longer because it will be prefixed by the ID of the placeholder too:

ctl00_MainContentPlaceholder_Repeater2_ctl00_Element

In the client page, each tag now has its own unique ID, and client scripting is much
easier. Now if you want to, say, render in blue and bold the element that contains
ALFKI, you can add the following script. (The script assumes the jQuery library is being used.
I’ll cover the jQuery library in Chapter 21, “jQuery.”)

 Chapter 6 ASP.NET Core Server Controls 223

<script type="text/javascript">
 $(document).ready(function () {
 var alfki = $("#ctl00_MainContentPlaceholder_Repeater2_ctl00_Element");
 alfki.css("color", "blue").css("font-weight", "bold");
 });
</script>

This wouldn’t be too bad except that you need to figure out yourself what the actual ID of a
bound element is going to be. The autogenerated ID ensures that each ID is unique, but the
actual name is not always predictable.

Until ASP.NET 4, you had no way to change the naming algorithm. In ASP.NET 4, you can
choose from a few options.

Client ID Modes
The default algorithm entails that the name of each repeated element be scoped into the
naming container. This explains the first token of Repeater1. Note also that controls that are
not assigned an explicit ID are given a system-provided progressive ctlXX string. In the previ-
ous example, each bound element is wrapped in an implicitly created RepeaterItem control
with a ctlXX ID. This explains the progressive ctlXX token. Finally, the common name of the
element is appended. Note that what makes two IDs unique is just the presence of implic-
itly named controls such as the RepeaterItem. In ASP.NET, any data-bound, template-based
 control follows a similar schema.

As mentioned, in ASP.NET 4 the base Control class features the ClientIDMode property. The
property is declared to be of type ClientIDMode—an enumerated type. Table 6-3 lists the
feasible values for the property.

TABLE 6-3 Values in the ClientIDMode Enumeration
Value Description
AutoID The control generates its child IDs using the legacy algorithm used by previous

 versions of ASP.NET.

Inherit The control doesn’t define its own policy for ID generation. The control inherits any
policy valid on its parent. This is the default option for individual controls.

Predictable Any ID is generated by simply concatenating the IDs of parent elements. This is the
default option for pages and automatically propagates to controls unless you make
some changes to the code.

Static No mangled ID is generated; the assigned ID is emitted in the markup as is.

The value for the ClientIDMode property can be set at various levels: for individual controls,
or for all controls in the page via the @Page directive. Finally, you can even set your

224 Part II ASP.NET Pages and Server Controls

 preference for all pages in the application by storing the setting in the <pages> section of
the web.config file:

<pages ClientIDMode="Predictable">
 ...
</pages>

When the Static option is selected, ASP.NET doesn’t apply any name mangling to the original
ID. The ID is emitted without concatenating the IDs of parent naming containers. In the case
of repeated templates, however, you end up having multiple IDs in the client page. As men-
tioned, this violates the HTML standard, but it won’t generate any run-time error in most
browsers. The Static option is not a good one to use with iterative, data-bound controls such
as GridView, ListView, and list controls.

On the other hand, the Static option is useful when you write user controls devoid of
 data-bound child controls. Because a user control can be located on different pages and in
different container controls, the default algorithm for IDs will generate different IDs each
time. Clearly, this makes it quite difficult for you to write client script for embedded elements.
Although you can work out some tricks and solve the issue, the Static client ID mode makes it
more direct and simpler to do so.

A more interesting scenario is when you set the ClientIDMode property to Predictable. In this
case, ASP.NET still guarantees that unique IDs are generated but it uses a different algorithm.
How is this new algorithm different from the legacy one that was the only option up to
ASP.NET 3.5?

The legacy algorithm that generates the client ID of a control is generated by concatenating
the ID values of each parent naming container with the ID of the control. Each segment is
separated by an underscore character (_). With the Predictable option, the client ID of a con-
trol is generated by concatenating the value of the ClientID property of the parent naming
container with the ID of the control. Because only the innermost parent naming container is
considered, the algorithm won’t ensure uniqueness in the case of data-bound controls that
generate multiple rows. If the control also features the ClientIDRowSuffix property, that value
is added at the end; otherwise, a progressive number is appended. The ClientIDRowSuffix
property is part of the new interface IDataKeysControl.

When Predictable is used, the markup you get for the Repeater shown earlier takes the
 following form:

 ALFKI
 ANATR
 BOTTM

 Chapter 6 ASP.NET Core Server Controls 225

If the Repeater control is being used within a master page, the ID of the content placeholder
will prefix the ID—something like this:

MainContentPlaceholder_Repeater2_Element_0

The key difference between the two algorithms is all in the trailing token, which is now easy
to guess and script and still guarantees uniqueness. The Predictable mode represents the
 default behavior you get for ASP.NET 4 applications. This is a potentially breaking change.
If you have an ASP.NET 3.5 piece of code written to take advantage of the old-fashioned
syntax of autogenerated IDs (mostly client script code), well, that code might fail after the
 application is recompiled to ASP.NET 4.

Important Many of the posts and articles you can find list AutoID as the default setting for
pages. This is not the case with the released version of ASP.NET 4, as you can read here:
http://msdn.microsoft.com/en-us/library/950xf363(v=VS.100).aspx. You can also verify that on
your own, going step by step through the Repeater example presented earlier.

The Predictable algorithm allows you some degree of further control over the generated ID,
at least for controls that implement IDataKeysControl:

public interface IDataKeysControl
{
 String[] ClientIDRowSuffix { get; }
 DataKeyArray ClientIDRowSuffixDataKeys { get; }
}

In ASP.NET 4, only two controls natively implement this interface: GridView and ListView.
Similar view controls, such as FormView and DetailsView controls, do not support the
ClientIDRowSuffix property because they are not expected to display multiple rows.

Let’s consider a GridView control with a templated column:

<asp:GridView runat="server" ID="GridView1" AutoGenerateColumns="false">
 <Columns>
 <asp:TemplateField>
 <ItemTemplate>
 <asp:Label runat="server" ID="Element" Text='<%# Eval("CustomerID") %>' />
 </ItemTemplate>
 </asp:TemplateField>
 </Columns>
</asp:GridView>

With the default settings, the Predictable algorithm produces the following IDs for the
 elements via the Label control:

GridView1_Element_0

http://msdn.microsoft.com/en-us/library/950xf363

226 Part II ASP.NET Pages and Server Controls

Try setting the ClientIDRowSuffix to a property name like the one shown here.

<asp:GridView runat="server" ID="GridView1" ClientIDRowSuffix="customerID">

The GridView will emit the following markup:

<table id="MainContent_GridView2">
 <tr>
 <th scope="col"> </th>
 </tr><tr>
 <td>
 ALFKI
 </td>
 </tr><tr>
 <td>
 ANATR
 </td>
 </tr><tr>
 <td>
 BOTTM
 </td>
 </tr>
</table>

The property is an array of strings; if it’s set declaratively, you use a comma-separated string
to list multiple properties whose values you want to retrieve in the ID. Note also that setting a
parent to Static and then setting child elements to Predictable will start the naming container
at the parent level, which is handy for always giving sections of pages unique IDs.

Note The ClientIDRowSuffix property is not supported by the Repeater and DataList controls
even though the control might output multiple rows. For any list controls, you have only the
progressive number to distinguish between repeated templates. This was done essentially to
 discourage use of these controls, because they are considered deprecated in ASP.NET 4.

ASP.NET Control Containers
Naming containers are not the only type of container object available in ASP.NET. Another
one is the binding container exposed through the BindingContainer property.

The binding container indicates which control in the page hierarchy represents the parent
of a control as far as data binding is concerned. In other words, the binding container is the
control that receives bound data from the host (typically, the page) and that passes it down
to child controls.

As you can easily imagine, binding and naming containers often coincide. The only exception
is when the control is part of a template. In that case, the NamingContainer property

 Chapter 6 ASP.NET Core Server Controls 227

is generally set to the physical parent of the control, namely a control in the template.
BindingContainer, instead, will point to the control that defines the template.

ASP.NET 4 introduced two additional special containers: data item and data keys containers.
These containers are exposed through the DataItemContainer and DataKeysContainer
 properties. These containers don’t introduce a new point in the ASP.NET control architecture.
They simply identify some capabilities in an existing naming container. The capabilities are
summarized by the IDataItemContainer and IDataKeysControl interfaces.

View State of Controls
The view state has been one of the most controversial features of ASP.NET since the advent
of the platform. Too many developers are still convinced that the view state is a waste of
bandwidth and an unacceptable burden for each and every ASP.NET page. Nearly the same
set of developers eagerly welcomed ASP.NET MVC because of its complete absence of view
state.

The view state is strictly functional for the Web Forms model because it caches some of the
content for the controls in the page. Next, the ASP.NET infrastructure takes care of reading
that information to restore the last known good state for each control within the page.

Since the beginning, the view state was designed with a hierarchical structure—if it is
 enabled for the parent, it is enabled also for the children. To keep the size of the view state
under control, you might decide to disable the view state only on certain controls. The
 property EnableViewState seems to be just the perfect tool for the job.

Unfortunately, the capabilities of the EnableViewState property have been exaggerated in the
past years. The strictly hierarchical nature of the view state requires that if the view state is
enabled on the parent control, it won’t be disabled on any of its child controls—regardless of
the value assigned to EnableViewState on child controls. This issue has been fixed with
ASP.NET 4, but for the sake of thousands of existing applications the fix comes through a
new, dangerously similar property: the ViewStateMode property.

In summary, if the view state is enabled on the page (which is the default setting), you have
no means to keep the state of individual controls off the storage. To gain some control over
it in ASP.NET 3.5, you need to disable the view state at the page level and then re-enable it
where needed. However, you should be aware that any container control that has the view
state enabled will inevitably push its setting down to the list of its children.

Imagine you have a page with three hundred controls and need view state disabled only on
three of them. Until ASP.NET 4, you had to disable the view state on the page first and then
re-enable it for the 297 controls where you want to keep it. That’s too much work, isn’t it?

228 Part II ASP.NET Pages and Server Controls

The ViewStateMode property allows for the enabling and disabling of the view state on any
controls in the direct way that always seemed natural. The property accepts values from the
following enumeration:

public enum ViewStateMode
{
 Inherit,
 Enabled,
 Disabled
}

Enabled and Disabled mean the view state is enabled or disabled for the specific control—no
matter what. Inherit means the control inherits any settings defined on its parent. This is the
default setting.

Note To better understand the intricacy of the view state issue in earlier versions of ASP.NET,
consider the following fact. Any ASP.NET control has a protected Boolean property named
IsViewStateEnabled. As you can figure out, this property indicates whether view state is working
or not for the control. Because of the weird behavior of EnableViewState, it might paradoxically
occur that for the same control to have the property IsViewStateEnabled set to true and the
property EnableViewState set to false! Specifically, this happens when you try to programmati-
cally disable the view state for a control whose parent (for example, the page) has the view state
enabled.

Visibility of a Server Control
If you set Visible to false, ASP.NET doesn’t generate any markup code for the control.
However, having Visible set to false doesn’t really mean that no path in the control’s code can
output text. The control is still an active object that exposes methods and handles events. If
a method, or an event handler, sends text directly to the output console through Response.
Write, this text will be displayed to the user anyway. A control with the Visible attribute set to
false is still part of the page and maintains its position in the control tree.

Methods of the Control Class
The methods of the Control class are listed and described in Table 6-4.

TABLE 6-4 Public Methods of a Server Control
Method Description
ApplyStyleSheetSkin Applies the properties defined in the page style sheet to the control.

The skin properties used depend on the SkinID property.

DataBind Fires the OnDataBinding event and then invokes the DataBind method
on all child controls.

 Chapter 6 ASP.NET Core Server Controls 229

Method Description
Dispose Gives the control a chance to perform clean-up tasks before it gets

 released from memory.

Focus Sets the input focus to the control.

FindControl Looks for the specified control in the collection of child controls. Child
controls not in the Controls collection of the current controls—that is,
not direct children—are not retrieved.

GetRouteUrl Gets the URL that corresponds to a set of route parameters. This method
requires ASP.NET 4.

GetUniqueIDRelativeTo Returns the prefixed portion of the UniqueID property of the specified
control.

HasControls Indicates whether the control contains any child controls.

RenderControl Generates the HTML output for the control.

ResolveClientUrl Use this method to return a URL suitable for use by the client to access
resources on the Web server, such as image files, links to additional
pages, and so on. It can return a relative path. The method is sealed and
can’t be overridden in derived classes.

ResolveUrl Resolves a relative URL to an absolute URL based on the value passed to
the TemplateSourceDirectory property.

SetRenderMethodDelegate Internal use method, assigns a delegate to render the control and its
content into the parent control.

Each control can have child controls. All children are stored in the Controls collection, an
object of type ControlCollection. This collection class has a few peculiarities. In particular, it
post-processes controls that are added to, and removed from, the collection. When a control
is added, its view state is restored if needed and view state tracking is turned on. When a
control is removed, the Unload event is fired.

Events of the Control Class
The Control class also defines a set of base events that all server controls in the .NET
Framework support.

TABLE 6-5 Events of a Server Control
Event Description
DataBinding Occurs when the DataBind method is called on a control and the control is binding

to a data source

Disposed Occurs when a control is released from memory—the last stage in the control life
cycle

Init Occurs when the control is initialized—the first step in the life cycle

Load Occurs when the control is loaded into the page; occurs after Init

PreRender Occurs when the control is about to render its content

Unload Occurs when the control is unloaded from memory

230 Part II ASP.NET Pages and Server Controls

All server controls are rendered to HTML using the RenderControl method and, when this
happens, the PreRender event is fired.

Other Features
Server controls also support some features that are especially related to the returned mark-
up. In the beginning of the ASP.NET era, the focus was primarily on building pages quickly.
Nobody really cared much about the emitted markup and its compliance with standards. The
relevance of this aspect changed significantly over the years—by the way, ASP.NET is now 10
years old. Semantic markup, control over HTML, XHTML compliance, and browser-sensitive
rendering are hot topics today. Let’s see how ASP.NET controls address them.

Adaptive Rendering
ASP.NET controls are like HTML factories that accept external parameters and produce
chunks of markup. As a developer, you can select and filter any parameters being assigned
to control properties. As a developer, though, you can hardly control what the component
does to generate the markup. The bad effect is that you end up with an HTML markup that
might work differently on different browsers and different browser configurations. When this
happens, though, the worst thing is that you have no way to fix it—the HTML is out of your
reach. Before ASP.NET 4, adaptive rendering was the common way to address this problem.

Adaptive rendering is the process that enables controls to generate different markup for
 individual browsers. This result is obtained by delegating the generation of the markup to
an external component—the adapter. When each control is about to render, it figures out its
current adapter and hands the request over to that adapter. Nicely enough, a control adapter
is a configurable component that you can declaratively unplug in any application to roll your
own.

The selected adapter depends on the current browser. The adapter for a control is resolved
by looking at the browser capabilities as configured in the ASP.NET browser database. If
the browser record includes an adapter class for a given control, the class is instantiated
and used. Otherwise, the default adapter for the control is used, which is an instance of the
ControlAdapter class. The ControlAdapter class is a generic adapter and simply generates the
markup for a control by calling the rendering methods on the control itself.

Note The ASP.NET database used for storing browser information is not a real database. It is,
instead, a list of text files with a .browser extension located under the ASP.NET installation folder
on the Web server. The exact path is the following:

%WINDOWS%\Microsoft.NET\Framework\[version]\CONFIG\Browsers

The data located in this folder is used to return browser capabilities.

 Chapter 6 ASP.NET Core Server Controls 231

A control holds a reference to the mapped adapter instance through the (protected) Adapter
property. Each control has an associated adapter unless it is a composite control that defers
to its child controls for rendering.

All ASP.NET controls have an entry point into the rendering engine in the Render method.
Here’s the method’s signature:

protected virtual void Render(HtmlTextWriter writer)
{
 ...
}

The Render method ends up calling into an internal method whose implementation is nearly
identical to the following pseudocode:

void RenderControlInternal(HtmlTextWriter writer, ControlAdapter adapter)
{
 if (adapter != null)
 {
 adapter.BeginRender(writer);
 adapter.Render(writer);
 adapter.EndRender(writer);
 }
 else
 {
 this.Render(writer);
 }
}

As you can see, if defined, a control adapter is used to generate the markup for the control.
The adapter can be declaratively specified and is an external component that can be made to
measure for your needs. Using an adapter to alter the markup of a given class of controls is
an unobtrusive option that doesn’t require any changes to existing pages using the control. It
only requires you to add a browser definition file.

Browser definition files have a .browser extension and contain definitions that apply to a
specific browser. At run time, ASP.NET determines the browser being used, uses the configu-
ration file to determine the capabilities of the browser, and based on that figures out how
to render markup to that browser. Here’s a snippet that illustrates how to register a control
adapter for the Menu for whatever browsers the user will employ:

<browsers>
 <browser refID="Default">
 <controlAdapters>
 <adapter controlType="System.Web.UI.WebControls.Menu"
 adapterType="Core35.MenuAdapter" />
 ...
 <controlAdapters>
 </browser>
</browsers>

232 Part II ASP.NET Pages and Server Controls

Saved to a .browser file, the preceding snippet is deployed to the App_Browsers folder of an
ASP.NET application.

An adapter class looks like the following class:

public class MenuAdapter :
 System.Web.UI.WebControls.Adapters.MenuAdapter
{
 ...
}

The class commonly overrides methods such as Init, RenderBeginTag, RenderEndTag, and
RenderContents.

To write an adapter effectively, though, you must reasonably know a lot of details about
the internal workings of the control you’re hooking up. For more information on the archi-
tecture of control adapters, you might want to take a look at http://msdn2.microsoft.com/
en-us/library/67276kc5.aspx.

This is only half the problem, however.

Getting CSS-Friendly HTML
The markup that too many ASP.NET server controls return makes excessive use of <table>
tags (often nested) and inline style properties. Subsequently, ASP.NET controls make lim-
ited use of CSS styling. It might be easier and quicker, sure, but it’s probably a shortsighted
approach.

Based on community feedback, the ASP.NET team first released a free toolkit to enable a few
built-in controls to output CSS-friendly markup where the <table> tag is not used or used
less and in accordance with XHTML rules. The CSS Control Adapter Toolkit (CSSCAT) can be
downloaded from http://www.asp.net/cssadapters. It comes with full source code and a per-
missions license that allows for unlimited further customization of the code. CSSCAT is built
atop the control adapter architecture of ASP.NET.

CSSCAT defines CSS-friendly adapters for the following controls: Menu, TreeView, DetailsView,
FormView, DataList, GridView, PasswordRecovery, ChangePassword, Login, LoginStatus, and
CreateUserWizard. By using the source code of CSSCAT as a starting point, you can develop
new adapters for other controls. For more information on the CSSCAT logic and internal
 architecture, pay a visit to http://www.asp.net/cssadapters/whitepaper.aspx.

ASP.NET 4 supports two rendering mechanisms: legacy and CSS-friendly. You
control the rendering mechanism for all pages in the application using the
controlRenderingCompatibilityVersion attribute added to the <pages> section in the
 configuration schema. You can set the attribute with one of the following two strings:
“3.5” or “4.0”.

http://msdn2.microsoft.com/
http://www.asp.net/cssadapters
http://www.asp.net/cssadapters/whitepaper.aspx

 Chapter 6 ASP.NET Core Server Controls 233

<pages controlRenderingCompatibilityVersion="3.5" ...>
 ...
</pages>

If you set it to “3.5”, rendering will occur as in older versions of ASP.NET. If you set it to “4.0”,
a number of controls (Menu, GridView, Image) will automatically render out cleaner and
much more CSS-friendly HTML. It’s still not perfect, but it’s definitely a much better option,
 especially if you consider that all you need to do is add a line to the configuration file.

In ASP.NET 4, the Control class (and subsequently the Page class) features a new property,
RenderingCompatibility, that informs you about the selected rendering machinery. It’s key
to notice that although the RenderingCompatibility property has a setter method, that is re-
served for ASP.NET and using it programmatically doesn’t necessarily result in visible effects.
In other words, the following code compiles but doesn’t produce any results:

// Default is 4.0
this.RenderingCompatibility = new Version(3, 5);

So for your own purposes, you should consider RenderingCompatibility to be a read-only
property and resort to the <pages> section to change the rendering algorithm for all
 controls in all application pages. The default rendering version is 4.0 if you choose to create
an ASP.NET 4 application.

Let’s see the most relevant example of CSS friendliness enforced in ASP.NET 4. Here’s the
Menu control as it is being used in the sample ASP.NET project template:

<asp:Menu ID="NavigationMenu" runat="server"
 CssClass="menu"
 EnableViewState="false"
 IncludeStyleBlock="false"
 Orientation="Horizontal">
 <Items>
 <asp:MenuItem NavigateUrl="~/Default.aspx" Text="Home"/>
 <asp:MenuItem NavigateUrl="~/About.aspx" Text="About"/>
 </Items>
</asp:Menu>

This code in version 3.5 will produce the following markup:

<table id="NavigationMenu" class="menu NavigationMenu_2">
 <tr>
 <td onmouseover="Menu_HoverStatic(this)" onmouseout="Menu_Unhover(this)"
 onkeyup="Menu_Key(this)" id="NavigationMenun0">
 <table>
 <tr>
 <td style="white-space:nowrap;">
 Home</td>
 </tr>
 </table>
 </td>
 <td style="width:3px;"></td>

234 Part II ASP.NET Pages and Server Controls

 <td onmouseover="Menu_HoverStatic(this)" onmouseout="Menu_Unhover(this)"
 onkeyup="Menu_Key(this)" id="NavigationMenun1">
 <table>
 <tr>
 <td style="white-space:nowrap;">
 About</td>
 </tr>
 </table>
 </td>
 </tr>

</table>

As you can see, it is table-based output where most inline style information has been
stripped off thanks to the IncludeStyleBlock property being set to false. Here’s the markup
you get according to the 4.0 rendering procedure:

<ul class="level1">
 Home
 About

The visual output is not the same as shown in Figure 6-1. To achieve a given visual result with
the 3.5 rendering approach, you must add style information to the control declaration; in 4.0,
you just edit at the CSS level.

FIGURE 6-1 Menu rendering according to version 3.5 (left) and 4.0 (right).

In ASP.NET 4, a bunch of other controls feature additional properties to let developers gain
more control over the structure of the returned markup. For example, some view controls
(for example, FormView and Login) stop rendering inside of a table if you set the property
RenderOuterTable to false. Likewise, validation controls and the Image control stop render-
ing inline style blocks. Finally, list controls such as the CheckBoxList control have additional
 options for the repeat layout to emit plain ordered or unordered HTML lists.

Browser-Sensitive Rendering
In ASP.NET 4, as well as in older versions, you can declaratively assign a browser-specific
value to a given control property. Here’s a quick example:

<asp:Button ID="Button1" runat="server" Text="I'm a Button"
 ie:Text="IE Button"
 mozilla:Text="Firefox Button" />

The Text property of the button will contain “IE button” if the page is viewed through
Internet Explorer and “Firefox button” if the page goes through Firefox. If another browser is

 Chapter 6 ASP.NET Core Server Controls 235

used, the value of the unprefixed Text attribute is used. All properties you can insert in a tag
declaration can be flagged with a browser ID. Each supported browser has a unique ID. As in
the preceding code, ie is for Internet Explorer and mozilla is for Firefox. Unique IDs exist for
various versions of Netscape browsers and mobile devices. Browser IDs are interspersed in
.browser files, which you can find at this path:

%windows%\Microsoft.NET\Framework\[version]\CONFIG\Browsers

Themeable Controls
In ASP.NET jargon, a theme is a named collection of property settings that can be applied
to controls to make them look consistent across pages. You can apply theme settings to an
entire Web site, to a page and its controls, or to an individual control. A theme is identified
by name and consists of CSS files, images, and control skins. A control skin is a text file that
contains predefined values for some control properties. Applied together, these settings con-
tribute to change the look and feel of the control and give the whole site a consistent (and,
you hope, appealing) user interface. In addition, because themes are a sort of monolithic
attribute, you can easily export that look from one application to the next. With themes en-
abled, if the developer adds, say, a DataGrid control to a page, the control is rendered with
the default appearance defined in the currently selected theme.

Server controls can dynamically accept or deny theming through a Boolean property named
EnableTheming, which is set to true by default. As a general rule, themes affect only prop-
erties that relate to the control’s appearance. Properties that explicitly specify a behavior
or imply an action should not be made themeable. Each control has the power to state
which properties are themeable and which are not. This happens at compile time through
 attributes—in particular, the Themeable attribute. I’ll return to themes in Chapter 8, “Page
Composition and Usability.”

Important Although fully supported and functional, themes are kind of deprecated in today’s
ASP.NET development, superseded by plain CSS classes and CSS-friendly development.

HTML Controls
HTML server controls look like plain HTML tags, only with an extra runat=server attribute.
The additional runat attribute makes a huge difference, however. In ASP.NET, by simply add-
ing the runat attribute, you can bring to life otherwise dead HTML text and transform it into
a living instance of a server-side component. After it’s transformed into a server object, the
original HTML tag can be configured programmatically using an object-oriented approach.

236 Part II ASP.NET Pages and Server Controls

By design, HTML controls expose a set of methods and properties that carefully reflect the
HTML syntax. For example, to set the default text of an input form field, you use a property
named Value instead of the more expressive Text. The name of the server control is deter-
mined by the value of the ID attribute. The following code snippet shows how to define a
server-side input tag named lastName:

<input runat="server" id="lastName" type="text" />

In the example, the tag declaration does not include an explicit value for the Value attribute.
You can also set it programmatically as follows:

void Page_Load(object sender, EventArgs e)
{
 lastName.Value = "Esposito";
}

After being processed by the ASP.NET runtime, the preceding declaration generates the
 following HTML code, which is forwarded to the browser:

<input name="myName" id="myName" type="text" value="Esposito" />

Notice that a server-side ID attribute expands to a pair of HTML attributes: Name and ID. The
W3C HTML specification says that the attribute name is used for posting forms to the server;
the id attribute is used, instead, for client-side purposes. In no way does this mean that on
the server Name and ID can be interchangeably used to name the server instance of the
 control. The name of the server control instance is given by ID. If you specify both Name and
ID on a server-side tag, the value assigned to Name will be silently overridden.

Generalities of HTML Controls
The .NET Framework provides predefined server controls for commonly used HTML elements
such as <form>, <input>, and <select>, as well as for tables, images, and hyperlinks. All the
predefined HTML server controls inherit from the same base class—the HtmlControl class. In
addition, each control then provides its own set of specific properties and its own events.

Controls typically supply properties that allow you to manipulate the HTML attributes pro-
grammatically from within server code. HTML controls integrate well with data binding and
the ASP.NET state maintenance, and they also provide full support for postback events and
client scripting. For example, for a button that gets clicked, you can have some JavaScript
code running on the client responding to the onclick event as well as some code that handles
the event on the server if the page posts back as the result of that event.

 Chapter 6 ASP.NET Core Server Controls 237

HTML controls are defined in the System.Web.UI.HtmlControls namespace. Most, but
not all, HTML tags have a direct control counterpart in the ASP.NET framework. HTML
 elements that don’t map to a made-to-measure server control are rendered through the
HtmlGenericControl class and have attributes set using generic collections rather than direct
properties. Generic controls include <iframe>, <hr>, , and <body>. In general, you
should bear in mind that every element that can appear in an HTML page can be marked as
runat=”server” and programmed and styled on the server.

The HtmlControl Base Class
The HtmlControl class inherits from Control and defines the methods, properties, and events
common to all HTML controls. Actually, many properties and all methods and events are
simply inherited from the base class. Table 6-6 shows the list of properties specific to HTML
controls.

TABLE 6-6 Specific Properties of an HTML Control

Property Description
Attributes Gets a collection object representing all the attributes set on the control with the

corresponding value

Disabled Gets or sets a Boolean value, which indicates whether the HTML control is disabled

Style Gets a collection object representing all CSS properties applied to the control

TagName Gets the name of the HTML tag behind the control

A disabled HTML server control is visible and always gets generated as HTML code. If the
Disabled property is set to true, the disabled HTML attribute is inserted in the HTML out-
put for the control. As mentioned earlier, if the Visible property is set to false, HTML is not
 generated for the control.

Working with HTML Attributes
Individual HTML controls feature more properties than just those listed in Table 6-6.
Properties of HTML server controls map to HTML attributes, and the values assigned to the
properties are replicated in the HTML output. For controls that don’t have an HTML direct
counterpart, the Attributes collection is used to set attributes on the resulting HTML tag.
This collection can also be used to set properties not mapped by the control’s interface
and, if needed, to define custom HTML attributes. Any content of the Attributes collection is
 managed as a string.

238 Part II ASP.NET Pages and Server Controls

Given the following HTML code snippet, let’s see how to programmatically set some
 attributes on the <body> tag:

<script type="text/javascript">
function Init() {
 alert("Hello world");
}
</script>

<script runat=server language="C#">
void Page_Load(object sender, EventArgs e) {
 theBody.Attributes["onload"] = "Init()";
}
</script>

<html>
<body runat="server" id="theBody">
</body>
</html>

You bind a JavaScript script to the onload attribute of the <body> tag. The resulting HTML
code that the browser displays is as follows:

<script type="text/javascript">
function Init() {
 alert("Hello");
}
</script>

<html>
<body id="theBody" onload="Init()">
</body>
</html>

The Attributes property is rendered through a special type of class named AttributeCollection.
In spite of the name, the content of the class is not directly enumerable using the for...each
statement because the IEnumerable interface is not supported. The AttributeCollection class
provides ad hoc methods to render attributes of a text writer object and to add and remove
elements. Interestingly, if you add an attribute named Style, the class is smart enough to
 reroute the assigned content to the Style collection.

Note In the previous example, the server-side code used to add the onload attribute to the
body element has been written through a server <script> tag for simplicity. You achieve the
same results by moving the content of the server <script> tag to the code-behind class of
the page.

 Chapter 6 ASP.NET Core Server Controls 239

Hierarchy of HTML Controls
Most HTML controls can be grouped into two main categories: container and input controls.
A few controls, though, cannot be easily catalogued in either of the two groups. They are
HtmlImage, HtmlLink, HtmlMeta, and HtmlTitle, and they are the ASP.NET counterpart of the
, <link>, <meta>, and <title> tags. Figure 6-2 shows the tree of HTML controls.

HtmlControl

HtmlInputControl HtmlContainerControl HtmlImage

HtmlLink

HtmlTitleHtmlAnchor

HtmlForm

HtmlSelect

HtmlButton

HtmlTable

HtmlTableRow

HtmlTableCell

HtmlTextArea

HtmlGenericControl

HtmlHead

HtmlInputButton

HtmlInputCheckBox

HtmlInputFile

HtmlInputImage

HtmlInputHidden

HtmlInputRadioButton

HtmlInputText

HtmlInputReset

HtmlInputSubmit

HtmlInputPassword

HtmlMeta

FIGURE 6-2 Grouping HTML controls by category.

The input controls category includes all possible variations of the <input> tag, from submit
buttons to check boxes and from text fields to radio buttons. The container controls category
lists anchors, tables, forms, and in general, all HTML tags that might contain child elements.

HTML Container Controls
The base class for container controls is the HtmlContainerControl class, which descends
 directly from HtmlControl. The HTML elements addressed by this tag are elements that must
have a closing tag—that is, forms, selection boxes, and tables, as well as anchors and text
areas. Compared to the HtmlControl class, a container control features a couple of additional
string properties: InnerHtml and InnerText.

Both properties manipulate the reading and writing of literal content found between the
opening and closing tags of the element. Note that you cannot get the inner content of
a control if the content includes server controls. InnerHtml and InnerText work only in the

240 Part II ASP.NET Pages and Server Controls

 presence of all literal content. The tag itself is not considered for the output. Unlike InnerText,
though, InnerHtml lets you work with HTML rich text and doesn’t automatically encode and
decode text. In other words, InnerText retrieves and sets the content of the tag as plain text,
whereas InnerHtml retrieves and sets the same content but in HTML format.

Table 6-7 lists the HTML container controls defined in ASP.NET.

TABLE 6-7 HTML Container Controls
Class Description
HtmlAnchor Represents an HTML anchor—specifically, the <a> tag.

HtmlButton Represents the HTML <button> tag.

HtmlForm Represents the <form> tag, but can be used only as a container of
 interactive server controls on a Web page. It cannot really be used to
 create HTML forms that are programmable on the server.

HtmlGenericControl Represents an HTML tag for which the .NET Framework does not provide
a direct class. Sample tags include , <hr>, and <iframe>. You pro-
gram these controls by using the Attributes collection and set attributes
indirectly.

HtmlHead Represents the <head> tag, and allows you to control meta tags, the style
sheet, and the page title programmatically.

HtmlSelect Represents the <select> tag—that is, an HTML selection box.

HtmlTable Represents an HTML table—specifically, the <table> tag.

HtmlTableCell Represents the <td> HTML tag—that is, a cell in a table.

HtmlTableRow Represents the <tr> HTML tag—that is, a row in a table.

HtmlTextArea Represents a multiline text box, and maps the <textarea> HTML tag.

Note that the HtmlButton control is different than HtmlInputButton, which represents
the button variation of the <input> tag. The HtmlButton control represents the HTML
4.0– specific <button> tag. I’ll say more about buttons in the next section while discussing
the Web controls.

Server-side forms play a key role in the economy of ASP.NET applications because they are
the means for implementing postbacks and guaranteeing state maintenance. For this reason,
the HtmlForm control is not simply a form element you can program on the server. In partic-
ular, the HtmlForm hides the Action property and cannot be used to post content to a page
different than the content that generated the HTML for the browser. I’ll cover HTML forms in
great detail in Chapter 9, “Input Forms.”

 Chapter 6 ASP.NET Core Server Controls 241

Managing Header Information
An instance of the HtmlHead control is automatically created if the page contains a <head>
tag marked with the attribute runat=server. Note that this setting is the default when you
add a new page to a Visual Studio ASP.NET project, as shown in the following snippet:

<head runat="server">
 <title> </title>
 ...
</head>

The header of the page is returned through the new Header property of the Page class.
The property returns null if the <head> tag is missing, or if it is present but lacks the runat
attribute.

The HtmlHead control exposes three string properties: Description, Keywords, and Title.
Description and Keywords contain meta information about the page. These properties are
the actual storage for the content of the Page properties MetaDescription and MetaKeywords
that have just been added in ASP.NET 4 to help the rank of your pages in search engine
listings.

The Title property is used to retrieve and set the title of the page:

Header.Title = "This is the title";

Note that this property returns the correct page title only if the <title> tag is correctly placed
within the <head> tag. Some browsers, in fact, are quite forgiving on this point and allow de-
velopers to define the title outside the header. To manipulate the <title> tag independently
from the header, use the HtmlTitle control and mark the <title> tag with the runat attribute.

Finally, HtmlHead features a StyleSheet property of type IStyleSheet. The actual class that
implements the interface is internal and named StyleSheetInternal. All this class does is let
you create CSS style information programmatically. Note that the StyleSheet property is not a
programmatic way to link a URL to an external CSS file. It is, instead, an API for you to create
an ASP.NET–specific Style object that is then translated into a CSS block within the page.
Here’s an example:

protected void Page_Load(object sender, EventArgs e)
{
 var myAreaStyle = new Style {ForeColor = Color.Blue, BackColor = Color.LightGray};

 // Add the style to the header of the current page
 Page.Header.StyleSheet.CreateStyleRule(myAreaStyle, null, "DIV#MyArea");
}

242 Part II ASP.NET Pages and Server Controls

The resulting page header looks like this:

<head>
 <title></title>
 <style type="text/css">
 DIV#MyArea { color:Blue;background-color:LightGrey; }
 </style>
</head>

The RegisterStyle method allows registered page-wide Style objects to be merged
 programmatically with the style object of individual server controls. You register a new
 control-focused style as shown here:

var labelStyle = new Style { ... };
...
Page.Header.StyleSheet.RegisterStyle(labelStyle, null);

// Right after registering the style, you apply it to or merge it with multiple controls
Label1.ApplyStyle(labelStyle);
Label2.MergeStyle(labelStyle);

Suppose now your page includes the following controls:

<asp:Label runat="server" ID="Label1" Text="Hello, world" />

<asp:Label runat="server" ID="Label2" CssClass="bold" Text="Hello, world (merged)" />

Here’s the markup generated for the two Label controls:

Hello, world

Hello, world

The class attribute of the first control is set to an autogenerated CSS class; the class attribute
of the second control is the result of merging the current style with the new one.

Linking External CSS Files
To link an external style sheet file, you use the following code:

var link = new HtmlLink {Href = "~/StyleSheet.css"};
link.Attributes.Add("rel", "stylesheet");
link.Attributes.Add("type", "text/css");
Page.Header.Controls.Add(link);

The HtmlLink control represents an individual <link> element. The <link> tag can appear
only in the <head> section of a document, although it can appear any number of times.

 Chapter 6 ASP.NET Core Server Controls 243

Managing Meta Information
The HtmlMeta control is a helper object to allow programmatic control over the HTML
<meta> element. Located within the <head> section, a <meta> tag contains some meta
information about the rendered page. A <meta> element is characterized by a name and an
associated value. You use Name property to specify the metadata property name, and the
Content property to specify the associated value:

// Meta information providing some clue to search engines
var meta1 = new HtmlMeta
 {
 Name = "keywords",
 Content = "Key terms that describe your page"
 };
Page.Header.Controls.Add(meta1);

You can use the Scheme property to define some content for the scheme attribute of the
HTML <meta> tag to provide additional information to user agents on how to interpret the
meta information.

Finally, you use the HttpEquiv property instead of Name when you need to assign a value to
the http-equiv attribute of the resulting HTML <meta> element.

Important If your <head> section contains code blocks, you are not allowed to enter changes
to its structure, such as adding new controls for <meta> and <link> tags. If you do so, you’ll get
a run-time exception. A common reason to have code blocks in a server-side <head> tag is to
resolve script URLs. Here’s a common example:

<head runat="server">
 <script src="<%= ResolveUrl("~/Scripts/jquery-1.4.2.min.js") %>"
 type="text/javascript"></script>
</head>

This code just prevents you from programmatically adding new controls to the Header object.
The workaround simply consists of moving the script tag away from the <head> block. A good
place to move it could be the bottom of the page, which also would deliver better rendering
 performance for the page. The browser usually stops rendering when it encounters a <script>
tag and resumes after the script is downloaded. By placing all the <script> tags at the bottom
of the body, your page starts doing some graphic work sooner (at least if it is linked to large
script files).

Navigating to a URL
The HtmlAnchor class is the programmatic way of accessing and configuring the <a> tag.
With respect to the other container controls, the HtmlAnchor class provides a few extra
properties, such as HRef, Name, Target, and Title. The HRef property sets the target of the
hyperlink and can be used to navigate to the specified location. The Name property names a

244 Part II ASP.NET Pages and Server Controls

section in the ASP.NET page that can be reached from anywhere on the same page through
#-prefixed HRefs. The following code demonstrates a bookmarked anchor named MoreInfo:

This anchor can be reached using the following hyperlink:

Get More Info

The Target property identifies the target window or the frame where the linked URL will be
loaded. Common values for Target are _self, _top, _blank, and _parent, as well as any other
name that refers to a page-specific frame. Although the feature is mostly browser depen-
dent, you should always consider these special names as lowercase. Finally, the Title property
contains the text that virtually all browsers display as a ToolTip when the mouse hovers over
the anchor’s area.

Handling Events on the Server
In addition to being used for navigating to a different page, the anchor control—as well
as the HtmlButton control—can be used to post back the page. Key to this behavior is the
ServerClick event, which lets you define the name of the method that will handle, on the
server, the event generated when the user clicks the control. The following code demon-
strates an anchor in which the click event is handled on both the client and server:

Click

The onclick attribute defines the client-side event handler written using JavaScript; the
 onserverclick attribute refers to the server-side code that will run after the page posts back.
Of course, if both event handlers are specified, the client-side handler executes first before
the postback occurs.

The HtmlSelect Control
The HtmlSelect control represents a list of options from which you choose one or more. You
control the appearance and behavior of the control by setting the Size and Multiple proper-
ties. The Size property specifies the number of rows to be displayed by the control, whereas
the Multiple property indicates whether more than one item can be selected in the control.
Internal items are grouped in the Items collection, and each element is represented by a
ListItem object. Interestingly, the ListItem class is not defined in the HtmlControls namespace
but lives instead in the WebControls namespace. To specify the text for each selectable item,
you can either set the Text property of the ListItem or simply define a series of <option> tags
within the opening and closing tags of the <select> element.

 Chapter 6 ASP.NET Core Server Controls 245

By default, the HtmlSelect control shows up as a drop-down list. However, if multiple
 selections are allowed or the height is set to more than one row, the control is displayed as a
list box. The index of the selected item in a single-selection control is returned through the
SelectedIndex property. If the multiple selection is enabled, you just loop through the Items
collection and check the Selected property on individual list items.

The HtmlSelect control supports data binding through additional properties. The DataSource
property lets you set the data source, which can be any .NET object that implements the
IEnumerable interface. If the data source contains multiple bindable tables (for example, a
DataSet object), by using the DataMember property you can choose a particular one. Finally,
the DataTextField and DataValueField properties are used to bind the list item’s Text and
Value properties to columns in the data source. (I’ll cover data binding in Chapter 10.)

The HtmlTextArea Control
The HtmlTextArea control corresponds to the <textarea> HTML element and allows you to
programmatically create and configure a multiline text box. The HtmlTextArea class provides
the Rows and Cols properties to control the number of rows and columns of the text box. The
Value property can be used to assign some text to display in the control area.

The HtmlTextArea class also provides a ServerChange event that fires during a postback
and allows you to validate on the server the data contained in the control. Note that the
HtmlTextArea control does not fire the event itself and does not directly cause the page to
post back. Rather, when the page posts back in response to a click on a link or submit but-
ton, the HtmlTextArea control intervenes in the server-side chain of events and gives the
programmer a chance to run some code if the internal content of the control is changed
 between two successive postbacks.

All ASP.NET controls that, like HtmlTextArea, implement the IPostBackDataHandler inter-
face can invoke user-defined code when the control’s internal state changes. As discussed
in Chapter 5, controls can fire custom events by overriding the RaisePostDataChangedEvent
method on the aforementioned interface. The following pseudocode shows what happens in
the method’s implementation of HtmlTextArea:

void System.Web.UI.IPostBackDataHandler.RaisePostDataChangedEvent()
{
 this.OnServerChange(EventArgs.Empty);
}

Finally, note that the control raises the event only if the state has changed between two
successive posts. To determine whether that has happened, the control needs to track the
content it had the time before. This value can be stored only in the view state. Of course, the
ServerChange even won’t fire if you disable the view state for the host page or the control.

246 Part II ASP.NET Pages and Server Controls

HTML Input Controls
In HTML, the <input> element has several variations and can be used to provide a submit
button as well as a check box or text box. In ASP.NET, each possible instance of the <input>
element is mapped to a specific class. All input classes derive from the HtmlInputControl
class. HtmlInputControl is the abstract class that defines the common programming interface
for all input controls. The class inherits from HtmlControl and simply adds three custom
properties—Name, Type, and Value—to the inherited interface.

The Name property returns the name assigned to the control. In ASP.NET, this property
is peculiar because, although it’s marked as read/write, it actually works as a read-only
 property. The get accessor returns the control’s UniqueID property, while the set accessor is
just void. As a result, whatever value you assign to the property, either programmatically or
declaratively, is just ignored and no exception or compile error is ever thrown.

The Type property mirrors the type attribute of the HTML input elements. The property is
read-only. Finally, the Value property is read/write and represents the content of the input
field.

Table 6-8 lists the HTML input controls defined in ASP.NET.

TABLE 6-8 HTML Input Controls
Class Description
HtmlInputButton Represents the various flavors of a command button supported by HTML.

Feasible values for the Type attribute are button, submit, and reset.

HtmlInputCheckBox Represents an HTML check box—that is, the <input> tag with a type
equal to checkbox.

HtmlInputFile Represents the file uploader—that is, the <input> tag with a type equal
to file.

HtmlInputHidden Represents a hidden buffer of text data—that is, the <input> tag with a
type equal to hidden.

HtmlInputImage Represents a graphic button—that is, the <input> tag with a type equal
to image. Note that this tag is supported by all browsers.

HtmlInputPassword Represents a protected text field—that is, the <input> tag with a type of
password.

HtmlInputRadioButton Represents a radio button—that is, the <input> tag with a type equal to
radio.

HtmlInputReset Represents a reset command button.

HtmlInputSubmit Represents a submit command button.

HtmlInputText Represents a text field—that is, the <input> tag with a type of either
password or text.

 Chapter 6 ASP.NET Core Server Controls 247

The hidden and text input controls are nearly identical, and the contents of both are posted
back. Essentially, they differ only in that hidden fields are not displayed and, subsequently,
they don’t provide some UI-related properties such as MaxLength and Size.

Command Buttons
The HtmlInputButton class is the most flexible button class in the .NET Framework. It differs
from the HtmlButton class in that it renders through the <input> tag rather than the Internet
Explorer–specific <button> tag. This fact ensures for the control much wider support from
browsers.

The HTML input button controls support the ServerClick event, which allows you to set the
code to run on the server after the button is clicked. Note that if you set the button type
to Button and the ServerClick event handler is specified, the control automatically adds the
postback script code to the onclick HTML attribute. In this way, any click causes the page to
post back and the code to execute. Let’s consider the following ASP.NET code:

<input runat="server" type="button" id="btn" value="Click"
 onserverclick="buttonClicked" />

The corresponding HTML code is as follows:

<input language="javascript" onclick="__doPostBack('btn','')"
 name="btn"
 type="button"
 value="Click" />

The client-side __doPostBack script function is the standard piece of code generated by
ASP.NET to implement the postback. If the button type is set to Submit—that is, a value that
would always cause a postback—no client-side script code is generated and the onclick at-
tribute is not set.

In ASP.NET 2.0 and newer versions, more specific controls have been added to render submit
and reset buttons. The controls are HtmlInputSubmit and HtmlInputReset.

Note The HtmlInputImage control supports a nearly identical pattern for handling server-side
events and validation. The HtmlInputImage control features a few more properties specific to
the image it shows. In particular, you can set the alternate text for the image, the border, and
the alignment with respect to the rest of the page. The ServerClick event handler has a slightly
 different form and looks like the following:

void ImageClickEventHandler(object sender, ImageClickEventArgs e);

When an image button is clicked, the coordinates of the click are determined by using the X and
Y properties of the ImageClickEventArgs data structure.

248 Part II ASP.NET Pages and Server Controls

Controlling Validation
The HtmlInputButton class, as well as the HtmlButton class, support a Boolean property
named CausesValidation. The property indicates whether the content of the input fields
should be validated when the button is clicked. By default, the property is set to true,
 meaning the validation always takes place. We’ll examine data validation in Chapter 9. For
now, it suffices to say, you can programmatically enable or disable the validation step by
 using the CausesValidation property.

Typically, you might want to disable validation if the button that has been clicked doesn’t
perform a concrete operation but simply clears the user interface or cancels an ongoing
 operation. By design, in fact, server-side page validation takes place just before the
ServerClick event handler is executed. Setting the CausesValidation property to false is the
only means you have to prevent an unnecessary validation.

Detecting State Changes of Controls
Earlier in this chapter, while discussing the features of the HtmlTextArea control, we ran into
the ServerChange event and described it as the mechanism to detect and validate changes
in the control’s state between two successive postbacks. The ServerChange event is not an
 exclusive feature of the HtmlTextArea control; it’s also supported by other input controls,
such as HtmlInputCheckBox, HtmlInputRadioButton, HtmlInputHidden, and HtmlInputText.
Let’s look at an example in which you use the ServerChange event to detect which elements
have been checked since the last time the control was processed on the server.

You build a page with a list of check boxes and a button to let the user post back to the
 server when finished. Notice, in fact, that neither the HtmlInputCheckBox control, nor any
other input control except buttons, post back to the server when clicked. For this reason,
you must provide another control on the Web page that supports posting to the server—for
 example, an HtmlButton or HtmlInputButton control. The following code implements the
page shown in Figure 6-3:

<%@ Page Language="C#" %>
<html>
<script runat="server">
public void DetectChange(object sender, EventArgs e) {
 var cb = (HtmlInputCheckBox) sender;
 Label1.Text += "Control " + cb.UniqueID + " changed
";
}
</script>

<body>
<form runat="server">
 ...
 <input runat="server" type="checkbox" id="one"
 OnServerChange="DetectChange" />One

 <input runat="server" type="checkbox" id="two"
 OnServerChange="DetectChange" />Two

 <input runat="server" type="checkbox" id="three"
 OnServerChange="DetectChange" />Three

 Chapter 6 ASP.NET Core Server Controls 249

 <input runat="server" type="submit" value="Submit" />
 <hr />
 <asp:Label runat="server" ID="Label1" />
</form>
</body>
</html>

FIGURE 6-3 The ServerChange event fires only if the status of the control has changed since the last time the
control was processed on the server.

The ServerChange event is fired only if the state of the control results changed after two
postbacks. To get the first screen shot, you select the element and then submit. Next, if you
submit again without selecting or deselecting anything, you get the second screen shot.

As mentioned in Chapter 5, when you implement the IPostBackDataHandler interface, each
server control gets a chance to update its current state with data posted by the client.

Uploading Files
The HtmlInputFile control is the HTML tool for uploading files from a browser to the Web
server. To take advantage of the HtmlInputFile control, you should first ensure that the server
form’s Enctype property is set to multipart/form-data. However, starting with ASP.NET 2.0,
the proper EncType is automatically set, care of the HtmlInputFile control, before the control’s
markup is rendered. The enctype attribute in the code shown next is therefore unnecessary:

<form runat="server" enctype="multipart/form-data">
 <input runat="server" type="file" id="upLoader" >
 <input runat="server" type="submit" value="Upload..." />
</form>

The way in which the HtmlInputFile control is rendered to HTML is browser-specific, but it
normally consists of a text box and a Browse button. The user selects a file from the local
machine and then clicks the button to submit the page to the server. When this occurs, the
browser uploads the selected file to the server, as shown in Figure 6-4.

250 Part II ASP.NET Pages and Server Controls

FIGURE 6-4 A new file has been uploaded to the Web server and copied to the destination folder.

Note Prior to ASP.NET, a server-side process—the posting acceptor—was required to run in
the background to handle multipart/form-data submissions. In ASP.NET, the role of the posting
acceptor is no longer necessary because it is carried out by the ASP.NET runtime itself.

On the server, the file is parked into an object of type HttpPostedFile and stays there until
explicitly processed—for example, saved to disk or to a database. The HttpPostedFile object
provides properties and methods to get information on an individual file and to read and
save the file. The following code shows how to save a posted file to a particular folder to disk:

<%@ Page language="C#" %>
<%@ Import Namespace="System.IO" %>

<script runat="server">
 void UploadButton_Click(object sender, EventArgs e)
 {
 // *** ASSUME THE PATH EXISTS ***
 string savePath = @"c:\temp\uploaded files\";
 if (!Directory.Exists(savePath)) {
 const String msg = "<h1>The upload path doesn't exist: {0}</h1>";
 UploadStatusLabel.InnerHtml = String.Format(msg, savePath);
 return;
 }

 // Verify that a file has been posted
 if (FileUpload1.PostedFile != null)
 {
 // Save the uploaded file to the specified path
 var fileName = Path.GetFileName(FileUpload1.Value);
 savePath += fileName;
 FileUpload1.PostedFile.SaveAs(savePath);

 Chapter 6 ASP.NET Core Server Controls 251

 // Notify the user of the name the file was saved under.
 UploadStatusLabel.InnerText = "File saved as: " + savePath;
 }
 else
 {
 // Notify the user that a file was not uploaded.
 UploadStatusLabel.InnerText = "No file specified.";
 }
 }
</script>

<html>
<head runat="server">
 <title>File Upload</title>
</head>
<body>
 <form runat="server">
 <h3>Select a file to upload:</h3>
 <hr />
 File to upload

 <input type="file" id="FileUpload1" runat="server" />

 <input runat="server" id="UploadButton" type="submit"
 value="Upload" onserverclick="UploadButton_Click" />
 <hr />

 </form>
</body>
</html>

You can also use the InputStream property of the HttpPostedFile object to read the posted
data before persisting or processing. The HttpInputFile control also allows you to restrict the
file types that can be uploaded to the server. You do this by setting the Accept property with
a comma-separated list of MIME types.

Caution When you use the SaveAs method, you should pay attention to specify the full path
to the output file. If a relative path is provided, ASP.NET attempts to place the file in the system
directory. This practice can result in an “access denied” error. Furthermore, make sure to provide
write permission for the account used by ASP.NET for the directory where you want to store
the file.

ASP.NET exercises some control of the amount of data being uploaded. The
 maxRequestLength attribute in the <httpRuntime> section of the configuration file sets the
maximum allowable file size. An error is generated in the browser when the file exceeds the
specified size—4 MB by default. Uploading large files might also generate another run-time
error as a result of an excessive consumption of system memory. Finally, in a hosting scenario
if you still experience problems regardless of the settings in your configuration, check out the
maximum upload size on your Web server.

252 Part II ASP.NET Pages and Server Controls

The HtmlImage Control
The HtmlImage class is the ASP.NET counterpart of the tag. You can use it to configure
on the server the display of an image. Possible parameters you can set are the size of the
 image, the border, and the alternate text. An instance of HtmlImage is created only when the
runat attribute is added to the tag. If you simply need to display an image within a
page, and the image is not dynamically determined or configured, there is no need to resort
to the HtmlImage control, which would add unnecessary overhead to the page.

The following code snippet shows how to configure a server-side tag called to display
an image whose name is determined based on run-time conditions:

theImg.Width = 100;
theImg.Height = 100;
theImg.Src = GetImageUrl(Request); // assume GetImageUrl is a method of yours

The HtmlImage control should be used to programmatically manipulate the image to change
the source file, the width and height, or the alignment of the image relative to other page
elements. The majority of properties of the HtmlImage control are implemented as strings,
including Src—the URL of the image—and Align. Feasible values of Align are only a small set
of words such as left, right, top, and so forth. These words would have been more appropri-
ately grouped in a custom enumerated type, thus providing for a strongly typed program-
ming model. If you think so, too, you just got the gist of the difference between HTML and
Web server controls! HTML controls just mirror HTML tags; Web controls attempt to provide
a more consistent and effective programming interface by exploiting the characteristics of
the .NET Framework.

Literal Controls
Literal controls are a special type of server control that ASP.NET creates and uses when-
ever it encounters plain text that doesn’t require server-side processing. In general,
everything that appears in the context of an ASP.NET page is treated like a control. If
a tag includes the runat=”server” attribute, ASP.NET creates an instance of a specific
class; otherwise, if no runat attribute has been specified, the text is compiled into a
LiteralControl object. Literal controls are simple text holders that are added to and
removed from pages using the same programming interface defined for other server
controls.

Note that a literal control is created for each sequence of characters placed between
two successive server controls, including carriage returns. Using a new line to separate
distinct server controls and increase code readability actually affects the number of
server controls being created to serve the page. Writing the page as a single string
without carriage returns produces the smallest number of server controls.

 Chapter 6 ASP.NET Core Server Controls 253

Web Controls
Web controls are defined in the System.Web.UI.WebControls namespace and represent an
 alternative approach to HTML server controls. Like HTML controls, Web controls are server-
side components that spring to life thanks to the runat=”server” attribute. Unlike HTML
 controls, Web controls provide a programming interface that refactors the classic set of
HTML attributes and events. For this reason, Web controls sometimes appear to be more
consistent and abstract in the API design and richer in functionality, but they still gener-
ate valid markup. When hosted in .aspx pages, Web controls are characterized by the asp
namespace prefix.

To a large degree, Web controls and HTML controls overlap and generate almost the same
markup, although they do it through different programming interfaces. For example, the
Web controls namespace defines the TextBox control and makes it available through the
<asp:textbox> tag; similarly, the HTML controls namespace provides the HtmlInputText
 control and declares it using the <input> tag. Using either is mostly a matter of preference;
only in a few cases will you run into slight functionality differences.

Generalities of Web Controls
The WebControl class is the base class from which all Web controls inherit. WebControl
 inherits from Control. The class defines several properties and methods that are shared, but
not necessarily implemented, by derived controls. Most properties and methods are related
to the look and feel of the controls (font, style, colors, CSS) and are subject to browser and
HTML versions. For example, although all Web controls provide the ability to define a border,
not all underlying HTML tags actually support a border.

Properties of Web Controls
Table 6-9 lists the properties available on the WebControl class.

TABLE 6-9 Specific Properties of Web Controls
Property Description
AccessKey Gets or sets the letter to press (together with Alt) to quickly set focus to

the control in a Web form. It’s supported on Internet Explorer 4.0 and
newer.

Attributes Gets the collection of attributes that do not correspond to properties
on the control. Attributes set in this way will be rendered as HTML at-
tributes in the resulting page.

BackColor Gets or sets the background color of the Web control.

BorderColor Gets or sets the border color of the Web control.

BorderStyle Gets or sets the border style of the Web control.

BorderWidth Gets or sets the border width of the Web control.

254 Part II ASP.NET Pages and Server Controls

Property Description
ControlStyle Gets the style of the Web server control. The style is an object of type

Style.

ControlStyleCreated Gets a value that indicates whether a Style object has been created for
the ControlStyle property.

CssClass Get or sets the name of the cascading style sheet (CSS) class to be
 associated with the control.

DisabledCssClass Get or sets the name of the cascading style sheet (CSS) class to be
 associated with the control when in a disabled state.

Enabled Gets or sets whether the control is enabled.

Font Gets the font properties associated with the Web control.

ForeColor Gets or sets the foreground color of the Web control mostly used to
draw text.

Height Gets or sets the height of the control. The height is expressed as a
member of type Unit.

Style Gets a CssStyleCollection collection object made of all the attributes
 assigned to the outer tag of the Web control.

SupportDisabledAttribute Returns true for the WebControl base class.

TabIndex Gets or sets the tab index of the control.

ToolTip Gets or sets the text displayed when the mouse pointer hovers over the
control.

Width Gets or sets the width of the control. The width is expressed as a
 member of type Unit.

The ControlStyle and ControlStyleCreated properties are used primarily by control developers,
while the Style property is what application developers typically use to set CSS attributes on
the outer tag of the control. The Style property is implemented using an instance of the class
CssStyleCollection. The CssStyleCollection class is a simple collection of strings like those you
assign to the HTML style attribute.

Styling Web Controls
The ControlStyle property evaluates to an object of type Style—a class that encapsulates
the appearance properties of the control. The Style class groups together some of the
 properties that were shown in Table 6-9, and it works as the repository of the graphical and
cosmetic attributes that characterize all Web controls. The grouped properties are BackColor,
BorderColor, BorderStyle, BorderWidth, CssClass, Font, ForeColor, Height, and Width. All prop-
erties of the Style class are strongly typed. The properties just mentioned are not persisted
to the view state individually, but they benefit from the serialization machinery supported by
the Style object.

 Chapter 6 ASP.NET Core Server Controls 255

It should be clear by now that the Style class is quite different from the Style property, whose
type is CssStyleCollection. Note that style values set through the Style property are not
 automatically reflected by the (strongly typed) values in the Style object. For example, you
can set the CSS border-style through the Style property, but that value won’t be reflected by
the value of the BorderStyle property.

// Set the border color through a CSS attribute
MyControl.Style["border"] = "solid 1px black";

// Set the border color through an ASP.NET style property
MyControl.BorderColor = Color.Red;

So what happens if you run the preceding code snippet? Which setting would win? When a
control is going to render, the contents of both the ControlStyle and Style properties are ren-
dered to HTML style attributes. The ControlStyle property is processed first, so in the case of
overlapping settings the value stuffed in Style, which is processed later, ultimately wins.

Managing the Style of Web Controls
The style properties of a Web control can be programmatically manipulated to some extent.
For example, in the Style class, you can count on a CopyFrom method to duplicate the object
and on the MergeWith method to combine two style objects.

currentStyle.MergeStyle(newStyle);

The MergeWith method joins the properties of both objects. In doing so, it does not replace
any property that is already set in the base object but limits itself to defining uninitialized
properties. Finally, the Reset method clears all current attributes in the various properties of
the style object.

Note I already mentioned this point a few times, but the best practice today is having
ASP.NET controls emit style-ignorant markup. The emitted markup then will be decorated at will
and made as colorful and attractive as it needs to be by using external CSS classes. In light of this,
all of the control style features of ASP.NET lose much of their original appeal.

Methods of Web Controls
The WebControl class supports a few additional methods that are not part of the base Control
class. These methods are listed in Table 6-10.

256 Part II ASP.NET Pages and Server Controls

TABLE 6-10 Specific Methods of Web Controls
Method Description
ApplyStyle Copies any nonempty elements of the specified style object to the control.

Existing style properties are overwritten.

CopyBaseAttributes Imports from the specified Web control the properties AccessKey, Enabled,
ToolTip, TabIndex, and Attributes. Basically, it copies all the properties not
encapsulated in the Style object.

MergeStyle Like ApplyStyle, copies any nonempty elements of the specified style to the
control. Existing style properties are not overwritten, though.

RenderBeginTag Renders the HTML opening tag of the control into the specified writer. The
method is called right before the control’s RenderControl method.

RenderEndTag Renders the HTML closing tag of the control into the specified writer. The
method is called right after the control’s RenderControl method.

All these methods are rarely of interest to application developers. They are mostly designed
to support control developers.

Core Web Controls
The set of Web controls can be divided into various categories according to the provided
functionality—input and button controls, validators, data-bound controls, security-related
controls, grid and view controls, plus a few miscellaneous controls that provide ad hoc func-
tions and are as common on the Web as they are hard to catalogue (for example, calendar,
ad rotator, and so forth).

In this chapter, we’re focused on covering the most common and essential Web controls,
such as the controls for capturing the user’s input and posting data to the server. Table 6-11
details the core server controls of ASP.NET. (Other more advanced controls will be covered
later when discussing input forms and data binding.)

TABLE 6-11 Core Web Controls
Control Description
Button Implements a push button through the <input> tag.

CheckBox Implements a check box through the <input> tag.

FileUpload Allows users to select a file to upload to the server.

HiddenField Implements a hidden field.

HyperLink Implements an anchor <a> tag, and lets you specify either the location to jump
to or the script code to execute.

Image Implements a picture box through the tag.

ImageButton Displays an image and responds to mouse clicks on the image like a real
 button.

ImageMap Displays an image and optionally defines clickable hot spots on it.

 Chapter 6 ASP.NET Core Server Controls 257

Control Description
Label Represents a static, nonclickable piece of text. It’s implemented through the

 tag.

LinkButton Implements an anchor <a> tag that uses only the ASP.NET postback
 mechanism to post back. It is a special type of hyperlink where the programmer
can’t directly set the target URL.

Localize Reserves a location on a Web page for you to display localized text.

MultiView Represents a control that acts as a container for a group of child View controls.

Panel Implements an HTML container using the <div> block element. In ASP.NET 2.0,
the container supports scrolling. Note that in down-level browsers the control
renders out as a <table>.

RadioButton Implements a single radio button through the <input> tag.

Table Implements the outer table container. It’s equivalent to the HTML <table>
 element.

TableCell A table cell; it’s equivalent to the HTML <td> element.

TableRow A table row; it’s equivalent to the HTML <tr> element.

TextBox Implements a text box using the <input> or <textarea> tag as appropriate and
according to the requested text mode. It can work in single-line, multiline, or
password mode.

View Acts as a container for a group of controls. A View control must always be
 contained within a MultiView control.

Most controls in Table 6-11 look like HTML controls. Compared to HTML controls, their
 programming model is certainly richer and more abstract, but in the end it still generates
valid markup. If a given feature can’t be obtained with raw HTML, there’s no way a custom
Web control can provide it. No matter how complex the programming model is, all Web
controls must produce valid HTML for both up-level and down-level browsers.

Button Controls
In ASP.NET, controls that provide button functions are characterized by the IButtonControl
 interface. Core controls that implement the interface are Button, ImageButton, and
LinkButton. In general, by implementing IButtonControl any custom control can act like a
button on a form. Table 6-12 details the IButtonControl interface.

TABLE 6-12 The IButtonControl Interface
Name Description
CausesValidation Boolean value, indicates whether validation is performed when the control

is clicked.

CommandArgument Gets or sets an optional parameter passed to the button’s Command event
along with the associated CommandName.

CommandName Gets or sets the command name associated with the button that is passed
to the Command event.

258 Part II ASP.NET Pages and Server Controls

Name Description
PostBackUrl Indicates the URL that will handle the postback triggered through the

 button control. This feature is known as cross-page postback.

Text Gets or sets the caption of the button.

ValidationGroup Gets or sets the name of the validation group that the button belongs to.

In addition to the properties defined by the IButtonControl interface, the Button class fea-
tures two properties for handling the steps following the user’s clicking. The properties are
OnClientClick and UseSubmitBehavior. The former lets you define the name of the JavaScript
function to run when the client-side onclick event is fired. The following two statements are
perfectly legal and equivalent:

Button1.OnClientClick = "ShowMessage()";
Button1.Attributes["onclick"] = "ShowMessage()";

The OnClientClick property is also available on LinkButton and ImageButton controls.

By default, the Button class is rendered through an <input type=submit> tag. In this way, it
takes advantage of the browser’s submit mechanism to post back. The UseSubmitBehavior
property allows you to change the default behavior. Set the UseSubmitBehavior property
to false and the control will render out through an <input type=button> tag. Also in this
case, though, the Button control remains a postback button. When UseSubmitBehavior is
false, the control’s onclick client event handler is bound to a piece of JavaScript code
(the __doPostBack function) that provides the ASP.NET postback mechanism just like for
LinkButton or ImageButton controls.

Important Buttons are not the only controls that can trigger a postback. Text boxes and check
boxes (plus a few more data-bound list controls, which you’ll see in Chapter 10) also can start
a postback if their AutoPostBack property is set to true. (Note that the default setting is false.)
When this happens, the control wires up to a client-side event—onchange for text boxes, and
onclick for check boxes—and initiates a postback operation via script. In light of this, virtually any
control can be modified to post back.

HyperLinks
The HyperLink control creates a link to another Web page and is typically displayed through
the text stored in the Text property. Alternatively, the hyperlink can be displayed as an image;
in this case, the URL of the image is stored in the ImageUrl property. Note that if both the
Text and ImageUrl properties are set, the ImageUrl property takes precedence. In this case,
the content of the Text property is displayed as a ToolTip when the mouse hovers over the
control’s area.

 Chapter 6 ASP.NET Core Server Controls 259

The NavigateUrl property indicates the URL the hyperlink is pointing to. The Target property
is the name of the window or frame that will contain the output of the target URL.

Images and Image Buttons
The Image control displays an image on the Web page. The path to the image is set through
the ImageUrl property. Image URLs can be either relative or absolute, with most program-
mers showing a clear preference for relative URLs because they make a Web site inherently
easier to move. You can also specify alternate text to display when the image is not available
or when the browser doesn’t render the image for some reason. The property to use in this
case is AlternateText. The image alignment with respect to other elements on the page is set
by using the ImageAlign property. Feasible values are taken from the homonymous enum
type (for example: ImageAlign.Left, ImageAlign.Middle, and so forth).

The Image control is not a clickable component and is simply limited to displaying an image.
If you need to capture mouse clicks on the image, use the ImageButton control instead.
The ImageButton class descends from Image and extends it with a couple of events—Click
and Command—that are raised when the control is clicked. The OnClick event handler pro-
vides you with an ImageClickEventArgs data structure that contains information about the
 coordinates for the location at which the image is clicked.

The OnCommand event handler makes the ImageButton control behave like a command
button. A command button has an associated name that you can control through the
CommandName property. If you have multiple ImageButton controls on the same page, the
command name allows you to specify which one is actually clicked. The CommandArgument
property can be used to pass additional information about the command and the control.

Finally, the ImageMap control deserves a few words. In its simplest and most commonly used
form, the control displays an image on a page. However, when a hot-spot region defined
within the control is clicked, the control either generates a postback to the server or navi-
gates to a specified URL. The hot spot is a clickable region within the displayed image. The
hot spot is implemented with a class that inherits from the HotSpot class. There are three
 predefined types of hot spots: polygons, circles, and rectangles.

Check Boxes and Radio Buttons
Check boxes and radio buttons are implemented through the <input> tag and with the type
attribute set to checkbox or radio. Unlike the HTML control versions, the Web control versions
of check boxes and radio buttons let you specify the associated text as a property. The HTML
elements and corresponding HTML controls lack an attribute whose content becomes the

260 Part II ASP.NET Pages and Server Controls

text near the check box or radio button. In HTML, to make the text near the check box or
 radio button clickable, you have to resort to the <label> tag with the for attribute:

<input type="checkbox" id="ctl" />
<label for="ctl">Check me</label>

Neither the HtmlInputCheckBox nor the HtmlInputRadioButton control adds a label, which
leaves you responsible for doing that. The counterparts to these Web controls, on the other
hand, are not bound to the HTML syntax and do precisely that—they automatically add
a Text property, which results in an appropriate <label> tag. For example, consider the
 following ASP.NET code:

<asp:checkbox runat="server" id="ctl" text="Check me" />

It results in the following HTML code:

<input type="checkbox" id="ctl" />
<label for="ctl">Check me</label>

Text Controls
The fastest way to insert text in a Web page is through literals—that is, static text inserted
 directly in the ASPX source. This text will still be compiled to a control but, at least, the
 number of dynamically created literal controls is the minimum possible because any
 sequence of consecutive characters are grouped into a single literal. If you need to identify
and manipulate particular strings of text programmatically, you can resort to a Literal control
or, better yet, to the richer Label control. Modifiable text requires a TextBox.

Over the years, ASP.NET text controls went through a number of minor changes but
 preserved core functionalities. In particular, I want to mention that the TextBox class
 implements two interfaces as a way to logically group its capabilities. Frankly, this aspect is
not that relevant for the ASP.NET developer seeking coding tips and tricks. It makes a good
statement, however, about the design of the control and, all in all, represents a good exam-
ple of programming to learn from and reuse in our own classes. (This is related to one of the
core design principle I’ll cover in Chapter 13, “Principles of Software Design”—the Interface
Segregation Principle.)

The two interfaces implemented by TextBox classes are ITextControl and IEditableTextControl.
The former includes the sole Text property and is implemented by Literal, Label, TextBox, and
list controls. The latter interface defines the TextChanged event and is specific to TextBox
and list controls.

Speaking of text controls, it is also worth mentioning an accessibility feature of the Label
control—the AssociatedControlID property. The property takes the ID of a control in the
page—typically, an input control such as a TextBox—that you want to associate with the
 label. AssociatedControlID changes the way the Label control renders out. It is a tag

 Chapter 6 ASP.NET Core Server Controls 261

if no associated control is specified; it is a <label> tag otherwise. Let’s consider the following
example:

<asp:Label ID="Label1" runat="server" Text="Sample text" />
<asp:TextBox ID="TextBox1" runat="server" />

As is, it generates the following markup:

Sample text
<input name="TextBox1" type="text" id="TextBox1" />

If you set the label’s AssociatedControlID property to TextBox1, the markup changes as
shown here:

<label for="TextBox1" id="Label1">Sample text</label>
<input name="TextBox1" type="text" id="TextBox1" />

The run-time behavior changes a bit because now any click on the label text will be extended
to the associated control. For example, clicking on the label will move the input focus to a
text box, or it will select or deselect a check box.

Hidden Fields and File Upload
If you’re looking for a more comfortable programming interface to create hidden fields and
upload files, two Web controls might help. The HiddenField and FileUpload controls add
no new functionality to the ASP.NET programmer’s bag, but they have been added to the
 toolbox for completeness. A hidden field can be created in two other ways that work with
ASP.NET 1.x too. For example, you can use the RegisterHiddenField method on the Page class:

// Works in ASP.NET 1.x but is obsolete starting with 2.0
RegisterHiddenField("HiddenField1", "Great book!");

Note that the RegisterHiddenField method has been flagged as obsolete as of ASP.NET 4.
The recommended code analogous to the previous snippet is shown next:

// Recommended code
ClientScriptManager.RegisterHiddenField("HiddenField1", "Great book!");

In addition, to create a hidden field you can resort to the HTML markup, adding a runat
 attribute if you need to set the value programmatically:

<input runat="server" id="HiddenField1" type="hidden" value="..." />

Analogous considerations can be made for the FileUpload control, which provides the same
capabilities as the HtmlInputFile control that we discussed earlier. In this case, though, the
programming interface is slightly different and perhaps more intuitive. The HasFile property
and SaveAs method hide any reference to the object that represents the posted file. Likewise,

262 Part II ASP.NET Pages and Server Controls

the FileName property provides a more immediate name for the name of the posted file. The
code to upload a file can be rewritten as follows:

if (FileUpload1.HasFile)
{
 // Get the name of the file to upload.
 var fileName = FileUpload1.FileName;
 var targetPath = GetSavePath(fileName); // a function of yours...
 FileUpload1.SaveAs(targetPath);
}

Whether you use FileUpload or HtmlInputFile is mostly a matter of preference.

Miscellaneous Web Controls
The WebControls namespace also includes a few controls that provide useful functionality
that is common in Web applications. In particular, we’ll examine the AdRotator control, which
works like an advertisement banner, and the Calendar control, which is a flexible and highly
interactive control used to specify a date.

The AdRotator Control
Abstractly speaking, the AdRotator control displays an automatically sized image button and
updates both the image and the URL each time the page refreshes. The image to display and
other information is read from an XML file written according to a specific schema. More con-
cretely, you use the AdRotator control to create an advertisement banner on a Web Forms
page. The control actually inserts an image and hyperlink in the page and makes them point
to the advertisement page selected. The image is sized by the browser to the dimensions of
the AdRotator control, regardless of its actual size. The following code shows a typical XML
advertisement file:

<Advertisements>
<Ad>
 <ImageUrl>6235.gif</ImageUrl>
 <NavigateUrl>www.microsoft.com/MSPress/books/6235.asp</NavigateUrl>
 <AlternateText>Introducing ASP.NET AJAX</AlternateText>
 <Impressions>50</Impressions>
</Ad>
<Ad>
 <ImageUrl>5727.gif</ImageUrl>
 <NavigateUrl>www.microsoft.com/MSPress/books/5727.asp</NavigateUrl>
 <AlternateText>Programming ASP.NET Applications</AlternateText>
 <Impressions>50</Impressions>
</Ad>
</Advertisements>

http://www.microsoft.com/MSPress/books/6235.asp</NavigateUrl
http://www.microsoft.com/MSPress/books/5727.asp</NavigateUrl

 Chapter 6 ASP.NET Core Server Controls 263

The <Advertisement> root node contains multiple <Ad> elements, one for each image to
show. The advertisement file must reside in the same application as the AdRotator control.
The syntax of the AdRotator control is as follows:

<%@ Page Language="C#" %>
<html>
<head><title>Ad Rotators</title></head>
<body>
 <form runat="server">
 <h1>Dino Esposito's Books</h1>
 <asp:AdRotator runat="server" id="bookRotator"
 AdvertisementFile="MyBooks.xml" />
 </form>
</body>
</html>

In the XML advertisement file, you use the <ImageUrl> node to indicate the image to load
and the <NavigateUrl> node to specify where to go in case of a click. The <AlternateText>
node indicates the alternate text to use if the image is unavailable, whereas <Impressions>
indicates how often an image should be displayed in relation to other images in the ad-
vertisement file. Finally, each image can also be associated with a keyword through the
<Keyword> node. Of all the elements, only <ImageUrl> is required.

Once per roundtrip, the AdRotator control fires the server-side AdCreated event. The
event occurs before the page is rendered. The event handler receives an argument of
type AdCreatedEventArgs, which contains information about the image, a navigation URL,
 alternate text, and any custom properties associated with the advertisement. The AdCreated
event can be used to programmatically select the image to show. The XML schema of the
advertisement is not fixed and can be extended with custom elements. All nonstandard
 elements associated with the selected advertisement will be passed to the AdCreated event
handler stuffed in the AdProperties dictionary member of the AdCreatedEventArgs class.

Note The AdRotator control can also get its advertisement feed through an XML or relational
data source. Image and navigation URLs, as well as the alternate text, can be read from fields
belonging to the data source. The control cannot be bound to more than one data source at a
time. If more than one property—AdvertisementFile, DataSourceID, or DataSource—is set, an
exception will be thrown.

The Calendar Control
The Calendar control (shown in Figure 6-5) displays a one-month calendar and allows you
to choose dates and navigate backward and forward through the months of the year. The
control is highly customizable both for appearance and functionality. For example, by setting

264 Part II ASP.NET Pages and Server Controls

the SelectionMode property, you can decide what the user can select—that is, whether a
single date, week, or month can be selected.

<asp:calendar runat="server" id="hireDate"
 SelectedDate="2010-08-21" VisibleDate="2010-08-21" />

FIGURE 6-5 The Calendar control in action.

The VisibleDate property sets a date that must be visible in the calendar, while SelectedDate
sets with a different style the date that is rendered as selected. The control also fires three ad
hoc events: DayRender, SelectionChanged, and VisibleMonthChanged. The DayRender event
signals that the control has just created a new day cell. You can hook the event if you think
you need to customize the cell output. The SelectionChanged event fires when the selected
date changes, while VisibleMonthChanged is raised whenever the user moves to another
month using the control’s selector buttons.

The Calendar control originates a roundtrip for each selection you make. Although it is cool
and powerful on its own, for better performance you might also want to provide a plain text
box for manually typing dates.

The Xml Control
The Xml control, defined by the <asp:Xml> tag, is used to inject the content of an XML
 document directly into an ASP.NET page. The control can display the source XML as-is or as
the results of an XSL transformation (XSLT). The Xml control is a sort of declarative counter-
part for the XslTransform class, and it can make use of the .NET Framework XSLT transform
class internally.

You use the Xml control when you need to embed XML documents in a Web page. For
 example, the control is extremely handy when you need to create XML data islands for the

 Chapter 6 ASP.NET Core Server Controls 265

client to consume. The control lets you specify a document to work with and, optionally, a
transformation to apply. The XML document can be specified in a variety of formats—an
XML document object model, string, or file name. The XSLT transformation can be defined
through either an already configured instance of the .NET Framework XslTransform class or a
file name.

<asp:xml runat="server"
 documentsource="document.xml"
 transformsource="transform.xsl" />

If you’re going to apply some transformation to the XML data, you can also embed it inline
between the opening and closing tags of the control. The control also makes it easier to ac-
complish a common task: apply browser-dependent transformations to portions of the page
expressed in an XML meta language. In this case, you exploit the programming interface of
the control as follows:

<asp:xml runat="server" id="theXml" documentsource="document.xml" />

In the Page_Load event, you just check the browser capabilities and decide which
 transformation should be applied:

void Page_Load(object sender, EventArgs e)
{
 if (IsInternetExplorer(Request.Browser))
 theXml.TransformSource = "ie5.xsl";
 else
 theXml.TransformSource = "downlevel.xsl";
}

The PlaceHolder Control
The PlaceHolder control is one of the few controls in the WebControls namespace that isn’t
derived from the WebControl class. It inherits from Control and is used only as a container
for other controls in the page. The PlaceHolder control does not produce visible output of
its own and is limited to containing child controls dynamically added through the Controls
 collection. The following code shows how to embed a placeholder control in a Web page:

<asp:placeholder runat="server" id="theToolbar" />

After you have a placeholder, you can add controls to it. As mentioned, the placeholder does
not add extra functionality, but it provides for grouping and easy and direct identification of
a group of related controls. The following code demonstrates how to create a new button
and add it to an existing placeholder:

Button btn = new Button();
btn.Text = "Click me";
theToolbar.Controls.Add(btn);

266 Part II ASP.NET Pages and Server Controls

The PlaceHolder control reserves a location in the control tree and can be extremely
 helpful in identifying specific areas of the page to customize and extend by adding controls
programmatically.

Important Note that each control dynamically added to the Controls collection of a parent
control is not restored on postback. If the control generates some input elements on the client,
the client data is regularly posted but there will be no server-side control to handle that. To avoid
this, you must “remember” that you created a certain control dynamically and re-create it while
the page loads on postbacks. To remember that a certain control was added to a parent, you can
create a custom entry in the view state or use a hidden field.

View Controls
ASP.NET provides two related controls to create a group of interchangeable panels of child
controls. The MultiView control defines a group of views, each represented with an instance
of the View class. Only one view is active at a time and rendered to the client. The View
 control can’t be used as a standalone component and can be placed only inside a MultiView
control. Here’s an example:

<asp:MultiView runat="server" id="Tables">
 <asp:View runat="server" id="Employees">
 ...
 </asp:View>
 <asp:View runat="server" id="Products">
 ...
 </asp:View>
 <asp:View runat="server" id="Customers">
 ...
 </asp:View>
</asp:MultiView>

You change the active view through postback events when the user clicks buttons or
links embedded in the current view. To indicate the new view, you can either set the
ActiveViewIndex property or pass the view object to the SetActiveView method.

Figure 6-6 shows a sample page in action. You select the page from the drop-down list and
refresh the view:

void Page_Load(object sender, EventArgs e)
{
 // Views is an auto-postback drop-down list
 Tables.ActiveViewIndex = AvailableViews.SelectedIndex;
}

The combination of View and MultiView controls lends itself very well to implementing
 wizards. In fact, the new ASP.NET Wizard control uses a MultiView control internally. We’ll
cover the Wizard control in Chapter 8.

 Chapter 6 ASP.NET Core Server Controls 267

FIGURE 6-6 A multiview control in action.

ASP.NET Miscellaneous Controls and the AJAX Revolution
This book is designed to be a reference for ASP.NET developers. The book is designed
to stay mostly idle on the desk and be used when you get in trouble and can’t move
further without a clear and deep understanding of a given ASP.NET feature. So this
book puts more effort into explaining the underpinnings and architecture of ASP.NET
components rather than trying to solve common problems by illustrating relatively
common techniques. On the other hand, with Google you can navigate through zillions
of blogs and can address your technical urgency effectively in a relatively quick time.
With specialized sites such as StackOverflow (http://www.stackoverflow.com), you can
likely just type in your question and find exactly the answer you were looking for.

So how does this relate to miscellaneous ASP.NET controls?

While planning this ASP.NET 4 programming book, I debated for long time whether
to include this chapter. Why? Because I was supposed to discuss relevant things about
most of the Web and HTML controls. But most of these controls are losing importance
in modern Web applications.

The Calendar control you find in ASP.NET is fairly useless at this stage of Web
 development. If you need to let the user pick a date, you use a script-based, date-picker
extension for a text box. If you need a real calendar to lock dates, either you resort to
richer script-based solutions or you derive your own calendar from the base one. Most

http://www.stackoverflow.com

268 Part II ASP.NET Pages and Server Controls

of the same things can be said for the View and MultiView controls. The underlying
idea they represent is more valid than ever, but the postback-based implementation
is not. You want to use AJAX scripts to switch between views and tabs. Wrapping a
MultiView control in an updatable panel can do the trick of refreshing views with lim-
ited impact on the user. But the direction seems to be another—using script libraries
such as jQuery UI. And such libraries have nothing to do with controls like MultiView.

Finally, let’s discuss the AdRotator control. The importance of such a component is a
no-brainer. Everybody wants to have ads on their site. But ads must not be bound to
postbacks in AJAX-intensive sites. The AdRotator control can be revamped with partial
rendering and updatable panels, but more often than not you resort to richer forms of
display based on Silverlight or Flash.

In summary, more than five years after the “official discovery” of the AJAX paradigm,
we realize that Web programming is changing, and so is ASP.NET. ASP.NET Web Forms
is still valid and can still help in writing a lot of successful code. But some of its core
components and ideas are becoming obsolete every day. Be aware of this when you
pick up a book or, more importantly, when you write your code. ASP.NET MVC is a new
paradigm that seems closer to the current needs of developers. For more information,
check out my book Programming ASP.NET MVC (Microsoft Press, 2010).

Summary
In ASP.NET pages, server controls are vital components and transform the programming
model of ASP.NET from a mere factory of HTML strings to a more modern and effective
component-based model. ASP.NET features a long list of control classes. Looking at the
namespaces involved, you should conclude that only two families of controls exist: HTML and
Web controls. Controls in the former group simply mirror the set of elements in the HTML
syntax. Each constituent control has as many properties as there are attributes in the corre-
sponding HTML tag. Names and behavior have been kept as faithful to the originals as pos-
sible. The ultimate goal of the designers of HTML controls is to make the transition from ASP
to ASP.NET as seamless as possible—just add runat=”server” and refresh the page.

The overall design of Web controls is more abstract and much less tied to HTML. In general,
Web controls do not promote a strict one-to-one correspondence between controls and
HTML tags. However, the capabilities of Web and HTML controls overlap. All ASP.NET server
controls render in HTML, but Web controls render to a more complex HTML representation
than HTML controls.

In the next chapter, we’ll touch on programming issues that relate to authoring an ASP.NET
page—error handling, localization, and personalization.

 269

Chapter 7

Working with the Page
“Divide and rule, a sound motto. Unite and lead, a better one.”

—Wolfgang Goethe

Authoring an ASP.NET page is not simply a matter of putting together a well-organized
 hierarchy of server controls, literals, and JavaScript script blocks. That’s definitely a
 fundamental step, but it’s only the first step. First and foremost, a Web page is part of
the presentation layer of a Web application. This means that the page is responsible for
 coordinating some user interface tasks aimed at providing end users with key information
regarding bad requests and run-time anomalies, localized messages, and preferences.

Momentarily leaving aside any discussion on possible best practices for layering an ASP.NET
Web Forms application, let’s examine some aspects related to ancillary page development
tasks. Tasks covered in this chapter relate to error handling, error pages, tracing, localization,
and personalization, as well as effective techniques to add script files and style the content
of ages.

I’ll return to layers and design principles in Chapter 13, “Principles of Software Design.”

Dealing with Errors in ASP.NET Pages
Any ASP.NET application can incur various types of errors. There are configuration errors
caused by some invalid syntax or structure in one of the application’s web.config files and
parser errors that occur when the syntax on a page is malformed. In addition, you can run
into run-time errors that show up during the page’s execution. Finally, there are errors de-
tected by the ASP.NET runtime infrastructure that have to do with bad requests or incorrect
parameters.

Parser errors (both in configuration and markup) show up as soon as you start a debugging
session, and their fix is immediate and part of the development process. What about other
types of errors?

270 Part II ASP.NET Pages and Server Controls

To prevent critical parts of your code from throwing exceptions at run time, you can resort
to plain exception-handling practices as recommended by the Microsoft .NET Framework
guidelines. To trap errors resulting from bad requests, invalid routing, or HTTP failures, you
can take advantage of some of ASP.NET-specific facilities for page error handling.

Let’s attack the topic with a quick overview of exception handling as it happens in .NET.

Basics of Exception Handling
Just like other .NET applications, ASP.NET applications can take advantage of common
 language runtime (CLR) exceptions to catch and handle run-time errors that occur in the
code. As a reminder, it’s worth mentioning here that in .NET development CLR exceptions are
the recommended way of handling errors—they are the rule, not the exception!

Exceptions, though, should be taken just for what the name suggests—that is, events in the
life of the application raised when something happens that violates an assumption.

Exceptions should not be used to control the normal flow of the program. If there is a way to
detect possible inconsistent situations, by all means use that other method (mostly, condi-
tional statements), and use exceptions as the last resort. The latest version of Microsoft Visual
Studio 2010 (as well as many commercial products that assist you in development, such as
JetBrains ReSharper and Telerik JustCode, to name a couple) offers coding tips and reminds
you to check for possible null reference exceptions. That’s a huge help, isn’t it?

Although exceptions are the official tool to handle errors in .NET applications, they’re not
free and should not be overused. Running any piece of code in a try/catch block will cost you
at least a little in terms of performance. Protection against possible run-time failure is a sort
of insurance, and you have to pay for that no matter what happens.

Exceptions in Action
To execute a piece of code with the certainty that any (or just some) exceptions it might raise
will be caught, you use the following code:

try
{
 // Your regular code here
 ...
}
catch
{
 // Your recovery code for all exceptions
 ...
}

 Chapter 7 Working with the Page 271

The sample code snippet can have a number of variations and extensions. You can add a
finally block, which will finalize the operation and run regardless of whether the execution
flow went through the try or the catch block. The snippet shown will catch any exceptions.
Because of its extreme generality, you might need to lose some valuable information about
what has happened. A better approach consists of listing one or more catch blocks, each
 trying to cache a specific exception:

try
{
 // Your regular code here
 ...
}
catch(NullReferenceException nullReferenceException)
{
 // Your recovery code for the exception
 ...
}
catch(ArgumentException argumentException)
{
 // Your recovery code for the exception
 ...
}
finally
{
 // Finalize here but DON'T throw exceptions from here
 ...
}

Exceptions will be listed from the most specific to the least specific. From a catch block, you
are allowed to swallow the exception so that other topmost modules will never know about
it. Alternatively, you can handle the situation gracefully and recover. Finally, you can do
some work and then re-throw the same exception or arrange a new one with some extra or
 modified information in it.

The catch block is fairly expensive if your code gets into it. Therefore, you should use the
catch block judiciously—only when really needed and without overcatching.

Guidelines for Exception Handling
When writing a module (including ASP.NET pages), you should never throw an exception
as an instance of the System.Exception class. It is strictly recommended that you try to use
built-in exception types such as InvalidOperationException, NullReferenceException, and
ArgumentNullException whenever these types apply. You should resist the temptation of
 having your very own exceptions all the way through, although for program errors you
should consider defining your own exceptions.

272 Part II ASP.NET Pages and Server Controls

In general, you should be very specific with exceptions. ArgumentNullException is more
 specific than ArgumentException. An exception comes with a message, and the message must
be targeted to developers and, ideally, localized.

Swallowing an exception is possible and supported, but you should consider that in this case
some modules might never know what went wrong. This approach might not be accept-
able in some cases, so use it with extreme care. In general, don’t be afraid to let exceptions
 propagate up the call stack.

When using exceptions, pay a lot of attention to cleanup code. The finally block serves
 exactly the purpose of ensuring that any cleanup code is always executed. Alternatively, when
the cleanup code sees an object that implements IDisposable, you can resort to the using
statement:

using(var someObject = new SomeDisposableObject())
{
 // Code at risk of exceptions
 ...
}

If placed in a finally block, the cleanup code is always executed. This is an important
 guarantee because if an unexpected exception is thrown, you might lose your cleanup code.

Finally, here are a few recommendations for situation in which you get to write your own
exception classes. For a long time, Microsoft said you should derive your exception classes
from System.ApplicationException. More recently, there’s been a complete turnaround on this
point: the new directive says the opposite. You should ignore ApplicationException and derive
your exception classes from Exception or other more specific built-in classes. And don’t forget
to make your exception classes serializable.

Basics of Page Error Handling
When an exception occurs in an ASP.NET application, the CLR tries to find a block of code
willing to catch it. Exceptions walk their way up the stack until the root of the current applica-
tion is reached. If no proper handler shows up along the way, the exception gains the rank of
unhandled exception and causes the CLR to throw a system-level exception.

At this point, ASP.NET users are shown a standard error page that some developers familiarly
call the YSOD (yellow screen of death), which is a spinoff of the just as illustrious BSOD (blue
screen of death) that we all have come to know after years of experience with the Microsoft
Windows operating system. An unhandled exception originates an error and stops the
application.

As a developer, how should you deal with unhandled exceptions in ASP.NET applications?

 Chapter 7 Working with the Page 273

Default Error Pages
When an unrecoverable error occurs in an ASP.NET page, users always receive a page that,
more or less nicely, informs them that something went wrong at a certain point. ASP.NET
catches any unhandled exception and transforms it into a page for the user, as shown in
Figure 7-1.

FIGURE 7-1 The error page generated by an unhandled exception (for the local user).

As you can guess from looking at the screen shot, the sample page contains a button whose
click handler is bound to the following code:

protected void Button1_Click(Object sender, EventArgs e)
{
 throw new NotImplementedException();
}

More than the code itself, which is fairly trivial, the most interesting part of the story is how
ASP.NET handles the exception and the machinery that ultimately produces the markup of
Figure 7-1.

First and foremost, the typical error page differs for local and remote users.

By default, local users—namely, any user accessing the application through the local host—
receive the page shown in Figure 7-1. The page includes the call stack—the chain of method
calls leading up to the exception—and a brief description of the error. Additional source
code information is added if the page runs in debug mode. For security reasons, remote
 users receive a less detailed page, like the one shown in Figure 7-2.

274 Part II ASP.NET Pages and Server Controls

FIGURE 7-2 The page does not provide information about the error.

ASP.NET provides a couple of global interception points for you to handle errors program-
matically, at either the page level or the application level. The Page base class exposes an
Error event, which you can override in your pages to catch any unhandled exceptions raised
during the execution of the page. Likewise, an Error event exists on the HttpApplication class,
too, to catch any unhandled exception thrown within the application.

Page-Level Error Handling
To catch any unhandled exceptions wandering around a particular page, you define a
 handler for the Error event. Here’s an example:

protected void Page_Error(Object sender, EventArgs e)
{
 // Capture the error
 var exception = Server.GetLastError();

 // Resolve the error page based on the exception that occurred
 // and redirect to the appropriate page
 if (exception is NotImplementedException)
 Server.Transfer("/ErrorPages/NotImplErrorPage.aspx");
 else
 Server.Transfer("/ErrorPages/GenericErrorPage.aspx");

 // Clear the error
 Server.ClearError();
}

You know about the raised exception through the GetLastError method of the Server object.
In the Error handler, you can transfer control to a particular page and show a personalized

 Chapter 7 Working with the Page 275

and exception-specific message to the user. The control is transferred to the error page,
and the URL in the address bar of the browser doesn’t change. If you use Server.Transfer
to pass control, the exception information is maintained and the error page itself can call
into GetLastError and display more detailed information. Finally, after the exception is fully
 handled, you clear the error by calling ClearError.

Using Server.Transfer instead of Response.Redirect is also relevant from a Search-Engine
Optimization (SEO) perspective because it performs a server-side redirect that is “invisible” to
client applications, including Web browsers and, more importantly, Web spiders.

Important When displaying error messages, pay attention not to hand out sensitive
 information that a malicious user might use against your system. Sensitive data includes user
names, file system paths, connection strings, and password-related information. You can make
error pages smart enough to determine whether the user is local or whether a custom header is
defined, and to display more details that can be helpful to diagnose errors:

if (Request.UserHostAddress == "127.0.0.1") {
 ...
}

You can also use the Request.Headers collection to check for custom headers added only by a
particular Web server machine. To add a custom header, you open the Properties dialog box of
the application’s Internet Information Services (IIS) virtual folder and click the HTTP Headers tab.

Global Error Handling
A page Error handler catches only errors that occur within a particular page. This means that
each page that requires error handling must point to a common piece of code or define its
own handler. Such a fine-grained approach is not desirable when you want to share the same
generic error handler for all the pages that make up the application. In this case, you can
 create a global error handler at the application level that catches all unhandled exceptions
and routes them to the specified error page.

The implementation is nearly identical to page-level error handlers except that you will
be handling the Error event on the HttpApplication object that represents your application.
To do that, you write code in the predefined Application_Error stub of the application’s
global.asax file:

void Application_Error(Object sender, EventArgs e)
{
 ...
}

You could do something useful in this event handler, such as sending an e-mail to the
site administrator or writing to the Windows event log to say that the page failed to
 execute properly. ASP.NET provides a set of classes in the System.Net.Mail namespace for
just this purpose.

276 Part II ASP.NET Pages and Server Controls

void Application_Error(Object sender, EventArgs e)
{
 // Code that runs when an unhandled error occurs
 var exception = Server.GetLastError();
 if (exception == null)
 return;

 var mail = new MailMessage { From = new MailAddress("automated@contoso.com") };
 mail.To.Add(new MailAddress("administrator@contoso.com"));
 mail.Subject = "Site Error at " + DateTime.Now;
 mail.Body = "Error Description: " + exception.Message;
 var server = new SmtpClient {Host = "your.smtp.server"};
 server.Send(mail);

 // Clear the error
 Server.ClearError();
}

If the SMTP server requires authentication, you need to provide your credentials through the
Credentials property of the SmtpClient class. Figure 7-3 shows the e-mail message being sent.

FIGURE 7-3 The e-mail message being sent when an error is handled globally.

As Figure 7-3 shows, the exception reported mentions a generic HTTP unhandled exception.
Note that GetLastError returns the real exception in the context of Page_Error, but not later in
the context of Application_Error. In the application context, the exception caught is a generic
HTTP exception that wraps the original exception internally. To retrieve the real exception,
you must go through the InnerException property, as shown here:

void Application_Error(Object sender, EventArgs e)
{
 // This is a generic HTTP failure exception
 var exception = Server.GetLastError();
 if (exception == null)
 return;

 // Put your hands on the original exception
 var originalException = exception.InnerException;
 ...
}

mailto:automated@contoso.com
mailto:administrator@contoso.com

 Chapter 7 Working with the Page 277

Essentially, when ASP.NET detects an internal application error—like it is an exception being
thrown by one of the pages—it configures itself for an HTTP 500 response. The ASP.NET
error-handling mechanism captures HTTP 500 errors but not other HTTP errors, such as 404.
Errors other than HTTP 500 are handled by the Web server, and all that you can do is config-
ure the ASP.NET error-handling machinery (and to some extent the routing mechanism too)
to redirect automatically where you like. No full control over 404 and other HTTP errors is
possible in ASP.NET Web Forms.

Note What takes precedence if you have an application-level error handler and a page-level
handler? The page handler runs first, followed by the application handler. For this reason, if you
have both handlers, you should avoid calling Server.ClearError in the page handler so that you do
not compromise any of the following steps.

Logging Exceptions
In addition or in alternative to sending an e-mail message, you can decide to write an entry
to the Windows event log when an exception is caught. Here’s the code:

void Application_Error(Object sender, EventArgs e)
{
 // Obtain the URL of the request
 var url = Request.Path;

 // Obtain the Exception object describing the error
 var exception = Server.GetLastError();

 // Build the message --> [Error occurred. XXX at url]
 var text = new StringBuilder("Error occurred. ");
 text.Append(error.Message);
 text.Append(" at ");
 text.Append(url);

 // Write to the Event Log
 var log = new EventLog();
 log.Source = "Your Log";
 log.WriteEntry(text.ToString(), EventLogEntryType.Error);
}

The Event Log Source must exist prior to its use in an ASP.NET application—in this case, in the
Application_Error method in global.asax. Typical ASP.NET account credentials are established
such that the ASP.NET account does not have Event Log source creation rights. You’ll need to
make sure the log is created first on each Web server your code will execute within prior to
actually running your Web application.

278 Part II ASP.NET Pages and Server Controls

Robust Error Handling
A good strategy for robust and effective ASP.NET error handling is based on the following
three guidelines:

■ Anticipate problems by wrapping all blocks of code that might fail in try/catch/finally
blocks. This alone doesn’t guarantee that no exceptions will ever show up, but at least
you’ll correctly handle the most common ones.

■ Don’t leave any exceptions unhandled. By following this guideline, even if you did not
anticipate a problem, at least users won’t see an exception page. You can do this both
at the page and application levels. Needless to say, an application-level error handler
takes precedence over page-level handlers. At the least, exceptions that are handled
at the application level should be logged to feed reports and help the team to under-
stand what went wrong and whether some bugs exist that need to be fixed.

■ Make sure that error pages don’t give away any sensitive information. If necessary,
distinguish between local and remote users and show detailed messages only to the
former. A local user is defined as the user that accesses the application from the Web
server machine.

Outlined in this way, error handling is mostly a matter of writing the right code in the right
place. However, ASP.NET provides developers with a built-in mechanism to automatically
redirect users to error-specific pages. This mechanism is entirely declarative and can be
 controlled through the web.config file.

Mapping Errors to Pages
ASP.NET developers can also benefit from a declarative API to gain some control over the
page being served to users after an unhandled exception. Such a declarative API relies on the
information stored in the <customErrors> section of the application’s web.config file.

The <customErrors> Section
You turn on custom error messages for an ASP.NET application by acting on the
 <customErrors> section. Here’s an example:

<configuration>
 <system.web>
 ...
 <customErrors mode="RemoteOnly" />
 </system.web>
</configuration>

The mode attribute specifies whether custom error pages are enabled, disabled, or
shown only to remote clients. The attribute is required. When the mode attribute is set to

 Chapter 7 Working with the Page 279

RemoteOnly (the default setting), remote users receive a generic error page that informs
them that something went wrong on the server. (See Figure 7-2.) Local users, on the other
hand, receive pages that show lots of details about the ASP.NET error. (See Figure 7-1.)

The error-handling policy can be changed at will. In particular, ASP.NET can be instructed
to display detailed pages to both local and remote users. To activate this functionality, you
change the value of the mode attribute to Off. For obvious security reasons, Off should
not be used in production environments—it might reveal critical information to potential
attackers.

Using Custom Error Pages
Overall, whatever your choice is for the mode attribute, all users have a good chance to be
served a rather inexpressive and uninformative error page. To display a more professional,
friendly, and apologetic page that has a look and feel consistent with the site, you set
web.config as follows. Figure 7-4 gives an idea of the results you can get.

<configuration>
 <system.web>
 <customErrors mode="On"
 defaultRedirect="/GenericErrorPage.aspx" />
 </system.web>
</configuration>

FIGURE 7-4 A more friendly error page.

Whatever the error is, ASP.NET now redirects the user to the GenericErrorPage.aspx page,
whose contents and layout are completely under your control. This look is obtained by
 adding an optional attribute such as defaultRedirect, which indicates the error page to use to
notify users. If mode is set to On, the default redirect takes on the standard error pages for

280 Part II ASP.NET Pages and Server Controls

all local and remote users. If mode is set to RemoteOnly, remote users will receive the custom
error page while local users (typically, the developers) still receive the default page with the
ASP.NET error information.

In most cases, the custom error page is made of plain HTML so that no error can recursively
be raised. However, should the error page, in turn, originate another error, the default
 generic page of ASP.NET will be shown.

Note When a default redirect is used, the browser receives an HTTP 302 status code and is
invited to issue a new request to the specified error page. This fact has a key consequence: any
information about the original exception is lost and GetLastError, which is called from within the
custom error page, returns null.

Handling Common HTTP Errors
A generic error page invoked for each unhandled exception can hardly be context-
sensitive—especially if you consider that there’s no immediate way for the page author to
access the original exception. We’ll return to this point in a moment.

In addition to redirecting users to a common page for all errors, ASP.NET enables you to
customize pages to show when certain HTTP errors occur. The mapping between error pages
and specific HTTP status codes is defined in the web.config file. The <customErrors> section
supports an inner <error> tag, which you can use to associate HTTP status codes with custom
error pages.

<configuration>
 <system.web>
 <customErrors mode="On" defaultRedirect="/GenericErrorPage.aspx">
 <error statusCode="404" redirect="/ErrorPages/Error404.aspx" />
 <error statusCode="401" redirect="/ErrorPages/Error401.aspx" />
 ...
 </customErrors>
 </system.web>
</configuration>

The <error> element indicates the page to redirect the user to when the specified HTTP error
occurs. The attribute statusCode denotes the HTTP error. Figure 7-5 shows what happens
when the user mistypes the name of the URL and the error HTTP 404 (resource not found) is
generated.

 Chapter 7 Working with the Page 281

FIGURE 7-5 A custom page for the popular HTTP 404 error.

When invoked by the ASP.NET infrastructure, pages are passed the URL that caused the
 error on the query string. The following code shows the code-behind of a sample HTTP 404
error page:

public partial class Error404 : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 var errPath = "<i>No error path information is available.</i>";
 var o = Request.QueryString["AspxErrorPath"];
 if (o != null)
 errPath = o;

 // Update the UI
 ErrorPath.InnerHtml = errPath;
 }
}

If you have custom error handling and a global application handler in place, you should not
clear server errors. The sequence in which handlers are invoked is this: page, application,
ASP.NET runtime with configured redirects.

Important In light of some security vulnerabilities discovered recently, returning a different
output for different HTTP errors might help attackers to find out valuable information about the
system. For this reason, it is recommended that you set a default redirect page and avoid adding
error-specific pages.

282 Part II ASP.NET Pages and Server Controls

Getting Information About the Exception
As mentioned, when you configure ASP.NET to redirect to a particular set of error pages, you
lose any information about the internal exception that might have caused the error. Needless
to say, no internal exception is involved in an HTTP 404 or HTTP 302 error. Unhandled
 exceptions are the typical cause of HTTP 500 internal errors. How do you make the page
show context-sensitive information, at least to local users?

You get access to the exception in the Error event both at the page and application levels.
One thing you can do is this: write a page-level error handler, capture the exception, and
store the exception (or only the properties you’re interested in) to the session state. The
 default redirect will then retrieve any context information from the session state.

protected void Page_Error(object sender, EventArgs e)
{
 // Captures the error and stores exception data
 var exception = Server.GetLastError();

 // Distinguish local and remote users
 if (Request.UserHostAddress == "127.0.0.1")
 Session["LastErrorMessage"] = exception.Message;
 else
 Session["LastErrorMessage"] = "Internal error.";

 // Clear the error (if required)
 Server.ClearError();
}

The preceding code checks the host address and stores exception-related information
(limited to the message for simplicity) only for local users. The following code should be
added to the Page_Load method of the page that handles the HTTP 500 error:

var msg = "No additional information available.";
var extraInfo = Session["LastErrorMessage"];
if (extraInfo != null)
 msg = (string) extraInfo;
Session["LastErrorMessage"] = null;

// Update the UI here
ExtraInfo.InnerHtml = msg;
...

Writing context-sensitive error pages requires a page-level Error handler to cache the original
exception. This means that you should write the same handler for every page that requires
context-sensitive errors. You can either resort to a global error handler or write a new
 Page-derived class that incorporates the default Error handler. All the pages that require that
functionality will derive their code file from this class instead of Page.

 Chapter 7 Working with the Page 283

Error Reporting
Let’s put it down this way: fatal exceptions in software applications just happen. What do you
do when such exceptions happen? Having some good exception-handling code is essential,
but how would you collect any information related to the exception to study the case
thoroughly?

Trapping and recovering from exceptions is only the first step, and it is largely insufficient in
most cases. You need to figure out the section of the site that the user was visiting. You need
to grab state information and the values currently stored in critical variables. Furthermore,
you need to measure the frequency of the error to arrange a plan for bug fixing and
 maintenance. In a way, error reporting is the dark side of exception handling.

Features of an Error Reporting System
An effective error reporting system grabs error information and offers to report that in a
variety of ways and stores. As you’ve seen, exceptions handled at the application level (that
would otherwise go unhandled) should be logged and administrators should be notified.

What kind of information should be added to the log? At a minimum, the list includes
 values of local variables, the current call stack, and perhaps a screen shot of the failure. Is it
 sufficient to notify the webmaster of the failure? Although a notification is not a bad thing,
an effective error reporting system reports exceptions to a centralized repository that is
 remotely accessible and groups them in some way—for example, by type.

Error Reporting Tools
Is such an error reporting system something you build from scratch once and adapt to any
applications you write? Or is it an external framework you just plug into your solution?

In ASP.NET, there’s just one way to capture fatal exceptions—writing a handler for the
Application_Error event. This can be done in two ways, however.

You can write code directly in the application’s global.asax file, or you can plug a
made-to-measure HTTP module into the web.config file. The HTTP module would register its
own handler for the Error application event. The two solutions are functionally equivalent,
but the one based on the HTTP module can be enabled, disabled, and modified without
recompiling the application. It is, in a way, less obtrusive. In the handler, you can log the
 exception the way you want—for example, by writing to the system’s Event Log or by add-
ing a record to some database. Information stored in a database requires that you have
some infrastructure on your end, but it provides great flexibility because the content can
be extracted and manipulated to create reports and statistics. Obviously, processing the
 uploaded logs is up to you.

284 Part II ASP.NET Pages and Server Controls

A tool that is popular among ASP.NET developers is Error Logging Modules And Handlers
(ELMAH). ELMAH is essentially made of an HTTP module that, once configured, intercepts
the Error event at the application level and logs it according to the configuration to a
 number of back-end repositories. ELMAH comes out of an open-source project
(http://code.google.com/p/elmah) and includes a number of extensions, mostly in the area
of repositories. ELMAH offers some nice facilities, such as a Web page to view all recorded
exceptions and drill down into each of them. Any error reporting system specifically designed
for ASP.NET can’t be, architecturally speaking, much different from ELMAH.

Note You might want to take a look at some commercial products that offer a reporting
 mechanism for ASP.NET applications. One of these products is Red Gate’s SmartAssembly
(http://www.red-gate.com/products/smartassembly/error_reporting.htm). Although it’s not
 specifically designed for ASP.NET, the tool can be easily adapted to add reporting capabilities
to ASP.NET applications. Essentially, it takes an existing assembly and parses its compiled code
adding try/catch blocks that log any possible exceptions and upload the complete information
to a given Web site. The tool also has a desktop front end to help you navigate through logged
exceptions.

Self-Logging Exceptions
Another handmade solution consists of employing custom exception classes that derive
from a user-defined class endowed with the ability to log automatically. In this way, at the
cost of using custom exceptions everywhere, you can log any exceptions you’re interested in
 regardless of whether the exception is fatal or not.

Debugging Options
Debugging an ASP.NET page is possible only if the page is compiled in debug mode.
An assembly compiled in debug mode incorporates additional information for a
 debugger tool to step through the code. You can enable debug mode on individual
pages as well as for all the pages in a given application. The <compilation> section in
the web.config file controls this setting. In particular, you set the Debug attribute to true
to enable debug activity for all pages in the application. The default is false. Note that
Visual Studio, however, does this automatically if you just try to debug the application.
To enable debugging for a single page, you add the Debug attribute to the @Page
directive:

<% @Page Debug="true" %>

ASP.NET compiles the contents of any .aspx resource before execution. The contents
of the .aspx resource is parsed to obtain a C# (or Microsoft Visual Basic .NET) class
file, which is then handed out to the language compiler. When a page is flagged with

http://code.google.com/p/elmah
http://www.red-gate.com/products/smartassembly/error_reporting.htm

 Chapter 7 Working with the Page 285

the Debug attribute, ASP.NET doesn’t delete the temporary class file used to gen-
erate the page assembly. This file is available on the Web server for you to peruse
and investigate. The file is located under the Windows folder at the following path:
Microsoft.NET\Framework\[version]\Temporary ASP.NET Files.

Debug mode is important for testing applications and diagnosing their problems.
Note, though, that running applications in debug mode has a significant performance
overhead. You should make sure that an application has debugging disabled before
deploying it on a production server. In ASP.NET 4 and Visual Studio 2010,
web.config transformations make these and other changes quite easy to achieve. In
Chapter 2, “ASP.NET and IIS,” you saw how to remove the Debug attribute with a
web.config transformation.

Page Personalization
ASP.NET pages do not necessarily require a rich set of personalization features. However, if
you can build an effective personalization layer into your Web application, final pages will be
friendlier, more functional, and more appealing to use. For some applications (such as portals
and shopping centers), though, personalization is crucial. For others, it is mostly a way to im-
prove visual appearance. In ASP.NET, personalization is offered through the user profile API.

ASP.NET personalization is designed for persistent storage of structured data using a friendly
and type-safe API. Loading and saving personalized data is completely transparent to end
users and doesn’t even require the page author to know much about the internal plumbing.

Creating the User Profile
A user profile is a plain .NET class that exposes a bunch of properties. The class can be
 defined in two possible ways depending on the model of Web application you are building
within Visual Studio.

If your project is a Web site project, you define the user profile model declaratively through
attributes in the web.config file. At run time, the ASP.NET build machinery will group these
properties into a dynamically generated class. When the application runs and a page is
displayed, ASP.NET dynamically creates a profile object that contains, properly typed, the
properties you have defined in the data model. The object is then added to the current
HttpContext object and is available to pages through the Profile property.

286 Part II ASP.NET Pages and Server Controls

For a Web Application Project (WAP), instead, a bit more work is required on your part, and
type-safety comes at the cost of writing the user profile class manually. You don’t use the
Profile property directly from the HttpContext object but, at the end of the day, the work
 being done underneath is not different. The only difference is in who actually writes the
code—you in a WAP scenario, or the ASP.NET runtime in a Web site project.

Any profile data is persisted on a per-user basis and is permanently stored until someone
with administrative privileges deletes it. The data storage is far away from the user and, to
some extent, also hidden from the programmers. The user doesn’t need to know how and
where the data is stored; the programmer simply needs to indicate what type of profile
provider she wants to use. The profile provider determines the database to use—typically, a
Microsoft SQL Server database, but custom providers and custom data storage models can
also be used.

Note In ASP.NET, the default profile provider is based on SQL Express, a lightweight version
of SQL Server. The default physical storage medium is a local file named aspnetdb.mdf, which is
commonly located in the App_Data folder of the Web application. You can rename and move the
file as you wish. If you change its schema, though, you have to employ an ad hoc provider that
understands the new schema. Because it is an MDF file, you can also host the database in a full
edition of SQL Server on the host machine.

Definition of the Data Model in a Web Site Project
Let’s begin our exploration of the profile API focusing on the tasks required in a Web site
project. The profile API was originally introduced in ASP.NET 2.0 along with the Web site
model at a time in which the popularity of the WAP model was in a downturn and everybody
seemed to want to get rid of it. That sentiment was only a flash in the pan, however. The WAP
model soon regained its prominent position in the minds of developers, and today Visual
Studio 2010 offers two models to choose from. The choice is not painless when it comes
to the profile API. I’ll present the profile API from the perspective of a Web site application
first—because it’s likely you might have heard of it already. Next, I’ll point out differences
related to WAP projects.

To use the ASP.NET profile API, you first decide on the structure of the data model you
want to use. Then you attach the data model to the page through the configuration file. The
 layout of the user profile is defined in the web.config file and consists of a list of properties
that can take any of the .NET CLR types. The data model is a block of XML data that describes
properties and related .NET Framework types.

The simplest way to add properties to the profile storage medium is through name/value
pairs. You define each pair by adding a new property tag to the <properties> section of the
configuration file. The <properties> section is itself part of the larger <profile> section, which

 Chapter 7 Working with the Page 287

also includes provider information. The <profile> section is located under <system.web>.
Here’s an example of a user profile section:

<profile>
 <properties>
 <add name="UseEuroMetricSystem" type="Boolean" />
 <add name="TemperatureSystem" type="String" />
 </properties>
 ...

</properties>

All the properties defined through an <add> tag become members of the dynamically
 created class and are then exposed as part of the HTTP context of each page. The type
 attribute indicates the type of the property. If no type information is set, the type defaults to
System.String. Any valid CLR type is acceptable.

So in the preceding code snippet, we’re defining a profile class made of two properties. The
profile pseudoclass we have in mind looks like the one shown here:

class PseudoProfile
{
 public Boolean UseEuroMetricSystem {get; set;}
 public String TemperatureSystem {get; set;}
}

Table 7-1 lists the valid attributes for the <add> element. Only name is mandatory.

TABLE 7-1 Attributes of the <add> Element
Attribute Description
allowAnonymous Allows storing values for anonymous users. It is false by default.

customProviderData Contains specific data to feed a custom profile provider, if any.

defaultValue Indicates the default value of the property.

name Name of the property.

provider Name of the provider to use to read and write the property.

readOnly Specifies whether the property value is read-only. It is false by default.

serializeAs Indicates how to serialize the value of the property. Possible values are Xml,
Binary, String, and ProviderSpecific.

type The .NET Framework type of the property. It is a string object by default.

The User Profile Class Representation
There’s no class like PseudoProfile anywhere in the application’s AppDomain; yet the declared
data model is dynamically compiled to a class for strongly typed programmatic access. The

288 Part II ASP.NET Pages and Server Controls

following code snippet gives you a much clearer idea of the class being generated by
ASP.NET out of the profile’s data model:

using System;
using System.Web;
using System.Web.Profile;

public class ProfileCommon : System.Web.Profile.ProfileBase
{
 public virtual bool UseEuroMetricSystem {
 get {
 return ((bool)(this.GetPropertyValue("UseEuroMetricSystem")));
 }
 set {
 this.SetPropertyValue("UseEuroMetricSystem", value);
 }
 }

 public virtual string TempSystem {
 get {
 return ((string)(this.GetPropertyValue("TempSystem")));
 }
 set {
 this.SetPropertyValue("TempSystem", value);
 }
 }

 public virtual ProfileCommon GetProfile(string username) {
 return ((ProfileCommon)(ProfileBase.Create(username)));
 }
}

This code is an excerpt from the real source code created by ASP.NET while compiling the
content of the web.config file’s <profile> section.

An instance of this class is associated with the Profile property of the HTTP context class and
is accessed programmatically as follows:

// Use the UseEuroMetricSystem property to determine how to render the page
if (HttpContext.Profile.UseEuroMetricSystem)
{
 ...
}

There’s a tight relationship between user accounts and profile information. We’ll investigate
this in a moment—for now, you need to take note of this because anonymous users are
 supported as well.

 Chapter 7 Working with the Page 289

Note You can retrieve the hidden source code of the profile class (and other internal files) in the
Temporary ASP.NET Files folder. The profile class in particular is located in a file named according
to the pattern App_Code.xxx.N.cs, where xxx is a system-generated hash code and N is a 0-based
index. Note that the path of the Temporary ASP.NET Files folder is different if you’re using IIS or
the embedded Visual Studio Web server. If you’re using IIS, the path is

%Windows%\Microsoft.NET\Framework\v4.0.30319\Temporary ASP.NET Files

Otherwise, the path is

C:\Users\...\AppData\Local\Temp\Temporary ASP.NET Files

You can programmatically find out the real path being used by reading the value of the following
expression:

HttpRuntime.CodegenDir

You can do that by placing a breakpoint somewhere in the page startup code and evaluating the
expression in a Visual Studio QuickWatch window.

Using Collection Types
In the previous example, we worked with single, scalar values. However, the personalization
engine fully supports more advanced scenarios, such as using collections or custom types.
Let’s tackle collections first. The following code demonstrates a Locations property that is a
collection of strings:

<properties>
 <add name="Locations"
 type="System.Collections.Specialized.StringCollection" />
</properties>

Nonscalar values such as collections and arrays must be serialized to fit in a data storage
medium. The serializeAs attribute simply specifies how. As mentioned, acceptable values
are String, Xml, Binary, and ProviderSpecific. If the serializeAs attribute is not present in the
<properties> definition, the String type is assumed. A collection is normally serialized as XML
or in a binary format.

Using Custom Types
You can use a custom type with the ASP.NET personalization layer as long as you mark it as a
serializable type. You simply author a class and compile it down to an assembly. The name of
the assembly is added to the type information for the profile property:

<properties>
 <add name="ShoppingCart"
 type="My.Namespace.DataContainer, MyAssembly"
 serializeAs="Binary" />
</properties>

290 Part II ASP.NET Pages and Server Controls

The assembly that contains the custom type must be available to the ASP.NET application.
You obtain this custom type by placing the assembly in the application’s Bin directory or by
registering it within the global assembly cache (GAC).

Grouping Properties
The <properties> section can also accept the <group> element. The <group> element allows
you to group a few related properties as if they are properties of an intermediate object. The
following code snippet shows an example of grouping:

<properties>
 ...
 <group name="Metrics">
 <add name="Speed" type="string" defaultValue="mph" />
 <add name="Temperature" type="string" defaultValue="F" />
 </group>
</properties>

Two properties have been declared children of the Metrics group. This means that from now
on any access to Speed or Temperature passes through the Metrics name, as shown here:

var windSpeedDisplayText = String.Format("{0} {1}",
 windSpeed, Profile.Metrics.Speed);

The System.Web.UI.Page class doesn’t feature any Profile property. However, in a Web site
project, the build machinery of ASP.NET generates an extra partial class where the Profile
property is defined to just return HttpContext.Current.Profile.

Note Default values are not saved to the persistence layer. Properties declared with a default
value make their debut in the storage medium only when the application assigns them a value
different from the default one.

Definition of the Data Model in a WAP Project
In a WAP project, you can choose between a weakly typed and strongly typed approach. The
simplest approach (but most effective as well?) is the weak typing approach. In this case, you
do exactly the same as you would do in a Web site project. The only difference is that you
have no Profile property on the Page class and no dynamically built profile class.

As you saw earlier, however, a profile class is not a plain old CLR class—it is expected, instead,
to inherit from System.Web.Profile.ProfileBase. The parent class features two generic methods
to read and write properties: GetPropertyValue and SetPropertyValue. This is the real code
that ultimately retrieves and stores the values from and to storage. The following code works
like a champ in a WAP project:

HttpContext.Current.Profile.GetPropertyValue("UseEuroMetricSystem");

 Chapter 7 Working with the Page 291

The drawback is that GetPropertyValue is designed to return an Object type. To get a Boolean
or a String, you need to cast. The autogenerated profile class you would get in a Web site
project just saves you from manually writing a few cast instructions. Here are the steps to
take to define a strongly typed profile data model in a WAP project.

The idea is that you define your own strongly typed class and then attach its reference to
the <profile> section of the web.config file. In this way, the profile built-in machinery will still
be able to do its load-and-save work into the underlying base profile class—the ProfileBase
class—and your wrapper will deliver you the pleasure of strongly typed programming.

<profile inherits="YourApp.UserProfile">
 ...
</profile>

Here’s a possible implementation for the handmade YourApp.UserProfile wrapper class:

namespace YourApp {

public class UserProfile : ProfileBase
{
 public static UserProfile GetUserProfile()
 {
 var user = Membership.GetUser();

 // Anonymous user?
 if (user == null)
 return GetUserProfile(""); // throw if anonymous access is not permitted
 return GetUserProfile(user.UserName);
 }

 public static UserProfile GetUserProfile(String username)
 {
 var profileFromStorage = Create(username);
 return profileFromStorage as UserProfile;
 }

 [SettingsAllowAnonymous(true)]
 public Boolean UseEuroMetricSystem
 {
 get { return (Boolean)
 HttpContext.Current.Profile.GetPropertyValue("UseEuroMetricSystem"); }
 set { HttpContext.Current.Profile.SetPropertyValue("UseEuroMetricSystem", value); }
 }

 [SettingsAllowAnonymous(true)]
 public String TempSystem
 {
 get
 {
 var current = (String)
 HttpContext.Current.Profile.GetPropertyValue("TempSystem");

292 Part II ASP.NET Pages and Server Controls

 if (String.IsNullOrEmpty(current))
 return "F";
 return (String) current;
 }
 set { HttpContext.Current.Profile.SetPropertyValue("TempSystem", value); }
 }
}
}

The UserProfile class you see is configured to support both authenticated and anonymous
access. If you want to enable it only for authenticated users, throw an exception if no user is
found and remove the turn to make the argument of the SettingsAllowAnonymous attribute
false. (Or remove the attribute altogether.)

To access properties from within the code, you proceed as follows:

var profile = Your.UserProfile.GetUserProfile();
if (profile.UseEuroMetricSystem)
 speedFormat = "{0} kmh";

You invoke the static GetUserProfile method on your wrapper class and get an instance of
your own profile class fed by the underlying ASP.NET profile API. The Create method that
GetUserProfile uses internally is part of the profile API, and specifically it is the part that
 communicates with the storage layer.

Interacting with the Page
To enable or disable profile support, you set the enabled attribute of the <profile> element in
the web.config file. If the property is true (the default), personalization features are enabled
for all pages. If personalization is disabled, the Profile property on the HTTP context object
isn’t available to pages.

Creating the Profile Database
As mentioned earlier, profile support works strictly on a per-user basis and is permanently
stored in a configured repository. Enabling the feature simply turns any functionality on,
but it doesn’t create the needed infrastructure for user membership and data storage. If you
intend to use made-to-measure storage (for example, a non–SQL Server database or a SQL
Server database with a custom schema of tables), creating any infrastructure is entirely up to
you. If you’re OK with the default table and structure, you resort to a free tool integrated in
Visual Studio.

ASP.NET 4 (as well as earlier versions) comes with an administrative tool—the ASP.NET Web
Site Administration Tool (WSAT)—that is fully integrated in Visual Studio. You invoke the tool
by choosing the ASP.NET Configuration item from the Build menu. (See Figure 7-6.)

 Chapter 7 Working with the Page 293

FIGURE 7-6 The ASP.NET Web Site Administration Tool.

You can use this tool to create a default database to store profile data. The default database
is a SQL Server file named aspnetdb.mdf, which is located in the App_Data special folder of
the ASP.NET application. A proper connection string is added to the configuration file to be
consumed by various ASP.NET provider-based frameworks. By default, the application will
use it as a plain file through SQL Server Express. However, if you decide to host it in a full
 installation of SQL Server, all you need to do is update the connection string in the
web.config file of your application.

The tables and schema of the database are fixed. Note that the same database—the
 aspnetdb.mdf file—contains tables to hold user profiles and also membership and role
 information. The use of a membership database with users and roles is important because
personalization is designed to be user-specific and because a user ID—either a local
Windows account or an application-specific logon—is necessary to index data.

Profile data has no predefined duration and is permanently stored. It is up to the Web site
administrator to delete the information when convenient.

As mentioned, WSAT is not necessarily the way to go; it’s just one option for setting up
the profile infrastructure. For example, if you’re using a custom provider, the setup of your
 application is responsible for preparing any required storage infrastructure—be it a SQL
Server table, an Oracle database, or whatever else. We’ll cover the setup of profile providers
in the next section.

294 Part II ASP.NET Pages and Server Controls

Note At this point, many developers start thinking that they probably don’t want to be bound
to aspnetdb.mdf because it’s a general purpose tool or because it’s too generic of a repository for
their data. So, many developers decide to plan to build a tailor-made custom provider and run
their own solution.

Building custom providers is doable and fully supported by the framework. However, make sure
that building such a provider doesn’t turn out to be simply an extra (and avoidable) pain in the
proverbial neck. The aspnetdb.mdf solution is effective and free, and it provides zero cost of
ownership. After you have hosted it in a SQL Server installation, you have the full power of man-
agement tools at your disposal. And, by the way, although you can reasonably consider renaming
the database on a per-application basis, the database (and the related ASP.NET API) is designed
to support multiple applications. In other words, you can even have a single instance of aspnetdb
also in a hosting scenario.

Personally, I don’t mind using aspnetdb when I need profile support. Membership and role
 management, though, might be a different story.

Working with Anonymous Users
Although user profiles are designed primarily for authenticated users, anonymous users can
also store profile data. In this case, though, a few extra requirements must be fulfilled. In par-
ticular, you have to turn on the anonymousIdentification feature, which is disabled by default:

<anonymousIdentification enabled="true" />

The purpose of anonymous user identification is to assign a unique identity to users who are
not authenticated and recognize and treat all of them as an additional registered user.

Note Anonymous identification in no way affects the identity of the account that is processing
the request. Nor does it affect any other aspects of security and user authentication. Anonymous
identification is simply a way to give a “regular” ID to unauthenticated users so that they can be
tracked as authenticated, “regular” users.

In addition, to support anonymous identification you must mark properties in the data
 model with the special Boolean attribute named allowAnonymous. Properties not marked
with the attribute are not made available to anonymous users.

<anonymousIdentification enabled="true" />
<profile enabled="true">
 <properties>
 <add name="UseEuroMetricSystem" type="Boolean"
 defaultValue="false" allowAnonymous="true" />
 <add name="TempSystem" type="String"
 defaultValue="F" />
 <add name="Locations"
 type="System.Collections.Specialized.StringCollection" />
 </properties>
</profile>

 Chapter 7 Working with the Page 295

In the preceding code snippet, anonymous users can pick up the European metrics but
 cannot modify the way in which temperatures are displayed nor add their favorite locations.

Accessing Profile Properties
In a Web site project, the Page object features an extra Profile property added by the system
via a partial class during the dynamic compilation step. Before the request begins its process-
ing cycle, the Profile property of the page is set with an instance of the profile class created
out of the content in the web.config file.

When the page first loads, profile properties are set to their default values (if any) or they
are empty objects. They are never null. When custom or collection types are used to define
properties, assigning default values might be hard. The code just shown defines a string
 collection object—the property Locations—but giving that a default value expressed as a
string is not supported. At run time, though, the Locations property won’t be null—it will
equal an empty collection. So how can you manage default values for these properties?

Properties that don’t have a default value can be initialized in the Page_Load event when the
page is not posting back. Here’s how you can do that:

if (!IsPostBack)
{
 // Add some cities to the Locations property
 if (Profile.Locations.Count == 0) {
 Profile.Locations.Add("London");
 Profile.Locations.Add("Amsterdam");
 }
}

In a Web site project, the personalization data of a page is all set when the Page_Init event
fires. However, when the Page_PreInit event arrives, no operation has been accomplished yet
on the page, not even the loading of personalization data.

In a WAP project, if you opt for a strongly typed approach, you have no way to assign a
 default value to properties. The only workaround, obviously, is dealing with defaults right in
the getter method of each property. Here’s an example:

[SettingsAllowAnonymous(true)]
public String TempSystem
{
 get
 {
 var current = (String) HttpContext.Current.Profile.GetPropertyValue("TempSystem");
 if (String.IsNullOrEmpty(current))
 return "F";
 return (String) current;
 }
 set { HttpContext.Current.Profile.SetPropertyValue("TempSystem", value); }
}

296 Part II ASP.NET Pages and Server Controls

In a Web site project, the personalization data of a page is available only on demand—
precisely, the first time you access the profile object.

Let’s consider some sample code that illustrates the power of the user profile API.

Note The personalization data of a page is all set when the Page_Init event fires. However, when
the Page_PreInit event arrives, no operation has been accomplished yet on the page, not even
the loading of personalization data.

User Profiles in Action
Suppose you have a page that displays information according to user preferences. You
should use the user profile API only to store preferences, not to store sensitive data. Losing
the profile information should never cause the user any loss of money or serious inconve-
nience. Here’s the code you might have at the startup of the page request. The page first
grabs in some way some weather-related information and then displays it as configured by
the user:

protected void Page_Load(Object sender, EventArgs e)
{
 if (!IsPostBack)
 {
 var info = GrabWeatherInfo();
 DisplayData(info);
 }
}

private static WeatherInfo GrabWeatherInfo()
{
 ...
}

private void DisplayData(WeatherInfo info)
{
 // Type-safe solution for Web Application projects
 // (reusing the YourApp.UserProfile wrapper class discussed earlier)

 // Get profile information from the underlying repository
 var profile = YourApp.UserProfile.GetUserProfile();

 // Metric system
 var speedFormat = "{0} mph";
 if (profile.UseEuroMetricSystem)
 speedFormat = "{0} kmh";
 var speedText = String.Format(speedFormat, info.WindSpeed);

 Chapter 7 Working with the Page 297

 // Temperature
 var tempText = String.Format("{0} {1}", info.Temperature, profile.TempSystem);
 lblWindSpeed.Text = speedText;
 lblTemperature.Text = tempText;

 // The sample page also displays a panel for users to change settings.
 // Display current settings through the edit panel as well.
 chkEuroMetric.Checked = profile.UseEuroMetricSystem;
 rdlTempSystem.SelectedIndex = (profile.TempSystem == "F" ? 0 : 1);
}

The output of the page can change depending on the settings entered by individual users.
Figure 7-7 shows what the same page might look like for distinct users.

FIGURE 7-7 Different settings for different users.

298 Part II ASP.NET Pages and Server Controls

If anonymous access is permitted, any unauthenticated user is treated as the same one—
meaning that all anonymous users share the same settings and any can change in the
 settings of one user affects all the others. (Most of the time, though, sites where profiles are
fundamental just don’t allow anonymous access.)

How do you change settings? Here’s the code you can associate with the Save button you see
in Figure 7-7:

protected void Button1_Click(Object sender, EventArgs e)
{
 // Retrieve and update the profile for the current user
 var profile = YourApp.UserProfile.GetUserProfile();
 profile.UseEuroMetricSystem = chkEuroMetric.Checked;
 profile.TempSystem = rdlTempSystem.SelectedItem.Value;

 // Persist settings for the current user
 profile.Save();

 // Refresh the page to ensure changes are immediately visible
 Response.Redirect("/profile.aspx");
}

The Redirect call is not strictly required; however, if it’s omitted, it won’t give the user an
 immediate experience based on the changes entered. If you omit the redirect, the changes
(which are stored in the repository, anyway) will be visible only upon the next request.

Personalization Events
As mentioned, the personalization data is added to the HTTP context of a request before the
request begins its processing route. But which system component is in charge of loading per-
sonalization data? ASP.NET employs an HTTP module for this purpose named ProfileModule.

The module attaches itself to a couple of HTTP events and gets involved after a request has
been authorized and when the request is about to end. If the personalization feature is off,
the module returns immediately. Otherwise, it fires the Personalize event to the application
and then loads personalization data from the current user profile. When the Personalize
event fires, the personalization data hasn’t been loaded yet. Handlers for events fired by an
HTTP module must be written to the global.asax file.

void Profile_Personalize(object sender, ProfileEventArgs e)
{
 ProfileCommon profile = null;

 // Exit if it is the anonymous user
 if (User == null) return;

 // Determine the profile based on the role. The profile database
 // contains a specific entry for a given role.

 Chapter 7 Working with the Page 299

 if (User.IsInRole("Administrators"))
 profile = (ProfileCommon) ProfileBase.Create("Administrator");
 else if (User.IsInRole("Users"))
 profile = (ProfileCommon) ProfileBase.Create("User");
 else if (User.IsInRole("Guests"))
 profile = (ProfileCommon) ProfileBase.Create("Guest");

 // Make the HTTP profile module use THIS profile object
 if (profile != null)
 e.Profile = profile;
 }
}

The personalization layer is not necessarily there for the end user’s amusement. You should
look at it as a general-purpose tool to carry user-specific information. User-specific informa-
tion, though, indicates information that applies to the user, not necessarily information en-
tered by the user.

The personalization layer employs the identity of the current user as an index to retrieve the
proper set of data, but what about roles? What if you have hundreds of users with different
names but who share the same set of profile data (such as menu items, links, and UI set-
tings)? Maintaining hundreds of nearly identical database entries is out of the question. But
the standard profile engine doesn’t know how to handle roles. That’s why you sometimes
need to handle the Personalize event or perhaps roll your own profile provider.

The code shown previously overrides the process that creates the user profile object and
ensures that the returned object is filled with user-specific information accessed through the
user role. The static method Create on the ProfileBase class takes the user name and creates
an instance of the profile object specific to that user. ProfileCommon is the common name of
the dynamically created class that contains the user profile.

The handler of the Personalize event receives data through the ProfileEventArgs class. The
class has a read-write member named Profile. When the event handler returns, the profile
HTTP module checks this member. If it is null, the module proceeds as usual and creates
a profile object based on the user’s identity. If not, it simply binds the current value of the
Profile member as the profile object of the page.

Migrating Anonymous Data
As mentioned, anonymous users can store and retrieve settings that are persisted using an
anonymous unique ID. However, if at a certain point a hitherto anonymous user decides to
create an account with the Web site, you might need to migrate to her account all the set-
tings that she made as an anonymous user. This migration doesn’t occur automatically.

When a user who has been using your application anonymously logs in, the personaliza-
tion module fires an event—MigrateAnonymous. Properly handled, this global event allows

300 Part II ASP.NET Pages and Server Controls

you to import anonymous settings into the profile of an authenticated user. The following
 pseudocode demonstrates how to handle the migration of an anonymous profile:

void Profile_MigrateAnonymous(object sender, ProfileMigrateEventArgs e)
{
 // Load the profile of the anonymous user
 ProfileCommon anonProfile;
 anonProfile = Profile.GetProfile(e.AnonymousId);

 // Migrate the properties to the new profile
 Profile.UseEuroMetricSystem = anonProfile.UseEuroMetricSystem;
 ...
}

You get the profile for the anonymous user and extract the value of any property you want
to import. Next you copy the value to the profile of the currently logged-on user.

Profile Providers
In ASP.NET, the profile API is composed of two distinct elements: the access layer and the
storage layer.

The access layer provides a strongly typed model to get and set property values and also
manages user identities. It guarantees that the data is retrieved and stored on behalf of the
currently logged-on user.

The second element of the profile system is data storage. The system uses ad hoc providers
to perform any tasks involved with the storage and retrieval of values. ASP.NET comes with
a profile provider that uses SQL Server Express as the data engine. If necessary, you can also
write custom providers. The profile provider writes profile data into the storage medium of
choice and is responsible for the final schema of the data.

Important In ASP.NET, a provider is defined as a pluggable component that extends or replaces
some system functionality. The profile provider is just one implementation of the ASP.NET
provider model. Other examples of providers are the membership provider and role manager
provider, both of which will be discussed later in the book. At its core, the provider infrastruc-
ture allows customers to change the underlying implementation of some out-of-the-box system
functionalities while keeping the top-level interface intact. Providers are relatively simple com-
ponents with as few methods and properties as possible. Only one instance of the provider exists
per application domain.

Configuring Profile Providers
All features, such as user profiling, that have providers should have a default provider.
Normally, the default provider is indicated via a defaultProvider attribute in the section of the

 Chapter 7 Working with the Page 301

configuration file that describes the specific feature. By default, if a preferred provider is not
specified, the first item in the collection is considered the default.

The default profile provider is named AspNetSqlProfileProvider and uses SQL Server Express
for data storage. Providers are registered in the <providers> section of the configuration file
under the main node <profile>, as shown here:

<profile>
 <providers>
 <add name="AspNetSqlProfileProvider"
 connectionStringName="LocalSqlServer" applicationName="/"
 type="System.Web.Profile.SqlProfileProvider" />
 </providers>
</profile>

The <add> nodes within the <providers> section list all the currently registered providers.
The previous code is an excerpt from the machine.config file. Attributes such as name and
type are common to all types of providers. Other properties are part of the provider’s specific
configuration mechanism. Tightly connected with this custom interface is the set of extra
properties—in this case, connectionStringName and description. The description attribute is
simply text that describes what the provider does.

The connectionStringName attribute defines the information needed to set up a connec-
tion with the underlying database engine of choice. However, instead of being a plain
connection string, the attribute contains the name of a previously registered connection
string. For example, LocalSqlServer is certainly not the connection string to use for a local
or remote connection to an instance of SQL Server. Instead, it is the name of an entry in the
new <connectionStrings> section of the configuration file. That entry contains any concrete
 information needed to connect to the database.

The LocalSqlServer connection string placeholder is defined in machine.config as follows:

<connectionStrings>
 <add name="LocalSqlServer"
 connectionString="data source=.\SQLEXPRESS;
 Integrated Security=SSPI;
 AttachDBFilename=|DataDirectory|aspnetdb.mdf;
 User Instance=true"
 providerName="System.Data.SqlClient" />
</connectionStrings>

As you can see, the connection string refers to an instance of SQL Server named SQLEXPRESS
and attaches to the aspnetdb.mdf database located in the application’s data directory—the
App_Data folder.

302 Part II ASP.NET Pages and Server Controls

Structure of AspNetDb.mdf
As a developer, you don’t need to know much about the layout of the table and the logic
that governs it; instead, you’re responsible for ensuring that any needed infrastructure is
 created. To do so, you use the Build|ASP.NET Configuration menu item in Visual Studio to
start the ASP.NET site administration tool. A view of the tables in the database is shown in
Figure 7-8.

FIGURE 7-8 A view of the interior of the AspNetDb database and the profile table.

Note that the AspNetDb database isn’t specific to the personalization infrastructure. As you
can see in the figure, it groups all provider-related tables, including those for membership,
roles, and users. The internal structure of each database is specific to the mission of the
 underlying provider.

Custom Profile Providers
The SQL Server profile provider is good at building new applications and is useful for profile
data that is inherently tabular. In many cases, though, you won’t start an ASP.NET applica-
tion from scratch, but you will instead migrate an existing application. You often already
have data to integrate with the ASP.NET profile layer. If this data doesn’t get along with the
relational model, or if it is already stored in a storage medium other than SQL Server, you
can write a custom profile provider. An old but still helpful link is the following: http://msdn.
microsoft.com/msdnmag/issues/07/03/ASPNET2/default.aspx.

Profile providers push the idea that existing data stores can be integrated with the
 personalization engine using a thin layer of code. This layer of code abstracts the physical

http://msdn

 Chapter 7 Working with the Page 303

characteristics of the data store and exposes its content through a common set of methods
and properties. A custom personalization provider is a class that inherits ProfileProvider.

Finally, note that a custom provider doesn’t necessarily have to be bound to all profile
 properties. You can also use the default provider for some properties and a custom provider
for others. Here’s how you specify the provider for a property using the declarative approach:

<properties>
 <add name="BackColor" type="string" provider="MyProvider" />
 ...
</properties>

In the preceding code, the BackColor property is read and written through the MyProvider
provider. If you are in WAP, instead, and wrote your profile wrapper class, you resort to the
ProfileProvider attribute:

[ProfileProvider("MyProvider")]
public String BackColor
{
 get { ... }
 set { ... }
}

Obviously, the provider name must correspond to one of the entries in the <providers>
section.

Page Localization
The whole theme of localization is nothing new in the .NET Framework, and ASP.NET is no
exception. You have had tools to write culture-specific pages since the very first version of
ASP.NET. In addition, these tools didn’t change significantly with the stream of versions, and
today they form a rather stable API.

Localization is not a hard feature to build and doesn’t touch any staggering peaks of
 technical difficulty. A successfully localizable application just requires planning, develop-
ment care, and constant small-scale refactoring. Frankly, localization is not for just any (Web)
 application either. In this regard, I consider localization as an all-or-nothing feature of a Web
project: either localization is a requirement or it is not. If it is a requirement, every little piece
of UI (text, layout, CSS, script, and images) must be architected and implemented to be easily
replaceable and configurable. Otherwise, I just don’t care about localization and stuff literals
in the page layouts.

Considering localization from the perspective of an entire application with a not-so-short
expectation of life, there are three aspects of it that need to be addressed: how to make
 resources localizable, how to add support for a new culture, and how to use (or whether to
use) databases as a storage place for localized information. Let’s review the techniques that
allow you to keep resources easily localizable.

304 Part II ASP.NET Pages and Server Controls

Making Resources Localizable
A localizable ASP.NET Web Form uses resources instead of hard-coded text to flesh out the
user interface. In this context, a resource is meant to be an item of stored text associated with
a public name and typically compiled into its own assembly. A resource assembly is a stan-
dard class library that contains one or more RESX files. A RESX file is an XML document that
contains resource names and content. Visual Studio provides a typical dialog box to add such
a new item to the project. (See Figure 7-9.)

FIGURE 7-9 Adding a new resource item to the ASP.NET project.

You always use the resource name to refer to its content from within application pages. After
a resource assembly is linked to the application, the ASP.NET runtime selects the correct
value at run time according to the user’s language and culture.

Note Instead of creating and maintaining a resource assembly, you can simply create an
App_GlobalResources folder under the site root and place there any resource RESX files you might
need. Such files are compiled into resource assemblies on demand care of the ASP.NET runtime.
A possible drawback is that the RESX files are deployed as source code to the site.

Global and Local Resources
The ASP.NET documentation distinguishes between global and local resources. Global
 resources are available to any pages in the application; local resources, instead, are specific to
a single page or the pages located in a given directory hierarchy. In terms of syntax, global
and local resources are the same thing—a RESX file. Local resources must be deployed to an
App_LocalResources folder. You can have only one global resource folder in a site; instead,
you can have multiple local resource folders, one for each section of the site you want to

 Chapter 7 Working with the Page 305

 restrict resources to. In Figure 7-10, you can see a local resource folder under the Private
folder that affects only the pages defined inside the Private folder and its child folders.

FIGURE 7-10 Global and local resource folders.

In a local resource folder, you can have resource files with folder-level visibility (such as
 personal.resx in Figure 7-10) as well as page-specific resource files. In this case, a simple
 naming convention binds the file to the page. If the page is named sample.aspx, its
 corresponding resource file will be sample.aspx.resx.

Global and local resource files can happily coexist in the same application. Finding the right
balance between what’s global and what’s local is ultimately up to you. Overall, the best
 approach seems to be having multiple resource files—either local or global. You might start
with a local resource file for each page, and then merge strings and other resources into a
global resource file as you find them referenced from multiple pages.

Important From what I have learned on the battlefield, having a single global file to hold all
localizable resources turns into a not-so-pleasant experience, even for a moderately complex
Web application. One issue is the size of the file, which grows significantly; another issue, which is
even more painful, is the possible concurrent editing that multiple developers might be doing on
the same file with the subsequent need for a continuous merge. However, I encourage you not to
overlook the naming issue.

When you have hundreds of strings that cover the entire application scope, how do you name
them? Many strings look the same or differ only in subtle points. Many strings are not entire
strings with some sensible meaning; they often are bits and pieces of some text to be completed
with dynamically generated content. And the concatenation might be different for various
 languages.

Trust me: naming a few of them in the restricted context of only some pages is doable; handling
hundreds of them for the entire application is really painful.

306 Part II ASP.NET Pages and Server Controls

Using Resources: Declarative vs. Programmatic
In ASP.NET Web Forms, a key decision to be made early is whether you want to insert
 localizable text declaratively, programmatically, or both. Inserting localized text program-
matically means writing a method on each Page class that assigns ad hoc text before display.
This approach offers the maximum flexibility and allows you to retrieve localized text using
the API that best suits you. Here’s some code to read the value of the resource item named
Welcome from a resource file named literals.resx:

MyResources.Literals.Welcome

MyResources is the default namespace of the assembly that contains the resource file. Literals
is the name of the file and the class name that ultimately exposes text items as public static
properties. Finally, Welcome is the name of the resource item. For this code to work, you
must ensure you create an assembly with a Literals.resx file whose access modifier in Visual
Studio is set to Public. Note that the default value is Internal, which will not make resource
items publicly available. (See Figure 7-11.)

FIGURE 7-11 Editing a RESX document.

The preceding syntax is general enough to work with any RESX file, regardless of its local or
global status. This is also the natural way of localizing applications in ASP.NET MVC. However,
it doesn’t get along very well with the ASP.NET server controls that populate Web Forms
pages. The point is that you can’t use the preceding expression in a <%= ... %> code block in
all possible locations within a Web Forms page.

The following markup compiles just fine:

<h1><%= MyResources.Literals.BookTitle %> </h1>

Unfortunately, you can’t embed the code block as the attribute of a server control. (This is
where the key difference between Web Forms and ASP.NET MVC arises.) The following code
won’t even compile:

<asp:MenuItem NavigateUrl="~/Default.aspx" Text="<%= MyResources.Literals.Home %>"/>

The reason has to be found in the way in which a server control produces its own output.

 Chapter 7 Working with the Page 307

In the end, for a Web Forms page the most convenient approach results from any of the
following:

■ Design your own localization layer that each page passes through to have its text
 localized. This layer is a sort of transformer that reads from localization storage and
replaces placeholder text. Your localization storage can be RESX file or, why not, your
own database table.

■ Go with any shortcuts that Visual Studio and ASP.NET machinery might have released.
This includes a tailor-made syntax for local resources and a specific expression builder
for declaratively binding control attributes to localized text. However, the declara-
tive syntax for global resources requires the App_GlobalResources folder and direct
 deployment of any RESX files.

Let’s find out more about what’s required to deal with globally defined resources.

Dealing with Global Resources
Using global resources programmatically entails writing for each page some code as shown
next. The code will be invoked just before display:

protected void LocalizeTextInPage()
{
 // For each control you expect in the page, retrieve the localized text
 Label1.Text = MyResources.Literals.Welcome;
 ...
 Label2.Text = HttpContext.GetGlobalResourceObject("globals.resx", "Description");;
 ...
}

If your global resources are stored through plain RESX files, you can retrieve it using
 either of the two expressions just shown. In addition to using the object expression that
navigates into the class hierarchy of the resource assembly, you can also employ the
GetGlobalResourceObject method of the HttpContext object. If the localized text resides
 elsewhere, the API for retrieving it is up to you.

Alternatively, if you prefer to take the declarative route, use the object expression within
plain page markup and resort to the ASP.NET-specific $Resources expression builder for
 control attributes. Here’s an example:

<asp:Literal runat="server" Text="<% $Resources:Globals, WelcomeMessage %>" />

$Resources refers to an ASP.NET built-in expression builder. It accepts a parameter that is a
comma-separated string trailing the colon (:) symbol. The first token indicates the name of
the RESX file that is the source of the localized text. The second token indicates the name of
the resource item to read. There are no facilities to bind declaratively localized text stored
outside of RESX files.

308 Part II ASP.NET Pages and Server Controls

Dealing with Local Resources
Local resources are strictly page-specific in the sense that if it’s properly named after the
ASPX source file, the content of a resource file can be referenced using direct syntax from the
markup, as shown here:

<asp:Label runat="server" ID="Label1"
 meta:resourcekey="Label1_ResourceID" />

The resourcekey meta attribute indicates that property values for the Label1 control are to
be taken from a page-specific resource file. If the resource file for the page contains an entry
such as Label1_ResourceID.Text, the Text property of Label1 will be set to the stored value.
The same can be done for any other properties of the control.

Resources and Cultures
A RESX file is a plain XML document. How can you distinguish a RESX file that represents
French localized text from the RESX of German localized text? A RESX file name that doesn’t
include culture information is assumed to contain language-neutral text with no culture
defined.

To create a resource assembly for a specific culture—say, French—you need to name the
resource file as follows: sample.aspx.fr.resx. The fr string should be replaced with any other
equivalent string that identifies a culture, such as de for German or en for English.

When resources from multiple cultures are available in the AppDomain, the ASP.NET runtime
machinery detects the underlying culture and picks up the matching resource file. I’ll return
in a moment at how to set and change the culture programmatically.

Setting the Current Culture in .NET Applications
In the .NET Framework, the culture is set on the current thread through the CurrentCulture
and CurrentUICulture properties. In general, both properties are necessary when you want
to support multiple languages in a page or view. In fact, the two properties refer to distinct
capabilities and have an impact on different areas of the user interface.

The CurrentCulture property affects the results of functions, such as the date, the number,
and currency formatting. The CurrentUICulture property, on the other hand, determines the
localized resource file from which page resources are loaded. The following code snippet
shows a possible way to arrange a unit test aimed at testing whether culture-specific items
are correctly retrieved. If you intend to test only whether resource files are being used as
 expected, you can comment out the setting of CurrentCulture.

 Chapter 7 Working with the Page 309

const String culture = "it-IT";
var cultureInfo = CultureInfo.CreateSpecificCulture(culture);
Thread.CurrentThread.CurrentCulture = cultureInfo;
Thread.CurrentThread.CurrentUICulture = cultureInfo;

Note that the two culture properties might or might not have the same value. For example,
you can switch the language of text and messages according to the browser’s configuration
while leaving globalization settings (such as dates and currency) constant.

Note Culture names are a combination of two pieces of information: the language and the
country/region that you intend to refer to. The two strings are combined with a dash symbol (-).
Often, but not necessarily, the two strings coincide. For example, it-IT means the Italian culture
for the country of Italy, whereas en-US indicates the English culture for the United States, which is
expected to be different from en-GB or en-SA.

Setting the Current Culture in ASP.NET Pages
If you’re writing an ASP.NET Web Forms application, you don’t need to deal with the Thread
class. In ASP.NET, you have culture properties ready-made on the Page class. They are string
properties named Culture and UICulture.

The default value being assigned to both properties is auto, meaning that ASP.NET
 automatically detects the browser’s language for the thread in charge of the request. The
getter method of both properties is defined as shown here:

public String UICulture
{
 get { return Thread.CurrentThread.CurrentUICulture.DisplayName; }
 set { ... }
}

When the auto mode is on for the page culture, the end user is ultimately responsible for
determining the language of the pages. All the developers need to do is ensure that proper
resource files are available. If no suitable resource file is found for the detected culture,
ASP.NET will fall back to the neutral (default) culture.

Obviously, a specific culture can be enforced programmatically or declaratively. You can
 employ a global setting for the culture by using the <globalization> section of the web.config
file:

<globalization uiculture="it-IT" culture="it-IT" / >

A global and fixed setting for culture, however, is hardly what you want most of the time.
Most of the time, instead, you want the ability to set the culture programmatically and the
ability to change it on the fly as the user clicks an icon or requests a culture-specific URL.

310 Part II ASP.NET Pages and Server Controls

Changing Culture on the Fly
To change the culture programmatically, you need to satisfy two key requirements. First,
define how you’ll be retrieving the culture to set. The culture can be a value you read from
some database table or perhaps from the ASP.NET cache. It can also be a value you retrieve
from the URL. Finally, it can even be a parameter you get via geo-location—that is, by
 looking at the IP address the user is using for connecting.

After you have the culture ID to set, you have to set it by acting on the current thread, as
mentioned earlier. Note that the culture must be set for each request because each request
runs on its own thread.

If you intend to read and set the culture as part of the page initialization work, note that the
following code, which might appear obvious at first, just won’t work:

void Page_Load(Object sender, EventArgs e)
{
 Culture = "IT";
 UICulture = "it-IT";
}

The Page_Load handler is fired too late to be effective. The recommended approach consists
of overriding the InitializeCulture method on the Page class:

protected override void InitializeCulture()
{
 base.InitializeCulture();
 Culture = "IT";
 UICulture = "it-IT";
}

The setter method of both culture properties will then take care of setting culture
 information on the current thread. Setting the thread directly does work, but it’s unnecessary
to do so.

Changing the language on the fly as the user clicks on a link is a bit trickier. The idea is that
you override the InitializeCulture method so that the page reads the language to use from
global storage—for example, the ASP.NET Cache or Session.

protected override void InitializeCulture()
{
 base.InitializeCulture();
 UICulture = DetermineLocaleToEnforce();
}

 Chapter 7 Working with the Page 311

private String DetermineLocaleToEnforce()
{
 var language = Cache["Language"] as String;
 if (String.IsNullOrEmpty(language))
 language = "en-US";
 return language;
}

When the user interacts with the user interface in the postback, you simply read the newly
selected language, update the storage, and then redirect to the same page for a refresh:

protected void Button1_Click(Object sender, EventArgs e)
{
 var languageInfo = GetCurrentLocale();
 Cache["Language"] = languageInfo;
 Response.Redirect("/private/moneyintl.aspx");
}
private String GetCurrentLocale()
{
 return Languages.SelectedValue;
}

This is good enough if your user interface is limited to listing a few image buttons with flags.
If you want a drop-down list of languages to choose from, you also must take care of re-
indexing the list of items. This translates into some extra code in Page_Load.

protected void Page_Load(Object sender, EventArgs e)
{
 if (!IsPostBack)
 {
 var languageCode = DetermineLocaleToEnforce();
 var item = Languages.Items.FindByValue(languageCode);
 Languages.SelectedIndex = Languages.Items.IndexOf(item);
 }
}

Nicely enough, implementing the same feature is much simpler in ASP.NET MVC, even
though ASP.NET MVC shares exactly the same run-time environment as ASP.NET Web Forms.
The postback model, which is great at many things, makes some other things a bit harder
than expected. In ASP.NET MVC, you can simply create your own action invoker and then, for
each and every controller method, you retrieve the language and set it to the current thread.
The action invoker is a way to intercept the execution of action methods in a rather unobtru-
sive way. In Web Forms, you can achieve the same result by using an HTTP module that kicks
in for every request, reads the currently set language, and sets the culture on the current
thread.

312 Part II ASP.NET Pages and Server Controls

Note More and more Web sites check the location from where a user is connected and suggest
a language and a culture. This feature requires an API that looks up the IP address and maps that
to a country/region and then a culture. Some browsers (for example, Firefox 3.5, Safari, iPhone,
and Opera) have built-in geo-location capabilities that work according to the W3C API. (See
http://www.mozilla.com/firefox/geolocation.)

To support other browsers (including Internet Explorer), you can resort to third-party services
such as Google Gears. Google Gears is a plug-in that extends your browser in various ways, in-
cluding adding a geo-location API that returns the country/region of the user from the current
 geographical location. Note that Google returns the ISO 3166 code of the country/region (for
example, GB for the United Kingdom) and its full name. From here, you have to determine the
language to use. The country/region code doesn’t always match the language. For the United
Kingdom, the language is en. To install Google Gears, pay a visit to http://gears.google.com.

Adding Resources to Pages
An ASP.NET page is usually made of a bunch of auxiliary resources including script files,
 cascading style sheets (CSS), and images. When the browser downloads a page, it usually
places a number of independent requests to the Web server and tracks when the docu-
ment is ready. The display of the document, however, might begin before the entire docu-
ment (and related links) has been downloaded. Developers of heavy pages made of several
resources (a few dozens is not unusual) resort to a number of techniques to optimize the
download experience of their pages. Let’s review a few interesting techniques that simplify
the management of scripts, images, and other resources.

Using Script Files
The only HTML-supported way of linking script files to a page is via the <script> tag and
its src attribute. When a page has several scripts, the degree of parallelism at which the
browser can operate is dramatically lowered, as is the load time of the page. Typically, in fact,
 browsers are idle while downloading a script code, regardless of the host name.

It turns out that managing scripts effectively, and sometimes refactoring the page to
 maximize its download and rendering time, is a critical topic. Let’s see the most common
techniques to deal with script files.

Scripts at the Bottom of the Page
Because of the way in which browsers operate, moving all <script> tags at the bottom of the
page just before the </body> tag improves the download of the page. Unfortunately, this is
not always possible.

http://www.mozilla.com/firefox/geolocation
http://gears.google.com

 Chapter 7 Working with the Page 313

Why do browsers stop any activity while downloading script code?

In general, the script being downloaded might contain some instructions, such as
document.write, that could modify the status of the current Document Object Model (DOM).
To avoid nasty situations that might derive from here, browsers download a script synchro-
nously and run it right after downloading. A script that contains document.write calls can
hardly be moved elsewhere without causing some damage.

Back with Internet Explorer 4, Microsoft introduced a little-known attribute for the <script>
tag—the defer attribute. Later incorporated in the HTML 4 specification, the defer attribute
was just meant to tell the browser whether or not loading the script can be deferred to the
end of the page processing. A script that specifies the defer attribute implicitly states it is
not doing any direct document writing. Using the defer attribute is not a standard technique
because of the non-uniform way in which browsers support it. For this reason, moving script
tags manually at the end is the most common trick to speed up pages. For more information
on the defer attribute, have a read of http://hacks.mozilla.org/2009/06/defer.

Note Two libraries are extremely popular as far as improving the script downloading is con-
cerned. One is LABjs (available at http://www.labjs.com), and the other is RequireJS (available
at http://www.requirejs.org). Both allow loading scripts (and other resources) in parallel, which
 maintains possible (declared) dependencies between files.

Using a Content Delivery Network
Among other things, the download time also depends on the physical distance between the
client browser and the server expected to serve a given resource. For high-volume, interna-
tional sites, this can be a significant problem.

A content delivery network (CDN) is a third-party, geographically distributed server that
serves commonly accessed files from the nearest possible location. By using a CDN, you
guarantee the best service without the costs for your organization of setting up such a wide
network of servers.

For your code, the change is minimal—you just replace your local server URL with the CDN
URL and get the script from there. Here’s how to link the ASP.NET AJAX library from the
Microsoft CDN:

<script type="text/javascript"
 src="http://ajax.microsoft.com/ajax/4.0/MicrosoftAjax.js" />

Popular libraries such as jQuery and Microsoft ASP.NET AJAX are being offered through
Google and Microsoft CDN.

http://hacks.mozilla.org/2009/06/defer
http://www.labjs.com
http://www.requirejs.org
http://ajax.microsoft.com/ajax/4.0/MicrosoftAjax.js

314 Part II ASP.NET Pages and Server Controls

Using a CDN is also beneficial because it increases the likelihood that the browser cache
 already contains a resource that might have been referenced using the same URL by other
sites using the same CDN. The perfect example of a file that would greatly benefit users
when put on a CDN is the one mentioned a moment ago—the jQuery library. You won’t
benefit much, on the other hand, from placing on a CDN files that only one application uses.

Reasons for Minifying a Script File
A golden rule of Web site performance optimization says that once you have minimized the
impact of static files (scripts, style sheets, and images), you’re pretty much done. In addition
to the time and distance of the download, the size also matters—the smaller, the better.

You can use Gzip compression on the Web server to serve any resources quickly. Regular
pages, including ASP.NET pages, are often returned gzipped, but the same doesn’t always
happen for other static resources such as scripts and style sheets. Images on the other side
are often already compressed (PNG, JPG, GIF), and any attempt to further compress them
results in waste of time rather than an improvement.

Beyond this, consider that script files are rich with white spaces and blanks. Simply removing
these characters can cut a significant percentage of software fat out of the file. This is just
what minifiers are for.

A minifier is a tool that parses a given script file and rewrites it in a way that is functionally
equivalent to the original but devoid of any unnecessary characters. The jQuery library is
commonly served in its minified form. A minified script file is nearly impossible to read or
 understand for a human, so I don’t recommend using minified files during development.

Microsoft released a minifier tool; you can get it at http://aspnet.codeplex.com/releases/
view/40584. This tool can work on script and CSS files. Also, in addition to removing white
spaces and blanks, it safely attempts to reduce curly brackets and to make variable names
shorter.

Note You might want to look at build-time minifier tools such as Chirpy because having to
manually minify several files can be a bit of a pain. See http://chirpy.codeplex.com.

Localized Scripts
Like other Web resources, scripts can be subject to localization. At the very end of the day,
a script is a relatively long string of text, so there’s really nothing that prevents you from
 embedding a script into the application resources along with a plain RESX file.

http://aspnet.codeplex.com/releases/
http://chirpy.codeplex.com

 Chapter 7 Working with the Page 315

The method GetWebResourceUrl on the ClientScript property of the Page class can be used to
return the URL to any resource stored in a satellite (localized) assembly. In this way, you link
your scripts from the assembly, deploy the localized assembly, and you’re done.

The only other alternative you have is maintaining different copies of the script and resolve
the name programmatically. In ASP.NET 4, the ScriptManager control can streamline this task
quite a bit. Here’s how to use the script manager component:

<asp:ScriptManager ID="ScriptManager1" runat="server" EnableScriptLocalization="true">
 <Scripts>
 <asp:ScriptReference Path="Person.js" ResourceUICultures="it-IT, de-DE" />
 </Scripts>
</asp:ScriptManager>

When the property EnableScriptLocalization is true, the <Scripts> section lists all script files to
be downloaded that might be subject to localization. Localization consists of mangling the
provided name of the script in a way that incorporates culture information. For example, the
preceding code will emit the following markup if the UI culture is set to Italian:

<script ... src="person.it-IT.js" />

The value of the page property UICulture determines the culture code being used to mangle
the file name. When configuring the ScriptManager control, you indicate the supported cul-
tures through the ResourceUICultures property on individual script references. If a related file
is missing, you’ll get a 404 error for the request. Otherwise, the markup will be emitted to
target the language-neutral script file.

Using Cascading Style Sheets and Images
Cascading style sheets and images are the remaining two-thirds of the auxiliary static
 resources around most Web pages. Some consolidated techniques also exist to minimize the
impact of these resources on your pages.

The first consideration to make is that the more requests you make, the more your users are
likely to wait to see the page. Aggregating multiple scripts in a single (but larger) file is rela-
tively easy and effective. It is doable for CSS files too; but with images? How can you combine
multiple images to be used in distinct areas of the page and then reference just the section
you need and where you need it?

Grouping Images into Sprites
To reduce the number of HTTP requests that a page requires in order to fetch all the images
it needs, you use sprites.

316 Part II ASP.NET Pages and Server Controls

A sprite is a single image that results from the composition of multiple images that are stored
side by side, forming a grid of any size you like. You then link the image URL to any
tag where you need a section of it and use CSS styles to specify exactly which portion you
want in a given place. Here’s an example:

You can even embed the reference to the image into the CSS as shown here:

<div class="UserInformation" />

The CSS class is defined as follows:

.UserInformation {
 width:123px;
 height:115px;
 background-image:url(sprite.png);
 background-position:-0px 0;
}

In other words, you pinpoint the fragment of the sprite you like using CSS attributes such as
background-position, background-image and, of course, width and height.

Microsoft is currently working on an extension to ASP.NET 4 that supports sprites. For more
information, check out http://aspnet.codeplex.com/releases/view/50140.

Note Image inlining is another potentially useful technique for dealing with images and static
resources more comfortably. Image inlining consists of streamlining a Base64-encoded version of
the image file into a CSS file or an HTML page. As of today, very few browsers support this tech-
nique and, in addition, the Base64 encoding increases the size of individual images, making for a
large download.

External References vs. Inline Content
This is one of those evergreen questions that are revamped periodically in geek talks. Is it
better to embed script and style sheets (and to some extent images) into a page, or is it
 preferable to keep several distinct references that the browser can deal with?

External references increase the number of HTTP requests being made, but they keep the
page size smaller (often significantly smaller) and, more importantly, can be cached by the
browser. Frankly, inline content is a great thing at development time where, instead, the
 effects of browser caching can be quite annoying. For deployed sites, browser caching saves
you HTTP requests and is a feature that you can fine-tune when preparing the response for a
given page or resource.

http://aspnet.codeplex.com/releases/view/50140

 Chapter 7 Working with the Page 317

As mentioned, just reducing the number of HTTP requests might not ensure optimal
 performance. You should work in two directions and try to produce a magical mix of fewer
HTTP requests for not-so-large resources.

Note To measure the performance and quality of Web pages, you can use YSlow—a Firefox
add-on integrated with the Firebug Web development tool. (See http://developer.yahoo.com/
yslow.) Based on a set of commonly accepted best practices, the tool analyzes a Web page and
provides recommendations for improving the overall performance. As far as Internet Explorer
is concerned, Internet Explorer 9 comes with the IE9 Developer toolbar, which provides similar
capabilities.

Summary
In this chapter, we examined a few issues you might face when building pages and
 interacting with them—errors, personalization, and resource handling.

Often, good programs do bad things and raise errors. In the Web world, handling errors is
a task architecturally left to the run-time environment that is running the application. The
ASP.NET runtime is capable of providing two types of error pages, both of which are not
very practical for serious and professional applications, although for different reasons. When
a user who is locally connected to the application does something that originates an error,
by default ASP.NET returns a “geek” page with the stack trace and the full transcript of the
exception that occurred. The remote user, on the other hand, receives a less compromis-
ing page, but certainly not a user-friendly one. Fortunately, though, the ASP.NET framework
is flexible enough to let you change the error pages, even to the point of distinguishing
 between HTTP errors.

Personalization allows you to write pages that persist user preferences and parametric data
from a permanent medium in a totally automated way. As a programmer, you’re in charge
of setting up the personalization infrastructure, but you need not know anything about the
internal details of storage. All you do is call a provider component using the methods of a
well-known interface.

Finally, modern Web pages are much more than just HTML markup. Script files, images, CSSs,
and literals need to be localized and effectively loaded. We examined a number of consoli-
dated and effective techniques to localize pages, optimize page rendering, and download
and minimize the impact of large and numerous scripts, style sheets and images.

In the next chapter, we’ll take page authoring to the next level by exploring master pages
and wizards.

http://developer.yahoo.com/

 319

Chapter 8

Page Composition and Usability
There is nothing like dream to create the future.

—Victor Hugo

It was only in the very early days of the Web that a Web site could be assembled by simply
grouping distinct pages under the same host. Today, it is necessary for all pages in a Web site
to define a common structure and share a common set of interface elements such as header,
footer, navigation bar, ad rotators, and search and login box.

Beyond having a similar-looking and consistent layout, Web pages in a site must be easy to
retrieve, understand, and navigate for users. In one word, Web pages must be enjoyable by
their target audience. Most Web sites exist for strong business reasons; failing on the com-
position or usability aspects of site planning and development is a mistake that can cost your
company much more than you might expect.

The challenge for a Web development platform is providing a technology that makes
 composing rich and usable pages effective in the first place, but also quick and at least
 relatively easy. This chapter is split into two parts, each providing a sort of checklist for the
two aspects I’ve emphasized so far: composition and usability.

In the composition section, I’ll discuss master pages, cascading style sheets (CSS), and
ASP.NET themes. In the usability section, I’ll touch on cross-browser rendering, site
 navigation, and search-engine optimization.

Page Composition Checklist
A successful Web site results from the combined effect of well-organized content and HTML
appeal. You can’t do without a strong visual idea of the site that contributes to spreading the
brand and making the site recognizable and, in some way, giving the site its own character.
Elaborating on a successful visual idea for a site is (fortunately?) beyond the reach of most
developers and definitely is a different job that requires a different set of skills.

Some point of contact between the design and development teams, however, has to be
found. When the underlying platform is going to be ASP.NET Web Forms, this point of con-
tact comes in the form of a master page template and one or more cascading style sheets.
Sometimes, the style of the site is represented through one or more ASP.NET themes. A
theme is a superset of a CSS and includes multiple cascading style sheets plus additional files.

Let’s begin our exploration of site composition with an in-depth look at master pages.

320 Part II ASP.NET Pages and Server Controls

Working with Master Pages
In ASP.NET, master pages provide the ability to define a common layout and have it reused
and shared across as many pages as you want throughout the site. Master pages improve the
maintainability of the site while reducing code duplication. ASP.NET master pages basically
benefits from the ASP.NET framework’s ability to merge a super-template with user-defined
content replacements.

A master page is a distinct file referenced at the application level, as well as at the page level,
that contains the static layout of the page. The page layout consists of regions that each
“derived” page can customize. Such regions are referenced in the master page with a special
placeholder control. A derived page, also known as a content page, is simply a collection of
blocks the run time will use to fill the regions in the master.

The contents of a master page are merged into the content page, and they dynamically
 produce a new page class that is served to the user upon request. The merge process takes
place at compile time and only once.

It might seem that the idea of master and content pages revolves around some sort of visual
inheritance such as the form inheritance feature you might experience in Windows Forms.
Abstractly speaking, the content page really looks like an inherited page that overrides some
virtual regions in the master. Although this is a possible high-level way of looking at things, it
is not how master and content pages work in practice.

Note In ASP.NET, a master page is not necessary for any page you add to the project. You can
certainly create plain Web pages that don’t import any layout information from the outside. In
Microsoft Visual Studio, you are in fact given two options when you choose to add a new Web
page to the project—you can add it with or without a master page. In the economy of a real-
world site, though, using a master page (or even multiple master pages) is a necessity.

What’s a Master Page, Anyway?
A master page is similar to an ordinary ASP.NET page except for the top @Master directive
and the presence of one or more ContentPlaceHolder server controls. In addition, a master
page doesn’t derive from Page but has UserControl as its parent class. A ContentPlaceHolder
control defines a region in the master page that can be customized in a derived page.

A master page without content placeholders is technically correct and will be processed
correctly by the ASP.NET runtime. However, a placeholder-less master fails in its primary
goal—to be the super-template of multiple pages that look alike. A master page devoid of
placeholders works like an ordinary Web page but with the extra burden required to process
master pages.

 Chapter 8 Page Composition and Usability 321

Here is a simple master page adapted from the master page of the Visual Studio 2010 sample
ASP.NET project:

<%@ Master Codebehind=.Site.master.cs. Inherits=.YourApp.SiteMaster. %>
<html>
<head runat="server">
 <title></title>
 <link href="~/Styles/Site.css" rel="stylesheet" type="text/css" />
 <asp:ContentPlaceHolder ID="HeadContent" runat="server">
 </asp:ContentPlaceHolder>
</head>
<body>
 <form runat="server">
 <div class="page">
 <div class="header">
 <div class="title"><h1> Programming ASP.NET 4 </h1></div>
 <div class="loginDisplay">
 ...
 </div>
 <div class="clear menu">
 ...
 </div>
 </div>
 <div class="main">
 <asp:ContentPlaceHolder ID="MainContent" runat="server"/>
 </div>
 <div class="clear"></div>
 </div>
 <div class="footer">
 ...
 </div>
 </form>
</body>
</html>

As you can see, the master page looks like a standard ASP.NET page. Aside from the
 identifying @Master directive, the only key differences are ContentPlaceHolder controls. A
page bound to this master automatically picks up the layout and contents of the master and
can attach custom markup and server controls to each defined placeholder. The content
placeholder element is fully identified by its ID property and normally doesn’t require other
attributes.

This is important to note because a content page is not allowed to include any content other
than the markup strictly required to fill up a specific content placeholder. I’ll return to this
point in a moment.

The @Master Directive
The @Master directive distinguishes master pages from content pages and allows the
ASP.NET runtime to properly handle each. A master page file is compiled to a class that
 derives from the MasterPage class. The MasterPage class, in turn, inherits UserControl. So, at
the end of the day, a master page is treated as a special kind of ASP.NET user control.

322 Part II ASP.NET Pages and Server Controls

The @Master directive supports quite a few attributes. For the most part, though, they are
the same attributes that we reviewed in Chapter 5, “Anatomy of an ASP.NET Page,” for the
@Page directive. Table 8-1 details the attributes that have a special meaning to master pages.

TABLE 8-1 Attributes of the @Master Directive
Attribute Description
ClassName Specifies the name for the class that will be created to render the master page.

This value can be any valid class name but should not include a namespace. By
default, the class name for a simple.master is ASP.simple_master.

CodeBehind Indicates the file that contains any source code associated with the master
page, and is used for a Web Application Project (WAP).
Note that the CodeBehind attribute is ignored by ASP.NET and simply exists to
help Visual Studio edit the file. You can remove it in production without losing
functionality.

CodeFile Indicates the file that contains any source code associated with the master
page, and is used for a Web site project.

Inherits Specifies a code-behind class for the master page to inherit. This can be any
class derived from MasterPage.

MasterPageFile Specifies the name of the master page file that this master refers to. A master
can refer to another master through the same mechanisms a page uses to
 attach to a master. If this attribute is set, you will have nested masters.

The master page is associated with a code file that looks like the following:

public partial class SiteMaster: System.Web.UI.MasterPage
{
 protected void Page_Load(Object sender, EventArgs e)
 {
 ...
 }
 ...
}

The @Master directive doesn’t override attributes set at the @Page directive level. For
 example, you can have the master set the language to Visual Basic and one of the content
pages can instead use C#. The language set at the master page level never influences the
choice of the language at the content page level.

Likewise, you can use other ASP.NET directives in a master page—for example, @Import.
However, the scope of these directives is limited to the master file and does not extend to
child pages generated from the master.

The ContentPlaceHolder Container Control
The ContentPlaceHolder control acts as a container placed in a master page. It marks places
in the master where related pages can insert custom content. A content placeholder is
uniquely identified by an ID. Here’s an example:

<asp:ContentPlaceHolder runat="server" ID="MainContent" />

 Chapter 8 Page Composition and Usability 323

A content page is an ASP.NET page that contains only <asp:Content> server tags. This
 element corresponds to an instance of the Content class that provides the actual content
for a particular placeholder in the master. The link between placeholders and content is
established through the ID of the placeholder. The content of a particular instance of the
Content server control is written to the placeholder whose ID matches the value of the
ContentPlaceHolderID property, as shown here:

<asp:Content runat="server" contentplaceholderID="MainContent">
 ...
</asp:Content>

In a master page, you define as many content placeholders as there are customizable regions
in the page. A content page doesn’t have to fill all the placeholders defined in the bound
master. However, a content page can’t do more than just fill placeholders defined in the
master.

Note A placeholder can’t be bound to more than one content region in a single content page.
If you have multiple <asp:Content> server tags in a content page, each must point to a distinct
placeholder in the master.

Specifying Default Content
A content placeholder can be assigned default content that will show up if the content page
fails to provide a replacement. Each ContentPlaceHolder control in the master page can con-
tain default content. If a content page does not reference a given placeholder in the master,
the default content will be used. The following code snippet shows how to define default
content:

<asp:ContentPlaceHolder runat="server" ID="MainContent">
 <!-- Use the following markup if no custom
 content is provided by the content page -->
 ...
</asp:ContentPlaceHolder>

The default content is completely ignored if the content page populates the placeholder. The
default content is never merged with the custom markup provided by the content page.

Note A ContentPlaceHolder control can be used only in a master page. Content placeholders
are not valid on regular ASP.NET pages. If such a control is found in an ordinary Web page, a
parser error occurs.

Writing a Content Page
Once you have a master page, you think of your actual site pages in terms of a delta from
the master. The master defines the common parts of a certain group of pages and leaves

324 Part II ASP.NET Pages and Server Controls

 placeholders for customizable regions. Each content page, in turn, defines what the content
of each region has to be for a particular ASP.NET page. Figure 8-1 shows the first step you
take on the way to adding a content page to a Visual Studio project.

FIGURE 8-1 Adding a content page to a Visual Studio project.

The next step entails choosing a particular master page from within the folders of the current
project. Normally, master pages are located in the root folder that defines their scope. If you
have only one master page, it is usually located in the root of the site.

The Content Control
The key part of a content page is the Content control—a mere container for other controls.
The Content control is used only in conjunction with a corresponding ContentPlaceHolder
and is not a standalone control. The master file that we considered earlier defines a single
placeholder named PageBody. This placeholder represents the body of the page and is
placed right below an HTML table that provides the page’s header. Figure 8-2 shows a
 sample content page based on the aforementioned master page.

FIGURE 8-2 A preview of the content page in Visual Studio 2010.

 Chapter 8 Page Composition and Usability 325

Let’s take a look at the source code of the content page:

<%@ Page Title="Home Page"
 Language="C#"
 AutoEventWireup="true"
 MasterPageFile="~/Site.master"
 CodeBehind="Default.aspx.cs"
 Inherits="UserProfileDemo._Default" %>

<asp:Content ID="HeaderContent" runat="server" ContentPlaceHolderID="HeadContent">
</asp:Content>

<asp:Content ID="BodyContent" runat="server" ContentPlaceHolderID="MainContent">
 <h2>
 Page personalization
 </h2>
 <div>

 Loading user settings

 </div>
</asp:Content>

The content page is the resource that users invoke through the browser. When the user
points her or his browser to this page, the output in Figure 8-3 is shown.

The replaceable part of the master is filled with the corresponding content section defined in
the derived pages.

FIGURE 8-3 The sample page in action.

Content Pages and Auxiliary Content
A content page—that is, a page bound to a master—is a special breed of page in that it can
only contain <asp:Content> controls. A content page is not permitted to host server controls
outside of an <asp:Content> tag.

326 Part II ASP.NET Pages and Server Controls

As a collection of <asp:Content> tags, a content page is not even allowed to include any
markup that specifies general information such as the title of the page, inline styles, and even
scripts.

You can declaratively set the title of a content page using the Title attribute of the @Page
directive as shown here:

<@Page MasterPageFile="site.master" Title="Hello, world" %>

However, there’s not much you can do to add styles and scripts in a content page unless the
master page provides for specific placeholders. You can add styles and scripts to a place-
holder if the placeholder’s position in the layout allows you to include them. Most of the
time, you create a placeholder within the <head> section and perhaps another at the bottom
of the page to allow for styles and scripts. The default master you get in sample Visual Studio
2010 projects has the following:

<html>
<head runat="server">
 <title></title>
 <link href="~/Styles/Site.css" rel="stylesheet" type="text/css" />
 <asp:ContentPlaceHolder ID="HeadContent" runat="server">
 </asp:ContentPlaceHolder>
</head>
<body>
 ...
</body>
</html>

The HeadContent placeholder just exists so that content pages can fill it with any page head–
specific content such as script or styles. Likewise, you can create a script-only placeholder and
place it at the bottom of the page to improve the page’s rendering speed, as discussed in
Chapter 7, “Working with the Page.”

Note, though, that a placeholder is just a container you can fill with whatever ends up
 producing valid HTML markup. You have no way to restrict a placeholder to contain only
certain controls or certain fragments of HTML markup. Later in the chapter, I’ll return to this
point, contrasting placeholders with master page properties.

For now let’s explore in a bit more detail the techniques to attach pages to masters.

Attaching Pages to a Master
So far, we have bound any content page to its master by using the MasterPageFile attribute
in the @Page directive. The MasterPageFile attribute indicates the path to the master page.
Page-level binding, however, is just one possibility—although it is the most common one.

You can also set the binding between the master and the content at the application or folder
level. Application-level binding means that you link all the pages of an application to the

 Chapter 8 Page Composition and Usability 327

same master. You configure this behavior by setting the Master attribute in the <pages>
 element of the principal web.config file:

<configuration>
 <system.web>
 <pages master="Site.master" />
 </system.web>
</configuration>

If the same setting is expressed in a child web.config file—a web.config file stored in a site
subdirectory—all ASP.NET pages in the folder are bound to a specified master page.

Note that if you define binding at the application or folder level, all the Web pages in the
 application (or the folder) must have Content controls mapped to one or more placeholders
in the master page. In other words, application-level binding prevents you from having (or
later adding) a page to the site that is not configured as a content page. Any classic ASP.NET
page in the application (or folder) that contains server controls will throw an exception.

Device-Specific Masters
Like all ASP.NET pages and controls, master pages can detect the capabilities of the underly-
ing browser and adapt their output to the specific device in use. ASP.NET makes choosing
a device-specific master easier than ever. If you want to control how certain pages of your
site appear on a particular browser, you can build them from a common master and design
the master to address the specific features of the browser. In other words, you can create
 multiple versions of the same master, each targeting a different type of browser.

How do you associate a particular version of the master and a particular browser? In the
content page, you define multiple bindings using the same MasterPageFile attribute, but you
prefix it with the identifier of the device. For example, suppose you want to provide ad hoc
support for Microsoft Internet Explorer and Firefox browsers and use a generic master for
any other browsers that users employ to visit the site. You use the following syntax:

<%@ Page masterpagefile="Site.master"
 ie:masterpagefile="ieSite.master"
 firefox:masterpagefile="ffSite.master" %>

The ieSite.master file will be used for Internet Explorer; the ffSite.master, on the other hand,
will be used if the browser is Firefox. In any other case, a device-independent master (site.
master) will be used. When the page runs, the ASP.NET runtime automatically determines
which browser or device the user is using and selects the corresponding master page, as
shown in Figure 8-4.

328 Part II ASP.NET Pages and Server Controls

FIGURE 8-4 Browser-specific master pages.

The prefixes you can use to indicate a particular type of browser are those defined in the
ASP.NET configuration files for browsers. Table 8-2 lists the most commonly used IDs.

TABLE 8-2 ID of Most Common Browsers
Browser ID Browser Name
IE Any version of Internet Explorer

Netscape3 Netscape Navigator 3.x

Netscape4 Netscape Communicator 4.x

Netscape6to9 Any version of Netscape higher than 6.0

Firefox Firefox

Opera Opera

Up Openwave-powered devices

Blackberry BlackBerry browser

iPhone iPhone browser

Chrome Google Chrome

ieMobile Internet Explorer for mobile devices

Obviously, you can distinguish not just between up-level and down-level browsers, but you
can also distinguish between browsers and other devices, such as cellular phones and per-
sonal digital assistants (PDAs). If you use device-specific masters, you must also indicate a
device-independent master.

Note Browser information is stored in text files with a .browser extension located in the
Browsers folder under the ASP.NET installation path on the Web server. It’s the same folder that
contains machine.config and WINDOWS%\Microsoft.NET\Framework\[version]\Config\Browsers.

 Chapter 8 Page Composition and Usability 329

Processing Master and Content Pages
The use of master pages slightly changes how pages are processed and compiled. For one
thing, a page based on a master has a double dependency—on the .aspx source file (the
content page) and on the .master file (the master page). If either of these pages changes, the
dynamic page assembly will be re-created. Although the URL that users need is the URL of
the content page, the page served to the browser results from the master page being fleshed
out with any replacement information provided by the content page.

Compiling Master Pages
When the user requests an .aspx resource mapped to a content page—that is, a page that
references a master—the ASP.NET runtime begins its job by tracking the dependency be-
tween the source .aspx file and its master. This information is persisted in a local file created
in the ASP.NET temporary files folder. Next, the runtime parses the master page source code
and creates a Visual Basic or C# class, depending on the language set in the master page. The
class inherits MasterPage, or the master’s code file, and is then compiled to an assembly.

If multiple .master files are found in the same directory, they are all processed at the same
time. Thus a dynamic assembly is generated for any master files found, even if only one
of them is used by the ASP.NET page whose request triggered the compilation process.
Therefore, don’t leave unused master files in your Web space—they will be compiled anyway.
Also note that the compilation tax is paid only the first time a content page is accessed within
the application. When a user accesses another page that requires the second master, the
 response is faster because the previously compiled master is cached.

Serving the Page to Users
As mentioned, any ASP.NET page bound to a master page must have a certain structure—
no server controls or literal text are allowed outside the <asp:Content> tag. As a result, the
layout of the page looks like a plain collection of content elements, each bound to a par-
ticular placeholder in the master. The connection is established through the ID property. The
<asp:Content> element works like a control container, much like the Panel control of ASP.NET
or the HTML <div> tag. All the markup text is compiled to a template and associated with
the corresponding placeholder property on the master class.

The master page is a special kind of user control with some templated regions. It’s not
 coincidental, in fact, that the MasterPage class inherits from the UserControl class. After it is
instantiated as a user control, the master page is completed with templates generated from
the markup defined in the content page. Next, the resulting control is added to the con-
trol tree of the current page. No other controls are present in the final page except those
brought in by the master. Figure 8-5 shows the skeleton of the final page served to the user.

330 Part II ASP.NET Pages and Server Controls

Master Page

ContentPlaceHolder #1

ContentPlaceHolder #2

Content Page

Content #1

Content #2

Markup

Served to the user

Content #1

Content #2

Markup

FIGURE 8-5 The structure of the final page in which the master page and the content page are merged.

Nested Master Pages
So far, we’ve seen a pretty simple relationship between a master page and a collection of
content pages. However, the topology of the relationship can be made as complex and
 sophisticated as needed. A master can, in fact, be associated with another master and form
a hierarchical, nested structure. When nested masters are used, any child master is seen and
implemented as a plain content page in which extra ContentPlaceHolder controls are defined
for an extra level of content pages. Put another way, a child master is a kind of content page
that contains a combination of <asp:Content> and <asp:ContentPlaceHolder> elements. Like
any other content page, a child master points to a master page and provides content blocks
for its parent’s placeholders. At the same time, it makes available new placeholders for its
child pages.

Note There’s no architectural limitation on the number of nesting levels you can implement
in your Web sites. Performance-wise, the depth of the nesting has a negligible impact on the
 overall functionality and scalability of the solution. The final page served to the user is always
compiled on demand and never modified as long as dependent files are not touched.

Let’s expand on the previous example to add an intermediate master page. The root master
page is the Site.master file we met earlier. The root master defines the header, the footer,
and replaceable regions for the head and main content. Let’s add an intermediate master
page to further structure the main content. The intermediate master page is named
MainContent.master.

 Chapter 8 Page Composition and Usability 331

<%@ Master Language="C#"
 AutoEventWireup="true"
 MasterPageFile="~/Site.Master"
 CodeBehind="MainContent.Master.cs"
 Inherits="Masters.MainContentMaster" %>

<asp:Content ID="Content1" ContentPlaceHolderID="HeadContent" runat="server">
 <!-- Won't be accessible from the final content page, anyway -->
</asp:Content>

<asp:Content ID="Content2" ContentPlaceHolderID="MainContent" runat="server">
 <fieldset>
 <legend>How MainContent.Master replaces MainContent</legend>
 <h2>
 <asp:Label runat="server" ID="MainContentTitle_Label">
 What is this page for?
 </asp:Label>
 </h2>

 <asp:ContentPlaceHolder ID="PageBody" runat="server" />
 <asp:ContentPlaceHolder ID="ScriptContentBottom" runat="server" />
 </fieldset>
</asp:Content>

As you can see, the master contains both a collection of <asp:Content> and
<asp:ContentPlaceHolder> tags. The top directive is that of a master, but it contains the
MasterPageFile attribute, which typically characterizes a content page.

An intermediate master page is essentially a content page and must fulfill the rules of
 content pages such as not having markup outside <asp:Content> controls. At the same time,
it is allowed to specify the @Master directive and host some additional (well, nested) content
placeholders.

Note that the final content page has access only to the placeholders of its immediate master.
The HeadContent placeholder defined on the root master can be filled up by the intermedi-
ate master, but not by the final content page.

The following code illustrates nesteddemo.aspx—a content page that builds on two masters:

<%@ Page Title="Nested master pages"
 Language="C#"
 AutoEventWireup="true"
 CodeBehind="NestedDemo.aspx.cs"
 MasterPageFile="~/MainContent.Master"
 Inherits="Masters.NestedDemo" %>

<asp:Content ID="Content1" ContentPlaceHolderID="PageBody" runat="server">
 <fieldset>
 <legend>How NestedDemo.aspx replaces PageBody</legend>
 <h2>[Your custom markup here]</h2>
 </fieldset>
</asp:Content>

332 Part II ASP.NET Pages and Server Controls

Figure 8-6 shows the results.

FIGURE 8-6 The page results from the combination of two master pages.

At this point, if you create a new page from MainContent.Master you’ll be able to add custom
content only below the label that says “What is this page for?”. Everything else is fixed and
can’t be changed from the content page. Nested masters are fully supported by Visual Studio
2010, which provides you with a visual experience, as shown in Figure 8-7.

FIGURE 8-7 Nested masters in Visual Studio 2010.

What’s the purpose of having nested master pages?

Whereas a master page helps share a common layout through multiple pages, nested
 master pages simply give you more control over the structure of the final pages. Especially
in sites with hundreds of pages, a single layout is not realistic. More likely, you need a super-
template in which different areas are filled in a way for a bunch of pages and in another way

 Chapter 8 Page Composition and Usability 333

for another bunch of pages. Each group of pages might be derived from an intermediate
master.

When you create a content placeholder in a master page, you are leaving to the content
page author full freedom to put in the placeholder wherever she wishes. Sometimes, instead,
you want pages to customize the content of certain areas but without altering the layout. In
Figure 8-6, the MainContent placeholder defined on the root master has been filled up as
follows. (I omitted the fieldset you see in Figure 8-6 for clarity.)

<asp:Content ID="Content2" ContentPlaceHolderID="MainContent" runat="server">
 <h2>
 <asp:Label runat="server" ID="MainContentTitle_Label">
 What is this page for?
 </asp:Label>
 </h2>

 <asp:ContentPlaceHolder ID="PageBody" runat="server" />
 <asp:ContentPlaceHolder ID="ScriptContentBottom" runat="server" />
</asp:Content>

The markup consists of an H2 element plus a couple of placeholders. This means that as
the author of the master page, you always want a title string followed by the real con-
tent. However, the title string (the Label control in the code) is static. How can you make it
 dynamically settable from content pages? Here’s where master page properties fit in.

Programming the Master Page
You can use code in content pages to reference properties, methods, and controls in the
master page, with some restrictions. The rule for properties and methods is that you can ref-
erence them if they are declared as public members of the master page. This includes public
page-scope variables, public properties, and public methods.

Exposing Master Properties
To give an identity to a control in the master, you simply set the runat attribute and give
the control an ID. Can you then access the control from within a content page? Not directly.
The only way to access the master page object model is through the Master property. Note,
though, that the Master property of the Page class references the master page object for the
content page. This means that only public properties and methods defined on the master
page class are accessible.

The following code enhances the previous master page to make it expose the text of the
 label as a public property:

public partial class MainContentMaster : MasterPage
{
 protected void Page_Load(object sender, EventArgs e)

334 Part II ASP.NET Pages and Server Controls

 {
 }

 public String MainContentTitle
 {
 get { return MainContentTitle_Label.Text; }
 set { MainContentTitle_Label.Text = value; }
 }
}

The control’s protection level makes it inaccessible from the outside world, but the public
property MainContentTitle defined in the preceding code represents a public wrapper
around the Label’s Text property. In the end, the master page has an extra public property
through which programmers can set the page description.

Invoking Properties on the Master
The Master property is the only point of contact between the content page and its mas-
ter. The bad news is that the Master property is defined to be of type MasterPage; as such,
it doesn’t know anything about any property or method definition specific to the master
you’re really working with. In other words, the following code wouldn’t compile because no
MainContentTitle property is defined on the MasterPage class:

public partial class NestedDemo : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 Master.MainContentTitle = "Nested demo";
 }
}

What’s the real type behind the Master property?

The Master property represents the master page object as compiled by the ASP.NET runtime
engine. This class follows the same naming convention as regular pages—ASP.XXX_master,
where XXX is the name of the master file. Developers can override the default class name
by setting the ClassName attribute on the @Master directive. The attribute lets you assign a
user-defined name to the master page class:

<%@ Master ... Classname="ContentMaster" %>

In light of this, you would need code like that shown here:

 ((ASP.ContentMaster)Master).MainContentTitle = "Nested demo";

However, there are a couple of simpler alternatives—one for .NET 4 applications and one
that works regardless of the .NET Framework version you’re using. If you compile your code
for the .NET Framework 4, you can take advantage of the dynamic keyword in C#.

 Chapter 8 Page Composition and Usability 335

public partial class NestedDemo : Page
{
 protected void Page_Load(Object sender, EventArgs e)
 {
 dynamic master = this.Master;
 master.MainContentTitle = "Nested demo";
 }
}

The dynamic keyword tells the compiler to suspend any further processing on the expres-
sion and just assume the syntax is fine. The compiler understands that the variable master
is of type dynamic, and that’s enough. For this type, then, the compiler actually emits some
code that at run time will try to resolve the expression through the services of the Dynamic
Language Runtime (DLR) component of the .NET Framework 4. The net effect is that if at run
time the actual object behind the master variable can successfully resolve a call to the speci-
fied property, the code works as expected; otherwise, an exception would be raised.

If you’re not using .NET 4, however, you have another choice.

The @MasterType Directive
By adding the @MasterType directive in the content page, you can avoid all the casting just
shown. The @MasterType informs the compiler about the real type of the Master property.
The Master property is declared as the right type in the dynamically created page class, and
this allows you to write strongly typed code, as follows:

<%@ Page Title="Nested master pages"
 MasterPageFile="~/MainContent.Master"
 AutoEventWireup="true"
 CodeBehind="NestedDemo.aspx.cs"
 Inherits="Masters.NestedDemo" %>
<%@ MasterType VirtualPath="~/MainContent.Master" %>

In the code file, you can have the following statements:

protected void Page_Load(object sender, EventArgs e)
{
 Master.MainContentTitle = "Nested demo";
}

The @MasterType directive supports two mutually exclusive attributes: VirtualPath and
TypeName. Both serve to identify the master class to use. The former does it by URL; the lat-
ter by type name. Figure 8-8 shows the effect of the directive on the code being created and
the nice work Visual Studio IntelliSense does around it.

336 Part II ASP.NET Pages and Server Controls

FIGURE 8-8 Effect of the @MasterType directive.

Changing the Master Page Dynamically
To associate an ASP.NET content page with a master page—keeping in mind that in no case
can you associate a classic ASP.NET page with a master—you use the MasterPageFile at-
tribute of the @Page directive. MasterPageFile, though, is also a read-write property on the
Page class that points to the name of the master page file. Can you dynamically select the
master page via code and based on run-time conditions?

Using a dynamically changing master page is definitely possible in ASP.NET and is suitable,
for example, for applications that can present themselves to users through different skins.
However, programmatically selecting the master page is not a task that you can accomplish
at any time. To be precise, you can set the MasterPageFile property only during the PreInit
page event—that is, before the run time begins working on the request.

protected void Page_PreInit(object sender, EventArgs e)
{
 MasterPageFile = "another.master";
}

If you try to set the MasterPageFile property in Init or Load event handlers, an exception is
raised.

Note The Master property represents the current instance of the master page object, is a
 read-only property, and can’t be set programmatically. The Master property is set by the run
time after loading the content of the file referenced by the MasterPageFile property.

Styling ASP.NET Pages
ASP.NET pages are mostly made of server controls, and server controls ultimately serve up
HTML markup. The client browser builds and displays HTML elements whose appearance
 depends on the information stored in their style containers.

 Chapter 8 Page Composition and Usability 337

It turns out that there are several places for you to add style information to control the look
and feel of the page. If you feel comfortable with server controls, you use ASP.NET themes.
If you need to exercise more control over the content actually sent to (and displayed by)
the browser, you can configure controls to emit CSS-friendly markup that can be styled
 effectively from the client or through HTML literals right in the ASPX markup.

ASP.NET themes have been introduced with the intent of facilitating the task of styling server
controls with the same approach used by cascading style sheets at the HTML element level.
Themes were originally aimed at doing the same job of CSS but through a more specific
 interface tailor-made for server controls. Through themes, you just declaratively define some
code to be run to dress the control in a given way. Basically, themes are a way to adapt the
CSS syntax to the syntax of server controls.

Boldly introduced as a way to supersede CSS styles, today ASP.NET themes are in a downturn,
if not explicitly deprecated. Why is this so? As I see things, the problem is not with themes
but with the overall perception of server controls in ASP.NET development. Themes are just
perfect—and more effective than CSS—if your language for expressing Web pages is largely
based on server controls. If you don’t really feel the need to worry about what a server
 control emits, themes are just the perfect tool for the job.

At the height of ASP.NET’s success, the advent of AJAX silently started changing people’s
 perspective of things and led to a complete turnaround in only a couple of years. In a way,
AJAX was the straw that broke the ASP.NET Web Forms abstraction model. With AJAX, you
need much more control over the markup—HTML elements and CSS styles. Subsequently,
many more developers are using server controls not as building blocks but rather as HTML
helper factories. In this context, themes are simply a cumbersome technology compared to
the flexibility and dynamism of CSS.

In any case, in this chapter you’ll find a section dedicated to the syntax and semantics
of themes. CSS is a too large of a topic to be covered here. You can pick up one of the
several books available on CSS. If you’re looking for an online reference, I recommend
http://www.w3schools.com/CSS/CSS_reference.asp.

Note Although themes are fully supported in ASP.NET 4, I currently see them mostly as a
 feature for a suite of controls rather than pages and sites. And I’m probably not the only one
thinking this way. In the past couple of years, in fact, we’ve witnessed a significant technology
shift that resulted in server controls becoming more and more HTML and CSS friendly. This trend
is clearly visible in ASP.NET 4 (and future extensions are being currently planned). The percep-
tion is different—server controls must adapt their internal organization so that the output can be
styled via CSS. If you take this route, of course, you just don’t need themes.

What’s a Theme, Anyway?
A theme is a set of visual settings that can be applied to style the markup produced by
ASP.NET server controls. A theme is ultimately a collection of files—ASP.NET visual settings

http://www.w3schools.com/CSS/CSS_reference.asp

338 Part II ASP.NET Pages and Server Controls

(known as skins), CSS, plus any auxiliary images. Once enabled, the theme determines the
 appearance of all controls under its jurisdiction. Consider the following simple markup:

<asp:Calendar ID="Calendar1" runat="server" />

Without themes, the calendar will look gray, spare, and spartan. With a theme added, the
same markup renders a more colorful and appealing calendar. As you can see, a neat separa-
tion exists between the page contents and formatting rules. Look at Figure 8-9. Which do
you think is the unthemed calendar?

FIGURE 8-9 The same controls, with and without themes.

To fully understand ASP.NET themes, you must be familiar with a few terms, which are de-
tailed in Table 8-3.

TABLE 8-3 ASP.NET Themes Terminology
Term Definition
Skin A named set of properties and templates that can be applied to one or

more controls on a page. A skin is always associated with a specific control
type.

Style sheet A CSS or server-side style sheet file that can be used by pages on a site.

Style sheet theme A theme used to abstract control properties from controls. The application
of this theme means that the control can still override the theme.

Customization theme A theme used to abstract control properties from controls, but the theme
overrides the control and any style sheet theme.

Imagine you are creating a new Web site and would like it to be visually appealing from the
start. Instead of having to learn all the available style properties of each employed control,
you just use ASP.NET themes. Using a built-in theme in a page is as easy as setting a prop-
erty, as you’ll see in a moment. With this change, pages automatically inherit a new, and
hopefully attractive, appearance. For example, if you add a Calendar control to a page, it
 automatically renders with the default appearance defined in the theme.

Selecting a theme for one or more pages doesn’t necessarily bind you to the settings of that
theme. Through the Visual Studio designer, you can review the pages and manually adjust
some styles in a control if you want to.

 Chapter 8 Page Composition and Usability 339

Note The following convention holds true in this book and, in general, in related literature.
Unless otherwise suggested by the context, the word “theme” indicates a customization theme.
Customization themes and style sheet themes use the same source files. They differ only in how
the ASP.NET runtime applies them to a page. The same theme can be applied as a customization
theme or a style sheet theme at different times.

Structure of a Theme
Themes are expressed as the union of various files and folders living under a common root
directory. Themes can be global or local. Global themes are visible to all Web applications
installed on a server machine. Local themes are visible only to the application that defines
them. Global themes are contained in child directories located under the following path. The
name of the directory is the name of the theme.

%WINDOWS%\Microsoft.NET\Framework\[version]\ASP.NETClientFiles\Themes

Local themes are specialized folders that live under the App_Themes folder at the root of the
application. Figure 8-10 shows the content of a couple of themes in a Web application.

FIGURE 8-10 The App_Themes directory in a Web project.

As you can see, the theme in the figure consists of a .css file and a .skin file, plus a
 subdirectory of images. Generally, themes can contain a mix of the following resources:

■ CSS files Also known as style sheets, CSS files contain style definitions to be applied
to elements in an HTML document. Written according to a tailor-made syntax, CSS
styles define how elements are displayed and where they are positioned on your page.
The World Wide Web Consortium (W3C) maintains and constantly evolves CSS stan-
dards. Visit http://www.w3.org for details on current CSS specifications. CSS files are
located in the root of the theme folder.

http://www.w3.org

340 Part II ASP.NET Pages and Server Controls

■ Skin files A skin file contains the theme-specific markup for a given set of controls. A
skin file is made of a sequence of control definitions that include predefined values for
most visual properties and supported templates. Each skin is control-specific and has a
unique name. You can define multiple skins for a given control. A skinned control has
the original markup written in the .aspx source file modified by the content of the skin.
The way the modification occurs depends on whether a customization theme or a style
sheet theme is used. Skin files are located in the root of the theme folder.

■ Image files Feature-rich ASP.NET controls might require images. For example, a
pageable DataGrid control might want to use bitmaps for first or last pages that are
graphically compliant to the skin. Images that are part of a skin are typically located in
an Images directory under the theme folder. (You can change the name of the folder as
long as the name is correctly reflected by the skin’s attributes.)

■ Templates A control skin is not limited to graphical properties but extends to define
the layout of the control—for templated controls that support this capability. By stuff-
ing template definitions in a theme, you can alter the internal structure of a control
while leaving the programming interface and behavior intact. Templates are defined as
part of the control skin and persisted to skin files.

The content types just listed are not exhaustive, but they do cover the most commonly used
data you might want to store in a theme. You can have additional subdirectories filled with
any sort of data that makes sense to skinned controls. For example, imagine you have a cus-
tom control that displays its own user interface through the services of an external
ASP.NET user control (.ascx). Skinning this control entails, among other things, indicating the
URL to the user control. The user control becomes an effective part of the theme and must
be stored under the theme folder. Where exactly? That is up to you, but opting for a Controls
subdirectory doesn’t seem to be a bad idea.

Theming Pages and Controls
You can apply themes at various levels—application, folder, and individual pages. In addition,
within the same theme you can select different skins for the same type of control.

Setting a theme at the application level affects all the pages and controls in the application.
It’s a feature you configure in the application’s web.config file:

<system.web>
 <pages theme="BlueOne" />
</system.web>

The theme attribute sets a customization theme, while the styleSheetTheme attribute sets
a style sheet theme. Note that the case is important in the web.config’s schema. Likewise, a
theme can be applied to all the pages found in a given folder and below that folder. To do
so, you create a new web.config file in an application’s directory and add the section just
shown to it. All the pages in that directory and below it will be themed accordingly. Finally,

 Chapter 8 Page Composition and Usability 341

you can select the theme at the page level and have styles and skins applied only to that
page and all its controls.

To associate a theme with a page, you set the Theme or StyleSheetTheme attribute on the
@Page directive, and you’re all set:

<% @Page Language="C#" Theme="BlueOne" %>
<% @Page Language="C#" StyleSheetTheme="BlueOne" %>

Also in this case, Theme sets a customization theme, whereas StyleSheetTheme indicates a
style sheet theme.

Bear in mind that the name of the selected theme must match the name of a subdirec-
tory under the App_Themes path or the name of a global theme. If a theme with a given
name exists both locally to the application and globally to the site, the local theme takes
precedence.

While we’re speaking of precedence, note that themes have a hierarchical nature: directory-
level themes take precedence over application-level themes, and page-level themes override
any other themes defined around the application. This hierarchy is independent of which
 attributes are used—Theme or StyleSheetTheme—to enable theming.

Note Setting both the Theme and StyleSheetTheme attributes is not prohibited, even though it
is not a recommended practice. There’s a behavioral gap between the two forms of themes that
should make clear which one you need in any situation. However, if you set both attributes, con-
sider that both themes will be applied—first the style sheet theme and then the customization
theme. The results depend on the CSS cascading mechanism and, ultimately, are determined by
the CSS settings of each theme.

Applying Skins
A skin file looks like a regular ASP.NET page because it is populated by control declarations
and import directives. Each control declaration defines the default appearance of a particular
control. Consider the following excerpt from a skin file:

<!-- This is a possible skin for a Button control -->
<asp:Button runat="server"
 BorderColor="darkgray"
 Font-Bold="true"
 BorderWidth="1px"
 BorderStyle="outset"
 ForeColor="DarkSlateGray"
 BackColor="gainsboro" />

The net effect of the skin is that every Button control in a themed page will be rendered as
defined by the preceding markup. If the theme is applied as a style sheet, the settings just

342 Part II ASP.NET Pages and Server Controls

shown will be overridable by the developer; if the theme is a customization theme, those set-
tings determine the final look and feel of the control. Properties that the theme leaves blank
are set according to the control’s defaults or the .aspx source.

Important Whatever theme you apply—customization or style sheet—control properties can
always be modified through code in page events such as Init and Load.

A theme can contain multiple skins for a given control, each identified with a unique name—
the SkinID attribute. When the SkinID attribute is set, the skin is said to be a named skin. A
theme can contain any number of named skins per control, but just one unnamed (default)
skin. You select the skin for a control in an ASP.NET themed page by setting the control’s
SkinID property. The value of the control’s SkinID property should match an existing skin in
the current theme. If the page theme doesn’t include a skin that matches the SkinID property,
the default skin for that control type is used. The following code shows two named skins for a
button within the same theme:

<!-- Place these two definitions in the same .skin file -->
<asp:button skinid="skinClassic" BackColor="gray" />
<asp:button skinid="skinTrendy" BackColor="lightcyan" />

When you enable theming on a page, by default all controls in that page will be themed
 except controls and individual control properties that explicitly disable theming.

Taking Control of Theming
The ASP.NET theming infrastructure provides the EnableTheming Boolean property to
 disable skins for a control and all its children. You can configure a page or control to ignore
themes by setting the EnableTheming property to false. The default value of the property
is true. EnableTheming is defined on the Control class and inherited by all server controls
and pages. If you want to disable theme support for all controls in a page, you can set the
EnableTheming attribute on the @Page directive.

Important Note that the EnableTheming property can be set only in the Page_PreInit event
for static controls—that is, controls defined in the .aspx source. For dynamic controls—that is,
controls created programmatically—you must have set the property before adding the control
to the page’s control tree. A control is added to the page’s control tree when you add to the
Controls collection of the parent control—typically, the form or another control in the form.

When is disabling themes useful? Themes are great at ensuring that all page controls have
a consistent look and feel, but at the same time themes override the visual attributes of any
control for which a skin is defined. You can control the overriding mechanism a bit by switch-
ing style sheet and customization themes. However, when you want a control or page to
maintain its predefined look, you just disable themes for that page or control.

 Chapter 8 Page Composition and Usability 343

Note that disabling themes affects only skins, not CSS styles. When a theme includes one
or more CSS style-sheet files, they are linked to the <head> tag of the resulting HTML
 document and, after that, are handled entirely by the browser. As you can easily guess,
there’s not much a Web browser can know about ASP.NET themes!

Loading Themes Dynamically
You can apply themes dynamically, but this requires a bit of care. The ASP.NET runtime loads
theme information immediately after the PreInit event fires. When the PreInit event fires, the
name of any theme referenced in the @Page directive is already known and will be used un-
less it is overridden during the event. If you want to enable your users to change themes on
the fly, you create a Page_PreInit event handler. The following code shows the code file of a
sample page that changes themes dynamically:

public partial class TestThemes : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 if (!IsPostBack) {
 // Populate the list of available themes
 ThemeList.DataSource = GetAvailableThemes();
 ThemeList.DataBind();
 }
 }

 void Page_PreInit(object sender, EventArgs e)
 {
 string theme = "";
 if (Page.Request.Form.Count > 0)
 theme = Page.Request["ThemeList"].ToString();
 if (theme == "None")
 theme = "";
 this.Theme = theme;
 }

 protected StringCollection GetAvailableThemes()
 {
 var path = Request.PhysicalApplicationPath + @"App_Themes";
 var dir = new DirectoryInfo(path);
 var themes = new StringCollection();
 foreach (var di in dir.GetDirectories())
 themes.Add(di.Name);

 return themes;
 }
}

The drop-down list control named ThemeList enumerates the installed application themes
and lets you choose the one to apply. The selected theme is then applied in the PreInit event
and immediately reflected. In the PreInit event, no view state has been restored yet; so
Request.Form is the only safe way to access a posted value like the selected theme.

344 Part II ASP.NET Pages and Server Controls

Page Usability Checklist
Mastering the technology for building a Web site is necessary, but often it’s not sufficient.
Your site must be able to attract people and make them return on a regular basis. A site must
surely provide valuable content and services, but that might not be good enough if that
 content and those great services are hard to find, understand, and consume.

There are three fundamental items that any developers of any Web sites must tick off
their to-do list as soon and as as possible: consistent cross-browser display, Search Engine
Optimization (SEO), and site navigation. Cross-browser display ensures that your pages will
look and work the same regardless of the device being used to reach it. SEO best practices
ensure that your site is ranked high by search engines and possibly appear as one of the first
links when a user searches for a related keyword. Finally, once users arrive, they must be able
to work with the site seamlessly and have an enjoyable experience. Site navigation facilities
are fundamental.

In the rest of this chapter, I’ll address some of the best practices and ASP.NET techniques and
technologies to provide users with a consistent and comfortable experience while interacting
with the site.

Cross-Browser Rendering
Although all client browsers these days share a common set of capabilities large enough to
implement nice Web features, the old motto of “Write once, browse everywhere” is a fairy
tale. That a page works the same across different browsers is not a foregone conclusion;
rather, it’s something you have to test carefully and that might require a bit of extra work to
achieve. Especially with extremely dynamic pages full of script and HTML manipulation code,
the risk of having some markup misinterpreted is real.

Cross-browser rendering refers to the set of techniques and technologies you can use to
 ensure that your pages work and look the same regardless of the browser in use. The key
idea behind cross-browser rendering is that the code within the page is able to detect the
browser ID and its known set of capabilities. Based on that, the code within the page will
then work out a solution to get the best possible markup for the device.

ASP.NET provides a specific API to detect browser capabilities programmatically and also to
keep the set of capabilities updated over time.

Detecting Browser Capabilities
In ASP.NET, the central repository for browser information is the Browser property on the
HttpRequest object. Here’s how it is defined:

public HttpBrowserCapabilities Browser
{
 get { ... }
 set { ... }
}

 Chapter 8 Page Composition and Usability 345

When the getter method is invoked for the first time, the HttpRequest object gets and caches
any available browser information. The user agent information carried by the request is used
to identify the requesting browser. Any gathered browser information is published through
an instance of the HttpBrowserCapabilities class. The HttpBrowserCapabilities class groups,
in a single place, values that identify a fair number of browser capabilities, including support
for ActiveX controls, scripting languages, frames, cookies, and much more. Note that no in-
formation is in any way dynamically set by the browser; instead, it is retrieved from an offline
server-side repository.

As mentioned, ASP.NET identifies the connected browser by reading the user-agent
 information that is passed during a request. ASP.NET compares the user-agent string that
is received from the browser to user-agent strings that are stored in server-side browser
definition files. These files contain information about the known capabilities of various user
agents. When ASP.NET finds a match between the current user-agent string and a user-agent
string in a browser definition file, it loads the corresponding browser capabilities into the
HttpBrowserCapabilities object. The following code shows how to identify and output the
name of the calling browser:

var browserCaps = Request.Browser;
Label1.Text = browserCaps.Browser;

The properties of the HttpBrowserCapabilities object can then be used to determine whether
the browser type that is represented by the user agent supports scripting, styles, frames,
and so on. Based on these capabilities, the controls on the page render Web controls using
 appropriate markup.

Browser Definition Files
The class HttpBrowserCapabilities inherits from HttpBrowserCapabilitiesBase, which
 represents the list of information that is possible to know about a browser. The base class
includes dozens of properties, including IsMobileDevice, SupportsXmlHttp, JScriptVersion, and
HasBackButton. As an example, IsMobileDevice returns a Boolean value denoting whether
or not the current browser is a mobile device. Likewise, JScriptVersion returns the version of
JavaScript currently being supported by the browser, and SupportsXmlHttp indicates whether
the browser has AJAX capabilities.

Browser information is read from server-side browser definition files installed with ASP.NET.
In ASP.NET 4, you find the following definition files—one for each recognized browser device:

■ blackberry.browser

■ chrome.browser

■ Default.browser

■ firefox.browser

■ gateway.browser

346 Part II ASP.NET Pages and Server Controls

■ generic.browser

■ ie.browser

■ iemobile.browser

■ iphone.browser

■ opera.browser

■ safari.browser

Browser definition files are plain XML files located under the following folder:

%Windows%\Microsoft.NET\Framework\v4.0.30319\Config\Browsers

Browser files in the specified folder contain global definitions valid for all applications on the
server. If you want to employ application-specific settings, you create an App_Browsers folder
in your project and drop into it any .browser file you might need.

At any time, you can add new .browser files or edit any stored information. The syntax of
.browser files is a bit quirky, and any edit needs to be conducted by hand, with the risk of
breaking things. To make this scenario more seamless, in ASP.NET 4 Microsoft introduced the
concept of a browser-capabilities provider.

Note If you make any edits to any of the .browser files, make sure you re-create the browser
assembly in the global assembly cache (GAC). For this to happen, you have to run the following
command:

aspnet_regbrowsers.exe -I c

Needless to say, this action will inevitably restart your entire Web application.

Browser Capabilities Providers
In ASP.NET, a provider is a component that implements a contracted interface and interacts
with specific ASP.NET subsystems only through that interface. Each ASP.NET subsystem that
supports the provider model must have a default provider configured. As a developer, you
can make your application switch from one provider to the next declaratively, when not
 doing it programmatically. Through the provider model, a piece of functionality represented
by a “contract” (in this context, it is usually a base class) is injected into a particular subsystem
of ASP.NET. Providers exist for membership, role management, user profiles and, in ASP.NET
4, also for managing browser capabilities.

Browser-capabilities providers enforce the following contract:

public abstract class HttpCapabilitiesProvider
{
 public abstract HttpBrowserCapabilities GetBrowserCapabilities(HttpRequest request);
}

 Chapter 8 Page Composition and Usability 347

The default browser-capabilities provider is the class HttpCapabilitiesDefaultProvider you
find in the System.Web.Configuration namespace. This class is designed to read browser in-
formation from .browser files. Internally, the implementation of the Browser property on the
HttpRequest object ends up calling the configured provider and gets to the actual informa-
tion through the interface of the HttpCapabilitiesProvider class.

If you need to read browser information from other sources, you can replace or extend the
default provider. You create a new provider class that derives from HttpCapabilitiesProvider
and overrides the GetBrowserCapabilities method:

public class CustomProvider : HttpCapabilitiesProvider
{
 public override HttpBrowserCapabilities GetBrowserCapabilities(HttpRequest request)
 {
 // Detect the browser
 var userAgent = request.UserAgent;

 // Retrieve information
 var values = GetBrowserInfoAsHashTable(userAgent);

 // Pack information in a consumable format
 var browserCaps = new HttpBrowserCapabilities();
 browserCaps.Capabilities = values;

 return browserCaps;
 }

 private HashTable GetBrowserInfoAsHashTable(String userAgent)
 {
 var values = new HashTable(180);
 ...
 return values;
 }
}

The final step consists of registering the new provider. You can do that declaratively through
the <browserCaps> section of the configuration file:

<system.web>
 <browserCaps provider="YourApp.CustomProvider, Extensions" />
</system.web>

Alternatively, you can use the following code from global.asax:

void Application_Start(Object sender, EventArgs e)
{
 HttpCapabilitiesBase.BrowserCapabilitiesProvider = new YourApp.CustomProvider();
}

When you write a provider, you should also consider caching the information because
 although it is static information, it might be requested several times. Setting up forms of data
caching is entirely up to you.

348 Part II ASP.NET Pages and Server Controls

The primary reason for writing a custom browser capabilities provider is to let developers
store browser capabilities in an alternate repository (for example, a database) and use
that instead of the built in one.

Note The interface that defines the list of capabilities for browsers is fixed. For this reason, to
add a new capability you can only resort to adding extra properties to the Capabilities dictionary
of the HttpCapabilitiesBase class.

Search Engine Optimization
Spreading the word around about a Web site is a key step to getting a good site its deserved
success. People visit a Web site because they are told about it, because they receive a direct
link to it or, more likely, because they were searching for some topics related to the content
of the site and engines such as Bing, Google, and Yahoo suggested they could find good
 information there.

If a Web site is quite high in the list of search results, the site is going to experience plenty of
visits. How can you manage to make links from your site look attractive to search engines?
That’s precisely a whole new field that goes side by side with Web development—search
 engine optimization or SEO.

SEO is critical for any Web sites that need to have high volumes of traffic to survive. More
traffic will likely generate more advertising and increase the revenue the site generates.

Quick SEO Checklist
Search engines won’t tell you exactly which parameters they’re using to rank pages.
Algorithms, however, are continually updated to stay in sync with user expectations and to
fix any possible drawbacks that could cause inconsistent or unreliable results. Even though
the indexing algorithm used by search engines remains a well-kept trade secret, it is widely
known that pages with certain characteristics are ranked higher than others. Let’s review
some of these SEO techniques.

The first aspect to consider is that the title of the Web page does matter. The title has to
be unique for every page, kept short (about 50 characters maximum), and be meaning-
ful enough to please both end users and search engines. To please search engines, the title
string should include page keywords, preferably in the beginning of the string. In addition,
the content of the title (or a similar string) should also be displayed through an <H1> tag.
This increases the relevance of the content to the search engine’s eyes.

Search engines work by searching references to Web pages that can be associated with the
input keywords. In other words, a search engine works by mapping its own keywords to the

 Chapter 8 Page Composition and Usability 349

content exposed by pages. HTML pages can include a couple of interesting meta tags in their
<head> section. These meta tags are keywords and description:

<head>
 <meta name="keywords" content="ASP.NET Web Forms, Book, Training" />
 <meta name="description" content="This book explains how ASP.NET works so that you
 find out yourself how to do things." />
 ...
</head>

In ASP.NET 4, you can set the keywords and description attributes easily through a pair of new
properties added to the Page class. (See Chapter 5.) Today, however, the importance of the
keywords meta tag is diminished. Bing and Google, for example, have both stated explicitly
that they don’t use keywords declared in the <head> of the page but actually extract real
keywords from the content. In light of this, using the keywords meta tag to list your page
keywords is hardly a bad thing, but it is not a decisive factor in determining the final ranking.
A common use of the keywords meta tag today is also to associate your page with misspelled
keywords. For example, if your page is about tennis, the engine will easily figure that out
from the content and rank it accordingly. However, if you list words like tenis in the keywords,
you have a better chance of your page being picked up when the user mistypes words.

The description meta tag, instead, is more relevant, even though it’s not specifically for raising
the rank. If a description meta tag is found, search engines embed that content in the result
page instead of creating their own description. If the description is attractive enough, your
page has more chances to be clicked. A description is ideally around 200 characters and
should read well and be informative.

Search engines don’t like many things that often populate Web pages. They don’t like dupli-
cated URLs, for example. If there are two or more URLs used to get the same content, search
engines tend to lower the page ranking. This happens even if you have subdomains, such as
www.yourserver.com and yourserver.com. Without a permanent redirect being configured at
the Internet Information Services (IIS) level, your home page will suffer.

Search engines don’t like query strings, hidden fields, Flash/Silverlight components, or rich
JavaScript content. All these things make the page harder to analyze. Search engines, instead,
love plain anchor tags, title attributes, and alt attributes—plain HTML.

If not properly handled, redirects are also problematic because they can lead to duplicated
URLs. Classic redirects you perform through Response.Redirect result in an HTTP 302 sta-
tus code. As developers, we tend to forget that HTTP 302 indicates a temporary redirect. A
temporary redirect therefore tells engines that eventually the page being moved will return
to its original location. If this doesn’t happen, engines keep on storing two locations for the
same content. A permanent redirect is HTTP 301, which in ASP.NET 4 is enforced by a new
method—Response.PermanentRedirect.

Query strings should be avoided too. Ideally, URLs should be extensionless and represent a
meaningful path within the content of the page. URL rewriting is an ASP.NET technique that

http://www.yourserver.com

350 Part II ASP.NET Pages and Server Controls

can help in this regard. In ASP.NET 4, however, routing is a type of URL rewriting that of-
fers a richer programming model and the same (if not higher) degree of effectiveness. (See
Chapter 4, “HTTP Handlers, Modules, and Routing.”)

SEO and ASP.NET
Although ASP.NET 4 put some effort into making it easier for you to improve SEO, there are
a few structural aspects of ASP.NET that are not specifically optimized for search engines. I
don’t mean this to be necessarily a bad statement about ASP.NET Web Forms as a platform.
On the other hand, ASP.NET Web Forms was designed a decade ago when we all were living
in a totally different world and were chasing different priorities than today. In this regard,
ASP.NET MVC is a better (because it’s newer) platform that is natively optimized for search
engines.

So my point here is don’t be fooled if you read that ASP.NET improves SEO. It simply gives
you some new tools for implementing features (permanent redirection, meta description,
routing) that were only harder, but not impossible, to achieve before.

Let’s briefly review some structural SEO-related issues of ASP.NET.

The postback mechanism carried via JavaScript code is like smoke in the eyes of search
 engines. Every time you use link buttons or built-in paging/sorting capabilities of data-
bound controls, you put your page at risk of not being ranked properly. Search engines
don’t follow JavaScript and ignore cookies. Because the session ID is stored in a cookie and
engines ignore cookies, some of the page content might remain undiscovered. What about
a cookieless approach for sessions, then? (We’ll discover this feature in Chapter 17, “ASP.NET
State Management.”) It would be even worse because it would produce a lot of duplicated
URLs, confusing engines even more.

Finally, the ASP.NET view state. The view state is a potentially large hidden field usually stored
at the beginning of the page, right after the opening <form> tag. For a while, it was assumed
that to make the process quicker, search engines could read only the first chunk of the page
(maybe 100 KB). In this way, because the view state is at the top and much of the real con-
tent would be out of reach. This is conjecture, however, as there’s currently no evidence that
search engines do this.

In the end, moving the view state to the bottom of the page to get some alleged SEO bene-
fits can actually be dangerous because the user, in cases where there’s a very large view state,
will likely get the opportunity to post back before the entire content is loaded. This situation,
as you can guess, could cause errors.

For completeness, you can move the view state to the bottom of the page using a
 little-known attribute in the configuration:

<pages RenderAllHiddenFieldsAtTopOfForm="false" />

 Chapter 8 Page Composition and Usability 351

Note that regardless of what the attribute name suggests, the attribute has an effect only on
system hidden fields. Custom hidden fields defined programmatically will always be emitted
in their natural position.

Note If search engines don’t like JavaScript very much, what about AJAX pages and SEO? AJAX
is inherently JavaScript-based, and if your page is built using JavaScript only, well, it will likely not
be indexed by engines. A simple test is to try to load the page in the browser with JavaScript dis-
abled. What you see in this test is what a search engine will be able to index. To partially remedy
this, you can add static site maps that offer plain HTML links and load at least the initial content
of the page statically through the browser and not without JavaScript code. A recommended
practice is using tools such as HTMLUnit to automate grabbing a static, scriptless version of your
pages. For more information, see http://blog.stevensanderson.com/2010/03/30/using-htmlunit-
on-net-for-headless-browser-automation.

Tools for Measuring SEO Level
Wouldn’t it be great if you could run a tool against a public site and get a report about some
of the SEO issues it could spot? SEO correctness depends on whether or not (and in which
measure) you do the few things listed in the previous section. A tool can easily automate the
process of validation and come up with a list of things to fix. From Microsoft, you get the IIS
SEO Toolkit: http://www.iis.net/download/seotoolkit. The toolkit includes various modules—
Site Analysis, Robots Exclusion, and Sitemaps and Site Indexes.

The Site Analysis module analyzes the content of a Web site and reports suggestions on how
to optimize content, structure, and URLs for search engines.

The Robots Exclusion module enables Web site administrators to manage the content of the
robots.txt file right from the IIS Manager interface. Created by a site administrator, the file
robots.txt contains instructions for search engines regarding which directories and files in the
site should not be touched and indexed.

Finally, the Sitemaps and Site Indexes module manages the sitemap files (and indexes) at the
site, application, and folder level. This ensures that the sitemap file doesn’t contain broken
links and search engines always access fresh and up-to-date navigation information.

Site Navigation
A good navigation system is a fundamental asset for any Web site—for both its human users
and search engines. A good navigation system enables any user at any time to know where
she is, where she has come from, and where she can go.

A navigation system always appears in the same position within all pages; this makes it a
good fit for a master page. It is made of well-described links in which the text inside the
 anchor is quite clear about the final destination. Links are preferably emphasized using some

http://blog.stevensanderson.com/2010/03/30/using-htmlunit-on-net-for-headless-browser-automation
http://blog.stevensanderson.com/2010/03/30/using-htmlunit-on-net-for-headless-browser-automation
http://blog.stevensanderson.com/2010/03/30/using-htmlunit-on-net-for-headless-browser-automation
http://www.iis.net/download/seotoolkit

352 Part II ASP.NET Pages and Server Controls

CSS style and are a static part of the page. The more you use JavaScript, the more you can
create appealing menus. However, the more you require from the equipment of your users,
the more likely you will be to raise SEO issues and screen-reader issues for users with dis-
abilities. These are the possible drawbacks of excessive use of JavaScript in the navigation
system of a page. Finally, a navigation system should always provide an easy-to-reach link to
the home page. A visitor might not land at your site from the main door, so once the user is
there, you might want to show him the way to the home page.

In ASP.NET, the site navigation API allows you to define the map of the site and provide
a declarative description of how it is laid out. By using the site navigation API, you define
the hierarchy of pages you have and group them to form sections and subsections of the
site. ASP.NET caches this information and makes it programmatically accessible at run time.
With site navigation, you store links to pages in a central location and can optionally bind
those links to navigation controls, such as the TreeView and Menu controls. In addition, as
 mentioned, a link-based map of the site helps search engines considerably.

ASP.NET site navigation offers a number of features, including site maps to describe the
 logical structure of the site, site map providers to physically store the contents of a map
and optional security access rules, and a bunch of controls to display site map information
through navigation components. In this section, we discuss how to define, configure, and
consume site map information.

Defining Site Map Information
You start by defining the list of constituent pages and relationships between them. Exposed
in a standard way, this information then will be easily consumed by site navigation controls
and reflected by page output. By default, the site map is expressed through an XML file,
 usually named web.sitemap. (Thanks to the provider model, however, alternative data sources
are possible.)

Site map information is retrieved via the currently selected site map provider. The
 default site map provider is registered in the root configuration file as an instance of the
XmlSiteMapProvider class:

<siteMap>
 <providers>
 <add name="AspNetXmlSiteMapProvider"
 siteMapFile="web.sitemap"
 type="System.Web.XmlSiteMapProvider, System.Web, ... " />
 </providers>
</siteMap>

As you can see, the schema contains a siteMapFile attribute through which you indicate
the name of the source file where site map information can be read from. In spite of the
extension, the file must be an XML file validated against a given schema. Note that the
XmlSiteMapProvider class doesn’t handle files with an extension other than .sitemap. Finally,

 Chapter 8 Page Composition and Usability 353

note that the XmlSiteMapProvider class detects changes to the site map file and dynamically
updates the site map to reflect changes.

Located in the application’s root directory, the web.sitemap file organizes the pages in the
site hierarchically. It can reference other site map providers or other site map files in other
directories in the same application. Here’s a sample site map file that attempts to describe a
Web site to navigate through the contents of the book:

<siteMap>
 <siteMapNode title="My Book" url="default.aspx">
 <siteMapNode title="Introduction" url="intro.aspx" />
 <siteMapNode title="Acknowledgements" url="ack.aspx" />
 <siteMapNode title="References" url="ref.aspx" />
 </siteMapNode>
 <siteMapNode title="Chapters" url="toc.aspx" />
 <siteMapNode title="ASP.NET at a glance" url="ch01.aspx" />
 <siteMapNode title="HTTP Handlers and Modules" url="ch02.aspx" />
 ...
 </siteMapNode>
 <siteMapNode title="Appendix" url="appendix.aspx">
 <siteMapNode title="Sample Code" url="samples.aspx" />
 ...
 </siteMapNode>
 </siteMapNode>
</siteMap>

A site map XML file is composed of a collection of <siteMapNode> elements rooted in a
<siteMap> node. Each page in the Web site is represented with a <siteMapNode> element.
Hierarchies can be created by nesting <siteMapNode> elements, as in the preceding code
snippets. In most cases, the root <siteMap> node contains just one child <siteMapNode>
 element, even though this is not a strict rule hard-coded in the schema of the XML file. All
URLs linked from the site map file should belong to the same application using the file. Also
in this case, though, exceptions are acceptable. In other words, you are allowed to specify
links to pages in other applications, but the site navigation API won’t check these links. As
long as links belong to the same application, the API can verify them and return design-time
errors if there are broken links.

Table 8-4 lists the feasible attributes of the <siteMapNode> element.

Table 8-4 Attributes of the <siteMapNode> Element
Attribute Description
description Defines the text used to describe the page. This text is used to add a

ToolTip to the page link in a SiteMapPath control (discussed later) and as
 documentation.

provider String that indicates the site map provider to use to fill the current node.

resourceKey Indicates the name of the resource key used to localize a given node of the
site map.

354 Part II ASP.NET Pages and Server Controls

Attribute Description
roles String that indicates the roles that users must have to view this page.

siteMapFile Indicates the name of the site map file to use to fill the current node.

title Defines the text used as the text of the link to the page.

url Defines the URL of the page.

The roles attribute is key to implementing a feature known as security trimming. Security
trimming essentially refers to the site map API capability of preventing unauthorized users
from viewing pages that require a particular role.

In addition to using the attributes listed in Table 8-4, you can use custom attributes too. You
cannot use custom nodes. A .sitemap file can contain only <siteMapNode> elements and a
<siteMap> root node.

Site Map Providers
The site navigation subsystem is provider based, meaning that you can use custom providers
to define some site map contents. A custom site map provider reads information from a dif-
ferent storage medium, be it another XML file with a distinct schema, a text file or, perhaps, a
database. A custom site map provider is a class that inherits from SiteMapProvider or, better
yet, from an intermediate class named StaticSiteMapProvider.

Note that you can optionally use multiple providers at the same time. For example, by setting
the provider attribute on a <siteMapNode> node, you instruct the site map subsystem to use
that site map provider to retrieve nodes to insert at that point of the hierarchy.

<siteMap>
 <siteMapNode title="Intro" url="intro.aspx" >
 <siteMapNode title="Acknowledgements" url="ack.aspx" />
 <siteMapNode title="References" url="ref.aspx" />
 </siteMapNode>
 <siteMapNode provider="SimpleTextSiteMapProvider" />
 ...
</siteMap>

The additional provider must be registered in the configuration file and feature all
 information needed to connect to its own data source. Here’s an example for the sample text
file provider:

<system.web>
 <siteMap defaultProvider="XmlSiteMapProvider">
 <providers>
 <add name="SimpleTextSiteMapProvider"
 type="SimpleTextSiteMapProvider, Samples"
 siteMapFile="MySiteMap.txt" />
 </providers>
 </siteMap>
</system.web>

 Chapter 8 Page Composition and Usability 355

The <siteMapNode> linked to the SimpleTextSiteMapProvider component will contain all the
nodes as defined in the MySiteMap.txt file. Reading and parsing to nodes any information in
MySiteMap.txt is the responsibility of the custom provider. As a result, you have a site map
file that uses two providers at the same time: the default XmlSiteMapProvider and the custom
SimpleTextSiteMapProvider.

Creating the map of a site is only the first step. Once it is created, in fact, this information
must be easily and programmatically accessible. Although most of the time you consume site
information through a bunch of ad hoc controls, it’s useful to take a look at the class that acts
as the official container of site map information—the SiteMap class. When an ASP.NET appli-
cation runs, the site map structure is exposed through a global instance of the SiteMap class.

The SiteMap Class
Defined in the System.Web assembly and namespace, the SiteMap class has only static
 members. It exposes a collection of node objects that contain properties for each node in
the map. The class is instantiated and populated when the application starts up; the data
loaded is cached and refreshed care of the provider. In particular, the XML site map provider
 monitors the site map file for changes and refreshes itself accordingly.

Table 8-5 shows and describes the syntax and behavior of the members featured by the
SiteMap class.

TABLE 8-5 Members of the SiteMap Class
Member Description
CurrentNode A property that returns the SiteMapNode object that represents the currently

requested page.

Enabled A property that indicates whether a site map provider is enabled.

Provider A property that returns the SiteMapProvider object that indicates the provider
being used for the current site map.

Providers A property that returns a read-only collection of SiteMapProvider objects that
are available to the application.

RootNode A property that returns a SiteMapNode object that represents the root page
of the navigation structure built for the site.

SiteMapResolve An event that occurs when the CurrentNode property is accessed. Whether
this event is really raised or not depends on the particular provider being
used. It does fire for the default site map provider.

The SiteMap class retrieves the CurrentNode property by making a request to the provider. A
null value is returned if no node exists for the requested page in the site map, or if role infor-
mation for the current user doesn’t match the role enabled on the node.

356 Part II ASP.NET Pages and Server Controls

The SiteMapPath Control
A site map path is the overall combination of text and links that appears in some pages to in-
dicate the path from the home page to the displayed resource—the classic page breadcrumb.
(See Figure 8-11.)

FIGURE 8-11 Path to the currently displayed page.

ASP.NET provides a made-to-measure navigation path control—the SiteMapPath control—
that supports many options for customizing the appearance of the links.

SiteMapPath reflects node data supplied by the SiteMap object. The control takes limited
space in the page and makes parent pages of the current page only one click away. Table 8-6
shows the properties supported by the SiteMapPath control.

TABLE 8-6 Properties of the SiteMapPath Control
Method Description
CurrentNodeStyle The style used to render the display text of the current node

CurrentNodeTemplate The template to use to represent the current node in the site
 navigation path

NodeStyle The style used to render the display text for all nodes in the site navi-
gation path

NodeTemplate The template used to represent all the functional nodes in the site
navigation path

ParentLevelsDisplayed The number of levels of parent nodes displayed, relative to the current
node

PathDirection Gets or sets the order for rendering the nodes in the navigation path

PathSeparator The string used to delimit nodes in the rendered navigation path

PathSeparatorStyle The style used for the PathSeparator string

PathSeparatorTemplate The template used to render the delimiter of a site navigation path

Provider The site map provider object associated with the control

RenderCurrentNodeAsLink If set, causes the control to render the current node as a hyperlink

RootNodeStyle The style for the display text of the root node

RootNodeTemplate The template used for the root node of a site navigation path

ShowToolTips If set, displays a ToolTip when the mouse hovers over a hyperlinked
node

SiteMapProvider Gets or sets the name of the site map provider object used to render
the site navigation control

SkipLinkText Gets or sets the value used to render alternate text for screen readers
to skip the control’s content

 Chapter 8 Page Composition and Usability 357

The SiteMapPath control works by taking the URL of the current page and populating an
instance of the SiteMapNode class with information obtained from the site map. Retrieved
information includes the URL, title, description, and location of the page in the navigation
hierarchy. The node is then rendered out as a sequence of templates—mostly hyperlinks—
styled as appropriate.

No code is required to use a SiteMapPath control. All that you have to do is place the
 following markup in the .aspx source file:

<asp:SiteMapPath ID="SiteMapPath1" runat="server"
 RenderCurrentNodeAsLink="True" PathSeparator=" : " >
 <PathSeparatorStyle Font-Bold="true" />
 <NodeStyle Font-Bold="true" />
 <RootNodeStyle Font-Bold="true" />
</asp:SiteMapPath>

As you can guess, style properties in the preceding markup are not essential to make the
control work and can be omitted for brevity.

Note Style properties that most ASP.NET server controls expose represent the heart of the
 ongoing conflict between themes and CSS styles. Style properties form an alternate—in a way, a
higher level—syntax to style controls. In the end, it boils down to a sort of architecture choice: if
you choose to go with server controls, use style properties (and themes), but at that point ignore
CSS and client-side configurations. Otherwise, ignore themes and style properties and take more
care of the emitted markup. In this case, however, are you sure you’re still OK with ASP.NET Web
Forms?

Configuring the Site Map
There are various ways to further configure the site map file to address specific real-world
scenarios. For example, you can tie together distinct site map files, localize the title and
 description of pages, and serve each user a site map that complies with his or her roles in the
application’s security infrastructure. Let’s tackle each of these situations.

Using Multiple Site Map Files
As mentioned, the default site map provider reads its information from the web.sitemap file
located in the application’s root directory. Additional .sitemap files written according to the
same XML schema can be used to describe portions of the site.

The idea is that each <siteMapNode> element can define its subtree either explicitly by l isting
all child nodes or implicitly by referencing an external .sitemap file, as shown here:

<siteMap>
 <siteMapNode title="My Book" url="default.aspx">

358 Part II ASP.NET Pages and Server Controls

 <siteMapNode siteMapFile="introduction.sitemap" />
 <siteMapNode siteMapFile="chapters.sitemap" />
 <siteMapNode siteMapFile="appendix.sitemap" />
 </siteMapNode>
</siteMap>

The content of each of the child site map files is injected in the final tree representation of
the data at the exact point where the link appears in the root web.sitemap file. Child site map
files can be located in child directories if you desire. The value assigned to the siteMapFile
attribute is the virtual path of the file in the context of the current application.

Note that in this case all site map files are processed by the same site map provider compo-
nent—the default XmlSiteMapProvider component. In the previous section, we examined a
scenario where different providers were used to process distinct sections of the site map. The
two features are not mutually exclusive and, in the end, you can have a default site map file
that spans multiple .sitemap files, with portions of it provided by a different provider. In this
case, as you’ve seen, all settings for the custom provider must be set in the web.config file.

Securing ASP.NET Site Maps
Most Web sites require that only certain members be allowed to see certain pages. How
should you specify that in a site map? The most effective and efficient approach is using
roles. Basically, you associate each node in the site map with a list of authorized roles, and
the ASP.NET infrastructure guarantees that no unauthorized users will ever view that page
through the site map. This approach is advantageous because you define roles and map
them to users once—for security purposes and membership—and use them also for site
maps.

A feature known as site map security trimming provides a way to hide navigational links in
a site map based on security roles. Enabled on the site map provider and individual nodes,
security trimming serves user-specific views of a site. It does only that, though. It hides links
from view whenever the content of the site map is displayed through hierarchical UI controls
such as TreeView and Menu. However, it doesn’t block users from accessing pages by typing
the URL in the address bar of the browser or following links from other pages. For ensuring
that unauthorized users don’t access pages, you need to configure roles and bind them to
the identity of the connected user. (See Chapter 19, “ASP.NET Security.”)

By default, nonprogrammatic access to .sitemap files is protected and results in a forbidden
resource ASP.NET exception. Be aware of this, if you plan to replace the default site map con-
figuration and use files with a custom extension. In this case, make sure you explicitly prohibit
access to these files through IIS. To further improve security, grant NETWORK SERVICE or
ASPNET—the ASP.NET runtime accounts—read-only access to these custom site map files. If
you store site maps in a database, configure any involved tables to make them accessible to
the smallest number of accounts with the least possible set of privileges.

 Chapter 8 Page Composition and Usability 359

Note An excessively large site map file can use a lot of memory and CPU. Aside from
a possible performance hit, this situation configures a potential security risk in a hosted
 environment. By restricting the size of site maps for a Web site, you better protect your site
against denial-of-service attacks.

Localizing Site Map Information
There are a few properties that you can localize in a site map. They are Title, Description, and
all custom properties. You can use an explicit or implicit expression to localize the property.
First of all, though, you should enable localization by adding a Boolean attribute to the
<siteMap> node:

<siteMap enableLocalization="true">
 ...
</siteMap>

Localizing site map properties consists of binding properties with $Resources expressions.
You can explicitly bind the attribute to a global resource or have it implicitly associated with a
value that results from a local resource key. Here’s an example of explicit expressions:

<siteMap enableLocalization="true">
 <siteMapNode
 url="~/homepage.aspx"
 title="$Resources:MyLocalizations,HomePage" />
 ...
</siteMap>

An explicit expression is a $Resources expression that points to a global .resx file and
 extracts a value by name from there. If the MyLocalizations.resx file contains an entry named
HomePage, the value will be read and assigned to the attribute. If it isn’t there, an implicit
expression takes over.

An implicit expression takes values out of a local resource file. The localizable
 <siteMapNode> is associated with a resource key and all of its localizable properties are
 defined in the RESX file as entries named after the following pattern:

[resourceKey].[Attribute]

The following site map snippet shows how to use implicit expressions:

<siteMap enableLocalization="true">
 <siteMapNode
 resourceKey="Home"
 url="~/homepage.aspx"
 description="default"
 title="default" />
 ...
</siteMap>

360 Part II ASP.NET Pages and Server Controls

In this case, the resource file has the same name of the .sitemap file plus the .resx extension.
In the default case, it will be web.sitemap.resx. This file is expected to contain entries named
Home.description and Home.title. If these exist, their values will be used to determine the
value of the title and description attributes. In the case of implicit expressions, the values that
localizable attributes might have in the .sitemap file are considered default values to be used
in case of trouble with the localized resource files.

Note A .resx file contains resource values for the default culture. To specify resources for a
 particular language and culture (say, French), you have to change the extension to fr.resx be-
cause fr is the identifier of the French culture. Similar prefixes exist for most of the languages and
 cultures.

Localizing the Site Navigation Structure
What if you want to adapt the navigation structure to a given locale? Unfortunately, the Url
property cannot be localized in a site map in the same way as the Title and Description prop-
erties. If you want to change URLs, or perhaps change the structure of the site, you create a
distinct site map for each supported culture and register all of them in the configuration file:

<siteMap defaultProvider="XmlSiteMapProvider">
 <providers>
 <add name="DefaultSiteMap"
 type="System.Web.XmlSiteMapProvider"
 siteMapFile="default.sitemap" />
 <add name="FrenchSiteMap"
 type="System.Web.XmlSiteMapProvider"
 siteMapFile="fr.sitemap" />
 ...
 <add name="ItalianSiteMap"
 type="System.Web.XmlSiteMapProvider"
 siteMapFile="it.sitemap" />
 </providers>
</siteMap>

Essentially, you have multiple providers of the same type—XmlSiteMapProvider—but
 working on distinct site map files. When you access site map information programmatically,
you can specify which site map you want to use. (I’ll say more about this in a moment.)

Note You use .resx files as previously discussed to localize site maps as long as you’re using the
default provider and the XML .sitemap provider. If you use a custom provider, say a database-
driven provider, you’re totally responsible for setting up a localization mechanism.

 Chapter 8 Page Composition and Usability 361

Testing the Page
More often than not, Web sites are planned and created by developers and designers
 without much assistance from usability experts. So the site might look great and have great
content but still end up being hard to work with for the real users. Designers and developers
are clearly power users of a Web site, but can the same be said for the intended audience of
the site? A fundamental item in any usability checklist must be “Test the site on real users.”

Beyond that, you have the problem of ensuring that each page behave as expected and
react as expected to users’ solicitations. This is another facet of testing—definitely a more
 developer-oriented facet.

To effectively test the site on real users and test the functionality of pages, tools are required.
Tools to help test Web pages are a hot new field in the industry.

Testing the Logic of the Page
An ASP.NET Web Forms page results from the combined effect of a view template (ASPX)
and a code-behind class. The code-behind class is responsible for any logic you want the
page to expose. Testing a code-behind class is a matter of writing the code with testabil-
ity in mind and then using a unit-testing tool such as the MSTest environment integrated
in Microsoft Visual Studio 2010. (In Chapter 12, “Custom Controls,” I’ll return to design
 principles and testability.)

The logic of the page is also responsible for the actual markup being sent to the browser.
What is this markup? Is it relatively static? Or is it rich with JavaScript and dynamic behavior?
If you consider the structure of the page trivial or just static, it might suffice that you ensure
the correct data is assigned to server controls in the view template. This is not hard to figure
out from a bunch of unit tests.

If the structure of the page might differ depending on run-time conditions or parameters,
you probably need to look around for some tools that help you test the front end of a Web
application.

Testing the Client-Side Behavior of the Page
Testing the front end of a Web application goes beyond classic unit testing and requires ad
hoc tools. In this regard, ASP.NET Web Forms is not much different from ASP.NET MVC, or
even from Java or PHP Web applications.

You need a tool that allows you to programmatically define a sequence of typical user ac-
tions and observe the resulting DOM tree. In other words, you want to test the layout and
content of the response when the user performs a given series of actions.

362 Part II ASP.NET Pages and Server Controls

Such tools have recording features, and they keep track of user actions as they are performed
and store them as a reusable script to play back. Some tools also offer you the ability to edit
test scripts or write them from scratch. Here’s a sample test program written for one of the
most popular of these front-end test tools—WatiN. The program tests the sample page we
discussed earlier with a drop-down list and a grid

public class SampleViewTests
{
 private Process webServer;

 [TestInitialize]
 public void Setup()
 {
 webServer = new Process();
 webServer.StartInfo.FileName = "WebDev.WebServer.exe";
 string path = ...;
 webServer.StartInfo.Arguments = String.Format(
 "/port:8080 /path: {0}", path);

 webServer.Start();
 }

 [TestMethod]
 public void CheckIfNicknameIsNotUsed()
 {
 using (IE ie = new IE("http://localhost:8080/Samples/Datagrid"))
 {
 // Select a particular customer ID
 ie.SelectList("ddCustomerList").Option("1").Select();

 // Check the resulting HTML on first row, second cell
 Assert.AreEqual(
 "A Bike Store",
 ie.Table(Find.ById("gridOrders").TableRow[0].TableCells[1].InnerHtml));
 }
 }

 [TestCleanup]
 public void TearDown()
 {
 webServer.Kill();
 }
}

The testing tool triggers the local Web server and points it to the page of choice. Next, it
simulates some user actions and checks the resulting HTML.

Different tools might support a different syntax and might integrate with different environ-
ments and in different ways. However, the previous example gives you the gist of what it
means to test the front end.

http://localhost:8080/Samples/Datagrid

 Chapter 8 Page Composition and Usability 363

Web UI testing tools can be integrated as extensions into browsers (for example, Firefox), but
they also offer an API for you to write test applications in C# or test harnesses using MSTest,
NUnit, or other test frameworks. Table 8-7 lists a few popular tools.

TABLE 8-7 Tools for Testing a Web Front End
Tools More information
ArtOfTest http://www.artoftest.com/home.aspx

Selenium http://seleniumhq.org

Visual Studio 2010
Coded UI Tests

http://msdn.microsoft.com/en-us/library/dd286726.aspx

WatiN http://watin.sourceforge.net

Testing Posted Data
In ASP.NET MVC, testing the actual behavior of code-behind classes is relatively easy if you
refactor the code to take that code out to a controller or a presenter. However, each method
you test is expected to receive a bunch of parameters, either through the signature or via
ASP.NET intrinsic objects.

How can you test that the browser really passes in correct data? In other words, how can you
test posted data.

Sending automated POST requests to a URL is a feature that all the tools in Table 8-7 sup-
port. They all let you fill in and post a form. However, in that case, at least, the local Web
server must be up and running. Posting to test pages that do nothing but return a Boolean
answer (expected/unexpected) is a possible way to speed up things.

If you want to simply look at what is being transmitted, you can turn your attention to tools
such as Fiddler (http://www.fiddler2.com/fiddler2) or HttpWatch (http://www.httpwatch.com).

Note ASP.NET Web Forms was not designed with testability in mind. You can still test Web
 pages but at the cost of spinning up the entire ASP.NET runtime; or, more likely, you will reduce
your efforts to just testing what’s strictly necessary at the code-behind level. The tools in
Table 8-7 address, instead, the need to test the client user interface and simulate user actions
that result in posted data.

http://www.artoftest.com/home.aspx
http://seleniumhq.org
http://msdn.microsoft.com/en-us/library/dd286726.aspx
http://watin.sourceforge.net
http://www.fiddler2.com/fiddler2
http://www.httpwatch.com

364 Part II ASP.NET Pages and Server Controls

Summary
A Web page is a special type of a standalone component that has the additional tricky
 requirement of being able to work with the rest of the site. Amazingly, this generates a bunch
of extra work because developers, architects, and designers must cooperate to produce a
common and appealing look and feel, ease of maintenance, consistent rendering, navigation
capabilities, and personalization capabilities. All around, there’s room for a new professional
with ad hoc and somewhat unique skills, such as Web testers and SEO and usability experts.

A successful Web site results from a usable composition of pages, which in turn result from
a consistent composition of UI blocks. In this chapter, we first reviewed the technologies for
page composition that you find available in ASP.NET (primarily, master pages), and then we
moved toward other side topics, such as cross-browser rendering, search-engine optimiza-
tion navigation, and UI testing.

In the next chapter, we’ll complete the basics of the Web page by looking at input forms.

 365

Chapter 9

ASP.NET Input Forms
It’s not enough that we do our best; sometimes we have to do what’s required.

—Winston Churchill

Although formless pages are still accepted and correctly handled, the typical ASP.NET Web
Forms page contains a single <form> tag decorated with the runat attribute set to server.
During server-side processing, such a <form> tag is mapped to an instance of the HtmlForm
class. The HtmlForm class acts as the outermost container of all server controls and wraps
them in a plain HTML <form> element when the page is rendered. The resulting HTML form
posts to the same page URL. By design, it doesn’t give you any chance to set the action URL
programmatically, and for this reason it is often said to be reentrant. The default method
used to submit form data is POST, but GET can be used as well.

In most cases, the server form is the outermost tag of the page and is contained directly
in <body>. In general, though, the server <form> tag can be the child of any other server
 container control, such as <table>, <div>, <body>, and any other HTML generic control.
(I covered HTML controls and Web controls in Chapter 6, “ASP.NET Core Server Controls.”) If
any noncontainer server controls (for example, a TextBox) are placed outside the form tag, an
exception is thrown as the page executes—no check is made at compile time. The exception
is raised by the control itself when the host page begins to render. Noncontainer Web con-
trols, in fact, check whether they are being rendered within the boundaries of a server form
and throw an HttpException if they are not. A call to the Page’s VerifyRenderingInServerForm
method does the job. (Be aware of this virtuous behavior when you get to writing custom
controls.)

In this chapter, we’ll examine some aspects of form-based programming in ASP.NET,
 including how to use multiple forms in the same page and post data to a different page.
We’ll also touch on input validation and validation controls.

Programming with Forms
One of the most common snags Web developers face when they first approach the ASP.NET
lifestyle is the fact that managed Web applications support the single-form interface model.
In the single-form interface model, each page always posts to itself and doesn’t supply any
hook for developers to set the final destination of the postback. What in HTML programming
is the Action property of the form is simply not defined on the ASP.NET HtmlForm class. By
default, each ASP.NET page can post only to itself, unless some specific API extensions are
used to perform a cross-page post. Unlike the action URL, the HTTP method and the target

366 Part II ASP.NET Pages and Server Controls

frame of the post can be programmatically adjusted using ad hoc HtmlForm properties—
Method and Target.

The HtmlForm Class
The HtmlForm class inherits from HtmlContainerControl, which provides the form with the
 capability of containing child controls. This capability is shared with other HTML control
classe s, such as HtmlTable, characterized by child elements and a closing tag.

Properties of the HtmlForm Class
The HtmlForm class provides programmatic access to the HTML <form> element on the
 server through the set of properties shown in Table 9-1. Note that the table includes only a
few of the properties HtmlForm inherits from the root class Control.

TABLE 9-1 Form Property
Property Description
Attributes Inherited from Control, gets a name/value collection with all the

 attributes declared on the tag.

ClientID Inherited from Control, gets the value of UniqueID.

Controls Inherited from Control, gets a collection object that represents the
child controls of the form.

DefaultButton String property, gets or sets the button control to display as the
 default button on the form.

DefaultFocus String property, gets or sets the button control to give input focus
when the form is displayed.

Disabled Gets or sets a value indicating whether the form is disabled. It matches
the disabled HTML attribute.

EncType Gets or sets the encoding type. It matches the enctype HTML attribute.

ID Inherited from Control, gets or sets the programmatic identifier of the
form. The default value is aspnetForm.

InnerHtml Inherited from HtmlContainerControl, gets or sets the markup content
found between the opening and closing tags of the form.

InnerText Inherited from HtmlContainerControl, gets or sets the text between
the opening and closing tags of the form.

Method Gets or sets a value that indicates how a browser posts form data to
the server. The default value is POST. It can be set to GET if needed.

Name Gets the value of UniqueID.

Style Gets a collection of all cascading style sheet (CSS) properties applied
to the form.

SubmitDisabledControls Indicates whether to force controls disabled on the client to submit
their values, allowing them to preserve their values after the page
posts back to the server. False by default.

 Chapter 9 ASP.NET Input Forms 367

Property Description
TagName Returns “form”.

Target Gets or sets the name of the frame or window to render the HTML
generated for the page.

UniqueID Inherited from Control, gets the unique, fully qualified name of the
form.

Visible Gets or sets a value that indicates whether the form is rendered. If this
property is set to false, the form is not rendered to HTML.

The form must have a unique name. If the programmer doesn’t assign the name, ASP.NET
uses a default name—aspnetForm. The programmer can set the form’s identifier by using
either the ID or Name property. If both are set, the ID attribute takes precedence. (Note,
though, that any reliance on the Name attribute compromises the XHTML compliance of the
page.)

The parent object of the form is the outer container control with the runat attribute. If such
a control doesn’t exist, the page object is set as the parent. Typical containers for the server
form are <table> and <div> if they are marked as server-side objects.

By default, the Method property is set to POST. The value of the property can be modified
programmatically. If the form is posted through the GET method, all form data is passed on
the URL’s query string. However, if you choose the GET method, make sure the size allowed
for a GET request does not affect the integrity of your application or raise security issues.

Methods of the HtmlForm Class
Table 9-2 lists the methods available on the HtmlForm class that you’ll be using more often.
All the methods listed in the table are inherited from the base System.Web.UI.Control class.

TABLE 9-2 Form Methods
Method Description
ApplyStyleSheetSkin Applies the style properties defined in the page style sheet.

DataBind Calls the DataBind method on all child controls.

FindControl Retrieves and returns the control that matches the specified ID.

Focus Sets input focus to a control.

HasControls Indicates whether the form contains any child controls.

RenderControl Outputs the HTML code for the form. If tracing is enabled, it caches tracing
information to be rendered later, at the end of the page.

Note that the FindControl method searches only among the form’s direct children. Controls
belonging to an inner naming container, or that are a child of a form’s child control, are
not found.

368 Part II ASP.NET Pages and Server Controls

Multiple Forms
As mentioned, the single-form model is the default in ASP.NET and plays a key role in the
automatic view state management mechanism I described in Chapter 5, “Anatomy of an
ASP.NET Page.” Generally speaking, the ASP.NET’s enforcement of the single-form model
does not significantly limit the programming power, and all things considered, doing without
multiple forms is not a big sacrifice. Some pages, though, would have a more consistent and
natural design if they could define multiple logical forms. In this context a logical form is a
logically related group of input controls. For example, think of a page that provides some in-
formation to users but also needs to supply an additional form such as a search or login box.

You can incorporate search and login capabilities in ad hoc classes and call those classes
from within the page the user has displayed. This might or might not be the right way to
factor your code, though. Especially if you’re porting some old code to ASP.NET, you might
find it easier to insulate login or search code in a dedicated page. Well, to take advantage of
 form-based login, how do you post input data to this page?

Using HTML Forms
As mentioned, ASP.NET prevents you from having multiple <form> tags flagged with the
runat attribute. However, nothing prevents you from having one server-side <form> tag
and multiple client HTML <form> elements in the body of the same Web form. Here’s an
example:

<body>
 <table><tr><td>
 <form id="form1" runat="server">
 <h2>Ordinary contents for an ASP.NET page</h2>
 </form>
 </td>
 <td>
 <form method="post" action="search.aspx">
 <table><tr>
 <td>Keyword</td>
 <td><input type="text" id="Keyword" name="Keyword" /></td>
 </tr><tr>
 <td><input type="submit" id="Go" value="Search" /></td>
 </tr></table>
 </form>
 </td>
 </tr></table>
</body>

The page contains two forms, one of which is a classic HTML form devoid of the runat
 attribute and, as such, completely ignored by ASP.NET. The markup served to the browser
simply contains two <form> elements, each pointing to a different action URL.

 Chapter 9 ASP.NET Input Forms 369

This code works just fine but has a major drawback: you can’t use the ASP.NET programming
model to retrieve posted data in the action page of the client form. When writing search.
aspx, in fact, you can’t rely on view state to retrieve posted values. To know what’s been
posted, you must resort to the old-fashioned, but still effective, ASP model, as shown in the
following code sample:

public partial class Search : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 // Use the Request object to retrieve posted data
 var textToSearch = Request.Form["Keyword"];
 ...

 // Use standard ASP.NET programming model to populate the page UI
 KeywordBeingUsed.Text = textToSearch;
 }
}

You use the protocol-specific collections of the Request object to retrieve posted data—Form
if POST is used, and QueryString in case of GET. In addition, you have to use the name attri-
bute to identify input elements. Overall, this is perhaps not a recommended approach, but it
definitely works. Figure 9-1 shows the page in action.

FIGURE 9-1 A server form control and a client HTML form working together.

370 Part II ASP.NET Pages and Server Controls

When the user clicks the Search button, the search.aspx page is invoked, the page receives
only the values posted through the HTML form, and it uses them to proceed.

Nested HTML Forms
In ASP.NET, most real-world pages are based on master pages. And most of the time the
master page includes an outermost <form> tag. This means that if you add a client HTML
form element at rendering time the two form elements will be nested.

Now nesting forms is possible in theory, but browsers don’t actually render nested forms
properly. The HTML 4 standard prevents direct form-to-form dependency. You are beyond
the standard if you add a form element as the direct child of another form. Instead, if you
embed the child form within a block element (DIV, FIELDSET), it is considered valid from a
syntax point of view. As mentioned, though, the fact is that, regardless of what the World
Wide Web Consortium (W3C) believes, browsers just glue the content of the two forms
 together. As a result, the outermost parent form determines where the post is made.

Nicely enough, although browsers actually seem to produce the same final effect—the
 content of the inner forms merged with the outermost ones—how that happens is slightly
different. For example, if you display a page with nested forms in Firefox 3.6.x, you find out
that the child <form> tags are just stripped off. The form content, on the other hand, is
preserved. With Internet Explorer 8, the child <form> tag is preserved but it’s closed inline,
keeping any content out of it and subsequently merging it to the outermost form.

The code that produces the pages shown in Figure 9-1 descends from the standard
ASP.NET 4 template for Web Forms pages with a master. However, because the master
contains a <form> tag, I had to rework the master template to be able to use side-by-side
<form> tags and avoid nesting.

<body>
 <div class="page">
 <form id="Form1" runat="server">
 ...

 <div class="main">
 <asp:ContentPlaceHolder ID="MainContent" runat="server" />
 </div>
 </form>

 <asp:ContentPlaceHolder ID="ExtraFormContent" runat="server" />

 <div class="clear">
 </div>
 <div class="footer">
 </div>
 </div>
</body>

 Chapter 9 ASP.NET Input Forms 371

The client HTML form element fits into the ExtraFormContent placeholder.

All in all, nested HTML forms are a nonissue—you just don’t use them. However, a common
pitfall in ASP.NET development is that because of master pages you inadvertently end up
with nested forms in an attempt to add a second innocent client HTML form.

Multiple Server <form> Tags on a Page
ASP.NET makes it quite clear: you just can’t have multiple server forms in the same Web page.
Given the dynamics of page rendering, an exception is thrown if more than one HtmlForm
control attempts to render. (See Figure 9-2.)

FIGURE 9-2 Using multiple server forms in a page throws a rendering exception.

A little-known fact is that a Web form can actually contain as many server-side forms as
needed as long as only one at a time is visible. For example, a page with, say, three <form
runat=server> tags is allowed, but only one form can be actually rendered. By playing with
the Visible property of the HtmlForm class, you can change the active server form during the
page lifetime.

372 Part II ASP.NET Pages and Server Controls

This trick doesn’t really let you have multiple active forms at the same time, but it can be
helpful sometimes because it allows you to change the active server form over postback
events. Let’s consider the following ASP.NET page:

<body>
 <form id="step0" runat="server" visible="true">
 <h1>Welcome</h1>
 <asp:textbox runat="server" id="Textbox1" />
 <asp:button ID="Button1" runat="server" text="Step #1"
 OnClick="Button1_Click" />
 </form>

 <form id="step1" runat="server" visible="false">
 <h1>Step #1</h1>
 <asp:textbox runat="server" id="Textbox2" />
 <asp:button ID="Button2" runat="server" text="Previous step"
 OnClick="Button2_Click" />
 <asp:button ID="Button3" runat="server" text="Step #2"
 OnClick="Button3_Click" />
 </form>

 <form id="step2" runat="server" visible="false">
 <h1>Finalizing</h1>
 <asp:button ID="Button4" runat="server" text="Finish"
 OnClick="Button4_Click" />
 </form>
</body>

As you can see, all <form> tags are marked as runat, but only the first one is visible. Mutually
exclusive forms were a cool way of implementing wizards in old versions of ASP.NET, be-
fore an official wizard control got introduced. By toggling a form’s visibility in button event
 handlers, you can obtain a wizard-like behavior, as shown in Figure 9-3.

public partial class MultipleForms : System.Web.UI.Page
{
 protected void Page_Load(Object sender, EventArgs e)
 {
 Title = "Welcome";
 }
 protected void Button1_Click(Object sender, EventArgs e)
 {
 Title = "Step 1";
 step0.Visible = false;
 step1.Visible = true;
 }
 protected void Button2_Click(Object sender, EventArgs e)
 {
 step0.Visible = true;
 step1.Visible = false;
 }

 Chapter 9 ASP.NET Input Forms 373

 protected void Button3_Click(Object sender, EventArgs e)
 {
 Title = "Finalizing";
 step1.Visible = false;
 step2.Visible = true;
 }
 protected void Button4_Click(Object sender, EventArgs e)
 {
 Title = "Done";
 step2.Visible = false;
 Response.Write("<h1>Successfully done.</h1>");
 }
}

FIGURE 9-3 Mutually exclusive forms.

Multiple View and Wizards
If you’re targeting ASP.NET 2.0 or newer, you might not need to resort to the preceding trick
to switch between forms. You find two new controls—MultiView and Wizard—ready for the
job. The MultiView control employs logic nearly identical to that of multiple exclusive forms,
except that it relies on panels rather than full forms.

The MultiView control allows you to define multiple and mutually exclusive HTML panels.
The control provides an application programming interface (API) for you to toggle the vis-
ibility of the various panels and ensure that exactly one is active and visible at a time. The

374 Part II ASP.NET Pages and Server Controls

MultiView control doesn’t provide a built-in user interface. The Wizard control is just that—
a MultiView control plus some wizard-like predefined user interface (UI) blocks. I’ll cover the
Wizard control in great detail later in the chapter.

Cross-Page Postings
The ASP.NET framework offers a built-in mechanism to override the normal processing cycle
and let the page post to another, distinct page. In general, postbacks occur in either of two
ways—through a submit button or via script. The client browser usually takes on any post
conducted through a button and automatically points to the page that the action attribute of
the posting form indicates. A lot more of flexibility is possible when the post occurs via script.

In ASP.NET, however, you can also configure certain page controls—in particular, those that
implement the IButtonControl interface—to post to a different target page. This is referred
to as cross-page posting.

Posting Data to Another Page
Authoring a Web page that can post data to another page requires only a couple of steps.
First, you choose the controls that can cause the postback and set their PostBackUrl property.
A page can include one or more button controls and, generally, any combination of button
controls and submit buttons. Notice that in this context a button control is any server control
that implements IButtonControl. (I fully covered the IButtonControl interface in Chapter 6.)
The following code snippet shows how to proceed:

<form id="form1" runat="server">
 <asp:textbox runat="server" id="Keyword" />
 <asp:button runat="server" id="buttonPost"
 Text="Click"
 PostBackUrl="search.aspx" />
</form>

When the PostBackUrl property is set, the ASP.NET runtime binds the corresponding HTML
element of the button control to a new JavaScript function. Instead of using our old acquain-
tance __doPostback, it uses the new WebForm_DoPostBackWithOptions function. The button
renders the following markup:

<input type="submit" name="buttonPost" id="buttonPost"
 value="Click"
 onclick="javascript:WebForm_DoPostBackWithOptions(
 new WebForm_PostBackOptions("buttonPost", "",
 false, "", "search.aspx", false, false))" />

As a result, when the user clicks the button, the current form posts its content to the
 specified target page. What about the view state? When the page contains a control that
does cross-page posting, a new hidden field is also created—the __PREVIOUSPAGE field.

 Chapter 9 ASP.NET Input Forms 375

The field contains the view state information to be used to serve the request. This view state
information is transparently used in lieu of the original view state of the page being posted to.

You use the PreviousPage property to reference the posting page and all of its controls.
Here’s the code behind a sample target page that retrieves the content of a text box defined
in the form:

// This code belongs to doSearch.aspx
protected void Page_Load(Object sender, EventArgs e)
{
 // Ensure this is a cross-page postback
 if (PreviousPage == null)
 {
 Response.Write("Must be a cross-page post.");
 return;
 }

 // Retrieves posted data. This ensures PreviousPage is not null.
 var txt = (TextBox) PreviousPage.FindControl("Keyword");
 ...
}

By using the PreviousPage property on the Page class, you can access any input control
 defined on the posting page. Access to input controls is weakly typed and occurs indirectly
through the services of the FindControl method. The problem here lies in the fact that the
target page doesn’t know anything about the type of the posting page. PreviousPage is
 declared as a property of type Page and, as such, it can’t provide access to members specific
to a derived page class.

Furthermore, note that FindControl looks up controls only in the current naming container.
If the control you are looking for lives inside another control (say, a template), you must first
get a reference to the container, and then search the container to find the control. This hap-
pens commonly when you employ master pages. To avoid using FindControl altogether, a
different approach is required.

What about using the dynamic type in ASP.NET 4? It might work, but this solution also has a
little drawback—the same drawback we encountered in Chapter 8, “Page Composition and
Usability,” for master pages. The problem is that you can’t access, say, the Keyword text box
control from within the posted page because the Keyword control is mapped as a protected
member of the page class. The following code, therefore, throws an exception:

dynamic previousPage = PreviousPage;
var txt = previousPage.Keyword; // Keyword is inaccessible due to its protection level
if (txt == null)
{
 ...
}

376 Part II ASP.NET Pages and Server Controls

To fix this code, you need to define a public property on the posting page class that exposes
as a public member whatever element you want to retrieve from within the posted page. It
doesn’t have to be the control reference; it is recommended that you expose just data. Here’s
an example:

public partial class Crosspage : System.Web.UI.Page
{
 public String SelectedKeywords
 {
 get { return Keyword.Text; }
 }
}

With this change, the following call will work:

dynamic previousPage = PreviousPage;
var keywords = previousPage.SelectedKeywords;

The dynamic type, though, involves falling down to the Dynamic Language Runtime (DLR)
engine and should be used only when you really need dynamically resolved code. In this
case, you can get an even more effective (and strongly typed) solution by resorting to a page
directive.

The @PreviousPageType Directive
Let’s say it up front. To retrieve values on the posting page, FindControl is your only safe
 option if you don’t know in advance which page will be invoking your target. However, when
you’re using cross-page posting in the context of an application, chances are good that you
know exactly who will be calling the page and how. In this case, you can take advantage of
the @PreviousPageType directive to cause the target page’s PreviousPage property to be
typed to the source page class.

In the target page, you add the following directive:

<%@ PreviousPageType VirtualPath="crosspage.aspx" %>

The directive can accept either of two attributes—VirtualPath or TypeName. The former
points to the URL of the posting page; the latter indicates the type of the calling page. The
directive just shown makes the PreviousPage property on the target page class be of the
same type as the page at the given path (or the specified type). This fact alone, though, is not
sufficient to let you access input controls directly. Each page class contains protected mem-
bers that represent child controls; unfortunately, you can’t call a protected member of a class
from an external class. (Only derived classes can access protected members of the parent
class.)

To work around the issue, in the caller page you must add public properties that expose any
information you want posted pages to access. For example, imagine that crosspostpage.aspx

 Chapter 9 ASP.NET Input Forms 377

contains a TextBox named Keyword. To make it accessible from within a target page, you add
the following code to the code-behind class:

public TextBox KeywordControl
{
 get { return Keyword; }
}

The new KeywordControl property on the page class wraps and exposes the internal text-box
control. In light of this code, the target page can now execute the following code:

Response.Write(PreviousPage.KeywordControl.Text);

Although you can directly expose a control reference, it is preferable that you expose just
the data the posted page needs to consume. This approach is based on the Law of Demeter,
which essentially states that internal details of components should not be made public un-
less strictly required. Another way of looking at this is in light of the “Tell, don’t ask principle”:
your posted page gets what it needs instead of asking for a property on a control.

Detecting Cross-Page Postings
Being the potential target of a cross-page call doesn’t automatically make a target page a
different kind of page all of a sudden. There’s always the possibility that the target page is
invoked on its own—for example, via hyperlinking. When this happens, the PreviousPage
property returns null and other postback-related properties, such as IsPostBack, assume the
usual values.

If you have such a dual page, you should insert some extra code to discern the page
 behavior. The following example shows a page that allows only cross-page access:

if (PreviousPage == null)
{
 Response.Write("Sorry, that’s the wrong way to invoke me.");
 Response.End();
 return;
}

The IsCrossPagePostBack property on the Page class deserves a bit of attention. The property
returns true if the current page has called another ASP.NET page. It goes without saying that
IsCrossPagePostBack on the target page always returns false. Therefore, the following code is
not equivalent to the one seen before:

if (!IsCrossPagePostBack)
{
 ...
}

378 Part II ASP.NET Pages and Server Controls

To know whether the current page is being called from another page, you have to test the
value of IsCrossPagePostBack on the page object returned by PreviousPage:

// PreviousPage is null in case of a normal request
if (!PreviousPage.IsCrossPagePostBack)
{
 ...
}

However, this code will inevitably throw an exception if the page is invoked in a normal way
(that is, from the address bar or via hyperlinking, because PreviousPage is null). In the end,
the simplest and most effective way to see whether a page is being invoked through cross-
page postbacks is by checking PreviousPage against null.

Redirecting Users to Another Page
In addition to the PostBackUrl property of button controls, ASP.NET provides another
 mechanism for transferring control and values from one page to another—you can use the
Server.Transfer method.

The URL of the new page is not reflected by the browser’s address bar because the transfer
takes place entirely on the server. The following code shows how to use the method to direct
a user to another page:

protected void Button1_Click(object sender, EventArgs e)
{
 Server.Transfer("target.aspx");
}

Note that all the code that might be following the call to Transfer in the page is never
 executed. In the end, Transfer is just a page redirect method. However, it is particularly effi-
cient for two reasons. First, no roundtrip to the client is requested as is the case, for example,
with Response.Redirect. Second, the same HttpApplication that was serving the caller request
is reused, thus limiting the impact on the ASP.NET infrastructure.

How can you retrieve values from within the transferred page?

You can use the same programming model as for cross-page postings and rely on a non-null
PreviousPage property, DLR interaction, or the @PreviousPageType directive for strongly
typed access to input fields. How can a page detect whether it’s being called through a
 server transfer or through a cross-page postback? In both cases, PreviousPage is not null, but
the IsCrossPagePostBack on the PreviousPage object is true for a cross-page posting and false
in the case of a server transfer.

 Chapter 9 ASP.NET Input Forms 379

Important Passing values from one page to another is a task that can be accomplished in a
variety of ways—using cross-page posting, server transfer, HTML forms, cookies, or query strings.
Which one is the most effective? Cross-page posting and server transfer offer a familiar pro-
gramming model but potentially move a significant chunk of data through the __PREVIOUSPAGE
field. Whether this information is really needed depends on the characteristics of the target
page. In many cases, the target page just needs to receive a few parameters to start working. If
this is the case, HTML client forms might be more effective in terms of data being moved. HTML
forms, though, require an ASP-like programming model.

Validation Controls
The first rule for writing more secure applications is ensuring you get the data right, before
you actually start using it. Getting the data right requires you to pass any external input
through a validation step. In ASP.NET, validation controls provide an easy-to-use mechanism
to perform a variety of validation tasks, including testing for valid types, values within a given
range, or required fields.

ASP.NET validation controls work on the server, but they can be configured to filter invalid
input already on the client. This is accomplished using some JavaScript code that kicks in and
performs validation as soon as the user tabs out of a monitored input field.

All ASP.NET validation controls inherit from the BaseValidator class which, in turn, descends
from Label. All validators defined on a page are automatically grouped in the Validators col-
lection of the Page class. You can validate them all in a single shot using the Validate method
in the page class or individually by calling the Validate method on each validator. The
Validate method sets the IsValid property both on the page and on the individual validator.
The IsValid property indicates whether the user’s entries match the requirements of the vali-
dators. The user’s entry is validated when the Validate method is called and also whenever
the page posts back.

Note Typical control members involved with input validation have been grouped in the
IValidator interface that the BaseValidator class implements. The interface includes the Validate
method and the IsValid and ErrorMessage properties.

Generalities of Validation Controls
Each validation control references an input control located elsewhere on the page. When the
page is submitted, the content of the monitored server control is passed to the associated
validation control for further processing. Each validation control performs a different type of
verification. Table 9-3 shows the types of validation supported by the .NET Framework.

380 Part II ASP.NET Pages and Server Controls

TABLE 9-3 Validation Controls in ASP.NET
Validation Control Description
CompareValidator Compares the user’s entry against a fixed value by using a comparison

operator such as LessThan, Equal, or GreaterThan. It can also compare
against the value of a property in another control on the same page.

CustomValidator Employs programmatically defined validation logic to check the
 validity of the user’s entry. You use this validator when the other
 validators cannot perform the necessary validation and you want to
provide custom code that validates the input.

RangeValidator Ensures that the user’s entry falls within a specified range. Lower and
upper boundaries can be expressed as numbers, strings, or dates.

RegularExpressionValidator Validates the user’s entry only if it matches a pattern defined by a
regular expression.

RequiredFieldValidator Ensures that the user specifies a value for the field.

Multiple validation controls can be used with an individual input control to validate
 according to different criteria. For example, you can apply multiple validation controls on a
text box that is expected to contain an e-mail address. In particular, you can impose that the
field is not skipped (RequiredFieldValidator) and that its content matches the typical format of
e-mail addresses (RegularExpressionValidator).

Table 9-3 lacks a reference to the ValidationSummary control. The control does not
perform validation tasks itself. Instead, it displays a label to summarize all the valida-
tion error messages found on a Web page as the effect of other validators. I’ll cover the
ValidationSummary control later in the chapter.

The BaseValidator Class
Table 9-4 details the specific properties of validation controls. Some properties—such as
ForeColor, Enabled, and Text—are overridden versions of base properties on base classes.

TABLE 9-4 Basic Properties of Validators

Property Description
ControlToValidate Gets or sets the input control to validate. The control is identified by

name—that is, by using the value of the ID attribute.

Display If client-side validation is supported and enabled, gets or sets how the
space for the error message should be allocated—either statically or
 dynamically. In the case of server-side validation, this property is ignored.
A Static display is possible only if the browser supports the display CSS
style. The default is Dynamic.

EnableClientScript True by default; gets or sets whether client-side validation is enabled.

Enabled Gets or sets whether the validation control is enabled.

 Chapter 9 ASP.NET Input Forms 381

Property Description
ErrorMessage Gets or sets the text for the error message.

ForeColor Gets or sets the color of the message displayed when validation fails.

IsValid Gets or sets whether the associated input control passes validation.

SetFocusOnError Indicates whether the focus is moved to the control where validation failed.

Text Gets or sets the description displayed for the validator in lieu of the
 error message. Note, though, this text does not replace the contents of
ErrorMessage in the summary text.

ValidationGroup Gets or sets the validation group that this control belongs to.

All validation controls inherit from the BaseValidator class except for compare validators,
for which a further intermediate class—the BaseCompareValidator class—exists. The
BaseCompareValidator class serves as the foundation for validators that perform typed
 comparisons. An ad hoc property, named Type, is used to specify the data type the values
are converted to before being compared. The CanConvert static method determines whether
the user’s entry can be converted to the specified data type. Supported types include
string, integer, double, date, and currency. The classes acting as compare validators are
RangeValidator and CompareValidator.

Note You might want to pay careful attention when using the ForeColor property. Don’t get it
wrong—there’s nothing bad with the property, which works as expected and sets the foreground
color being used by the validators to show any messages. That’s just the point, however. Today’s
applications tend to gain a lot more control over the style of emitted markup and for this reason
tend to style through CSS wherever possible. Like many other similar style properties on server
controls, the ForeColor property emits inline style information, which is really bad for designers
when they get to do their job. Consider that in ASP.NET 4, validation controls no longer use the
red color for error messages unless you set the ControlRenderingCompatabilityVersion attribute
to “3.5” in the <pages> section of the configuration file. The ForeColor property certainly is not
obsolete, but its use should be put aside as much as possible in favor of CSS styles.

Associating Validators with Input Controls
The link between each validator and its associated input control is established through the
ControlToValidate property. The property must be set to the ID of the input control. If you do
not specify a valid input control, an exception will be thrown when the page is rendered. The
associated validator/control is between two controls within the same container—be it a page,
user control, or template.

Not all server controls can be validated—only those that specify their validation prop-
erty through an attribute named [ValidationProperty]. The attribute takes the name of the

382 Part II ASP.NET Pages and Server Controls

property that contains the user’s entry to check. For example, the validation property for a
TextBox is Text and is indicated as follows:

[ValidationProperty("Text")]
public class TextBox : WebControl, ITextControl
{
 ...
}

The list of controls that support validation includes TextBox, DropDownList, ListBox,
RadioButtonList, FileUpload, plus a bunch of HTML controls such as HtmlInputFile,
HtmlInputText, HtmlInputPassword, HtmlTextArea, and HtmlSelect. Custom controls can be
validated too, as long as they are marked with the aforementioned [ValidationProperty]
attribute.

Note If the validation property of the associated input control is left empty, all validators accept
any value and always pass the test. The RequiredFieldValidator control represents a rather natural
exception to this rule, because it has been specifically designed to detect fields the user skipped
and left blank.

Gallery of Controls
In general, ASP.NET validators are designed to work on a single control and process a single
“value” for that control. As mentioned, you use the ValidationProperty attribute on cus-
tom controls to specify which property you want to validate. For stock controls, you take
what they provide without many chances to modify things. Keep in mind that for validation
 scenarios that involve multiple controls or multiple properties, you need to create your own
custom validation controls.

This said, let’s go ahead and take a closer look at the stock validation controls available in
ASP.NET Web Forms.

The CompareValidator Control
The CompareValidator control lets you compare the value entered by the user with a
 constant value or the value specified in another control in the same naming container. The
behavior of the control is characterized by the following additional properties:

■ ControlToCompare Represents the ID of the control to compare with the current
user’s entry. You should avoid setting the ControlToCompare and ValueToCompare
properties at the same time. They are considered mutually exclusive; if you set both,
the ControlToCompare property takes precedence.

 Chapter 9 ASP.NET Input Forms 383

■ Operator Specifies the comparison operation to perform. The list of feasible
 operations is defined in the ValidationCompareOperator enumeration. The default
 operator is Equal; feasible operators are also LessThan, GreaterThan, and their varia-
tions. The DataTypeCheck operator is useful when you want to make sure that certain
input data can be converted to a certain type. When the DataTypeCheck operator is
specified, both ControlToCompare and ValueToCompare are ignored. In this case, the
test is made on the type of the input data and succeeds if the specified data can be
converted to the expected type. Supported types are expressed through the following
keywords: String, Integer, Double, Date, and Currency (decimal).

■ ValueToCompare Indicates the value to compare the user’s input against. If the Type
property is set, the ValueToCompare property must comply with it.

The following code demonstrates the typical markup of the CompareValidator control when
the control is called to validate an integer input from a text box representing someone’s age:

<asp:CompareValidator runat="server" id="ageValidator"
 ControlToValidate="ageTextBox"
 ValueToCompare="18"
 Operator="GreaterThanEqual"
 Type="Integer"
 ErrorMessage="Must specify an age greater than 17." />

The CustomValidator Control
The CustomValidator control is a generic and totally user-defined validator that uses custom
validation logic to accomplish its task. You typically resort to this control when none of the
other validators seems appropriate or, more simply, when you need to execute your own
code in addition to that of the standard validators.

To set up a custom validator, you can indicate a client-side function through the
ClientValidationFunction property. If client-side validation is disabled or not supported, simply
omit this setting. Alternatively, or in addition to client validation, you can define some man-
aged code to execute on the server. You do this by defining a handler for the ServerValidate
event. The code will be executed when the page is posted back in response to a click on a
button control. The following code snippet shows how to configure a custom validator to
check the value of a text box against an array of feasible values:

<asp:CustomValidator runat="server" id="membershipValidator"
 ControlToValidate="membership"
 ClientValidationFunction="CheckMembership"
 OnServerValidate="ServerValidation"
 ErrorMessage="Membership can be Normal, Silver, Gold, or Platinum." />

384 Part II ASP.NET Pages and Server Controls

If specified, the client validation function takes a mandatory signature and looks like this:

function CheckMembership(source, arguments)
{
 ...
}

The source argument references the HTML tag that represents the validator control—usually,
a tag. The arguments parameter references an object with two properties, IsValid and
Value. The Value property is the value stored in the input control to be validated. The IsValid
property must be set to false or true according to the result of the validation.

The CustomValidator control is not associated in all cases with a single input control in the
current naming container. For this type of validator, setting the ControlToValidate property
is not mandatory. For example, if the control has to validate the contents of multiple input
fields, you simply do not set the ControlToValidate property and the arguments.Value variable
evaluates to the empty string. In this case, you write the validation logic so that any needed
values are dynamically retrieved. With client-side script code, this can be done by accessing
the members of the document’s form, as shown in the following code:

function CheckMembership(source, arguments)
{
 // Retrieve the current value of the element
 // with the specified ID
 var membership = document.getElementById("membership").value;
 ...
}

Warning Setting only a client-side validation code opens a security hole because an attacker
could work around the validation logic and manage to have invalid or malicious data sent to the
server. By defining a server event handler, you have one more chance to validate data before
 applying changes to the back-end system.

To define a server-side handler for a custom validator, use the ServerValidate event:

void ServerValidation(object source, ServerValidateEventArgs e)
{
 ...
}

The ServerValidateEventArgs structure contains two properties—IsValid and Value—with the
same meaning and goal as in the client validation function. If the control is not bound to a
particular input field, the Value property is empty and you retrieve any needed value using

 Chapter 9 ASP.NET Input Forms 385

the ASP.NET object model. For example, the following code shows how to check the status of
a check box on the server:

void ServerValidation (object source, ServerValidateEventArgs e) {
 e.IsValid = (CheckBox1.Checked == true);
}

The CustomValidator control is the only option you have to validate controls that are not
marked with the [ValidationProperty] attribute—for example, calendars and check-box
controls. Likewise, it is the only option you have to validate multiple values and/or multiple
controls linked by some relationship. Finally, CustomValidator is also your starting point for
building some remote validation via AJAX. The simplest way of doing that is just by using
some JavaScript that, from within the bound client validator, calls into a server method. The
jQuery library is perfect for the job.

The RegularExpressionValidator Control
Regular expressions are an effective way to ensure that a predictable and well-known
 sequence of characters form the user’s entry. For example, using regular expressions you
can validate the format of postal codes, Social Security numbers, e-mail addresses, phone
numbers, and so on. When using the RegularExpressionValidator control, you set the
ValidationExpression property with the regular expression, which will be used to validate the
input.

The following code snippet shows a regular expression validator that ensures the user’s entry
is an e-mail address:

<asp:RegularExpressionValidator runat="server" id="emailValidator"
 ControlToValidate="email"
 ValidationExpression="[a-zA-Z_0-9.-]+\@[a-zA-Z_0-9.-]+\.\w+"
 ErrorMessage="Must be a valid email address." />

The regular expression just shown specifies that valid e-mail addresses are formed by two
nonzero sequences of letters, digits, dashes, and dots separated by an @ symbol and fol-
lowed by a dot (.) and an alphabetic string. (This might not be the perfect regular expression
for e-mail addresses, but it certainly incorporates the majority of e-mail address formats.)

Note The regular expression validation syntax is slightly different on the client than on the
server. The RegularExpressionValidator control uses JavaScript regular expressions on the client
and the .NET Framework Regex object on the server. Be aware that the JavaScript regular expres-
sion syntax is a subset of the Regex model. Whenever possible, try to use the regular expression
syntax supported by JavaScript so that the same result is obtained for both the client and server.

386 Part II ASP.NET Pages and Server Controls

The RangeValidator Control
The RangeValidator control lets you verify that a given value falls within a specified range.
The type of the values involved in the check is specified dynamically and picked from a short
list that includes strings, numbers, and dates. The following code shows how to use a range
validator control:

<asp:RangeValidator runat="server" id="hiredDateValidator"
 ControlToValidate="hired"
 MinimumValue="2000-1-4"
 MaximumValue="9999-12-31"
 Type="Date"
 ErrorMessage="Must be a date after Jan 1, 1999." />

The key properties are MinimumValue and MaximumValue, which together clearly denote
the lower and upper boundaries of the interval. Note that an exception is thrown if the
strings assigned MinimumValue or MaximumValue cannot be converted to the numbers or
dates according to the value of the Type property.

If the type is set to Date, but no specific culture is set for the application, you should specify
dates using a culture-neutral format, such as yyyy-MM-dd. If you don’t do so, the chances
are good that the values will not be interpreted correctly.

Note The RangeValidator control extends the capabilities of the more basic CompareValidator
control by checking for a value in a fixed interval. In light of this, the RangeValidator control
might raise an exception if either MinimumValue or MaximumValue is omitted. Whether the
exception is thrown or not depends on the type chosen and its inherent ability to interpret the
empty string. For example, an empty string on a Date type causes an exception. If you want to
operate on an unbound interval—whether it’s lower or upper unbound—either you resort to
the GreaterThan (or LessThan) operator on the CompareValidator control or simply use a virtually
infinite value such as the 9999-12-31 value.

The RequiredFieldValidator Control
To catch when a user skips a mandatory field in an input form, you use the
RequiredFieldValidator control to show an appropriate error message:

<asp:RequiredFieldValidator runat="server" id="lnameValidator"
 ControlToValidate="lname"
 ErrorMessage="Last name is mandatory" />

As long as you’re using an up-level browser and client-side scripting is enabled for each vali-
dator, which is the default, invalid input will display error messages without performing
a postback.

 Chapter 9 ASP.NET Input Forms 387

Important Note that just tabbing through the controls is not a condition that raises an error; the
validator gets involved only if you type blanks or if the field is blank when the page is posted back.

How can you determine whether a certain field is really empty? In many cases, the empty
string is sufficient, but this is not a firm rule. The InitialValue property specifies the ini-
tial value of the input control. The validation fails only if the value of the control equals
InitialValue upon losing focus. By default, InitialValue is initialized with the empty string.

Special Capabilities
The primary reason why you place validation controls on a Web form is to catch errors and
inconsistencies in the user’s input. But how do you display error messages? Are you interest-
ed in client-side validation and, if you are, how would you set it up? Finally, what if you want
to validate only a subset of controls when a given button is clicked? Some special capabilities
of validation controls provide a valid answer to all these issues.

Server-Side Validation
Validation controls are server-side controls; subsequently, they kick in and give a response on
the server. All postback controls (for example, buttons, auto-postback controls, and controls
that registered as postback controls) validate the state of the page before proceeding with
their postback action. For example, here’s how the Button control handles it. The Web Forms
page life cycle ends up invoking the RaisePostBackEvent method to force the clicked submit
button to execute its click handler:

// Code excerpted from the source code of the System.Web.UI.WebControls.Button
protected virtual void RaisePostBackEvent(string eventArgument)
{
 base.ValidateEvent(this.UniqueID, eventArgument);
 if (this.CausesValidation)
 {
 this.Page.Validate(this.ValidationGroup);
 }
 this.OnClick(EventArgs.Empty);
 this.OnCommand(new CommandEventArgs(this.CommandName, this.CommandArgument));
}

The Validate method on the class Page just loops through the validators registered with the
specified validation group and returns a response. The response simply updates the state of
validation controls including the validation summary. This response will then be merged into
the page response and output to the user.

If you simply need to know whether the state of the page is valid, you call the IsValid Boolean
property. Note that Page.IsValid cannot be called before validation has taken place. It should
always be queried after a call to Page.Validate—either an explicit call you code yourself or an

388 Part II ASP.NET Pages and Server Controls

implicit call that postback controls perform in their event handler. Note that, as the preceding
code snippet shows, postback controls don’t do any validation if their CausesValidation
 property is set to false.

Note The Validate method on class Page is always invoked during the postback stage, regard-
less of the features of the postback control—a submit button has different postback mechanics
compared to, say, a link button or an auto-postback control. In general, you’ll more likely need
to call IsValid in the code-behind class than Validate. After validation has occurred, in fact, you
might need to check whether it was successful before you perform some other operations.

Displaying Error Information
The ErrorMessage property determines the static message that each validation control
will display if an error occurs. You need to know that if the Text property is also set, it will
take precedence over ErrorMessage. Text is designed to display inline where the valida-
tion control is located; ErrorMessage is designed to display in the validation summary.
(Strategies for using Text and ErrorMessage will be discussed more in the next section, “The
ValidationSummary Control.”) Because all validation controls are labels, no other support
or helper controls are needed to display any message. The message will be displayed in the
body of the validation controls and, subsequently, wherever the validation control is actu-
ally placed. The error message is displayed as HTML, so it can contain any HTML formatting
attribute.

Validators that work in client mode can create the tag for the message either
 statically or dynamically. You can control this setting by using the Display property of the
validator. When the display mode is set to Static (the default), the element is given
the following style:

style="visibility:hidden;"

The CSS visibility style attribute, when set to Hidden, causes the browser not to display the
element but reserves space for it. If the Display property contains Dynamic, the style string
changes as follows:

style="display:none;"

The CSS display attribute, when set to none, simply hides the element, which will take up
space on the page only if displayed. The value of the Display property becomes critical when
you have multiple validators associated with the same input control. (See Figure 9-4.)

 Chapter 9 ASP.NET Input Forms 389

FIGURE 9-4 Input controls in the form are validated on the client.

As you can see, the Hire Date text box is first validated to ensure it contains a valid date and
then to verify the specified date is later than 1-1-1999. If the Display property is set to Static
for the first validator, and the date is outside the specified range, you get a page like the one
shown in Figure 9-5.

FIGURE 9-5 Static error messages take up space even if they’re not displayed.

390 Part II ASP.NET Pages and Server Controls

Multiple Validators per Control
Note that you can associate multiple validators with a single input control. Here’s an excerpt
from the code behind the page in Figure 9-5:

<table>
 <tr>
 <td>Name</td><td>*</td>
 <td><asp:textbox runat="server" id="fname" />
 <asp:RequiredFieldValidator runat="server" id="fnameValidator"
 ControlToValidate="fname"
 Text="!!!"
 ErrorMessage="Name is mandatory" /></td></tr>
 <tr>
 <td>Last Name</td><td>*</td>
 <td><asp:textbox runat="server" id="lname" />
 <asp:RequiredFieldValidator runat="server" id="lnameValidator"
 ControlToValidate="lname"
 Text="!!!"
 ErrorMessage="Last name is mandatory" /></td></tr>
 <tr>
 <td>Age</td><td></td>
 <td><asp:textbox runat="server" id="age" />
 <asp:CompareValidator runat="server" id="ageValidator"
 ControlToValidate="age"
 Operator="GreaterThanEqual"
 ValueToCompare="18"
 Type="integer"
 ErrorMessage="Age must be at least 18." /></td></tr>
 <tr>
 <td>Email</td><td></td>
 <td><asp:textbox runat="server" id="email" />
 <asp:RegularExpressionValidator runat="server" id="emailValidator"
 ControlToValidate="email"
 ValidationExpression="[a-zA-Z_0-9.-]+\@[a-zA-Z_0-9.-]+\.\w+"
 ErrorMessage="Must be an email address." /></td></tr>
 <tr>
 <td>Hire Date</td><td></td>
 <td><asp:textbox runat="server" id="hired" />
 <asp:CompareValidator runat="server" id="hiredValidator"
 ControlToValidate="hired"
 Display="Static"
 Operator="DataTypeCheck"
 Type="date"
 ErrorMessage="Must enter a date." />
 <asp:RangeValidator runat="server" id="hiredDateValidator"
 ControlToValidate="hired"
 Display="Dynamic"
 MinimumValue="1999-1-1"
 MaximumValue="9999-12-31"
 Type="Date"
 ErrorMessage="Date after 1-1-99." /></td></tr>

 Chapter 9 ASP.NET Input Forms 391

 <tr>
 <td>Membership Level</td><td></td>
 <td><asp:textbox runat="server" id="membership" />
 <asp:CustomValidator runat="server" id="membershipValidator"
 ControlToValidate="membership"
 ClientValidationFunction="CheckMembership"
 ErrorMessage="Must be Gold or Platinum." /></td></tr>
</table>

The hired control is being validated by a CompareValidator and a RangeValidator at the same
time. Validation takes place in order, and each validation control generates and displays its
own error message. The content of the input control is considered valid if all the validators
return true. If an input control has multiple valid patterns—for example, an ID field can take
the form of a Social Security number or a VAT number—you can either validate by using
 custom code or regular expressions.

Note The preceding HTML snippet uses a table element to lay out the input fields around the
form. This approach is discouraged and plain block elements should be used (DIV and P tags)
that could be lined up via CSS styles. Unfortunately, I’m not a CSS expert.

The ValidationSummary Control
The ValidationSummary control is a label that summarizes and displays all the validation error
messages found on a Web page after a postback. The summary is displayed in a single loca-
tion formatted in a variety of ways. The DisplayMode property sets the output format, which
can be a list, bulleted list, or plain text paragraph. By default, it is a bulleted list. The feasible
values are grouped in the ValidationSummaryDisplayMode enumeration.

Whatever the format is, the summary can be displayed as text in the page, in a message box,
or in both. The Boolean properties ShowSummary and ShowMessageBox let you decide. The
output of the ValidationSummary control is not displayed until the page posts back no mat-
ter what the value of the EnableClientScript property is. The HeaderText property defines the
text that is displayed atop the summary:

<asp:ValidationSummary runat="server"
 ShowMessageBox="true"
 ShowSummary="true"
 HeaderText="The following errors occurred:"
 DisplayMode="BulletList" />

This code snippet originates the screen shown in Figure 9-6.

392 Part II ASP.NET Pages and Server Controls

FIGURE 9-6 After the page posts back, the validation summary is updated and a message box pops up to
inform the user of the errors.

The validation summary is displayed only if there’s at least one pending error. Notice that,
in the default case, the labels near the input controls are updated anyway, along with the
 summary text. In summary, you can control the error information in the following ways:

■ Both in-place and summary information This is the default scenario. Use the
ValidationSummary control, and accept all default settings on the validator controls.
If you want to leverage both places to display information, a recommended approach
consists of minimizing the in-place information by using the Text property rather than
ErrorMessage. If you set both, Text is displayed in-place while ErrorMessage shows up in
the validation summary. For example, you can set Text with a glyph or an exclamation
mark and assign ErrorMessage with more detailed text.

■ Only in-place information Do not use the ValidationSummary control, and set the
ErrorMessage property in each validation control you use. The messages appear after
the page posts back.

■ Only summary information Use the ValidationSummary control, and set the
ErrorMessage property on individual validation controls. Set the Display property of
validators to None so that no in-place error message will ever be displayed.

 Chapter 9 ASP.NET Input Forms 393

■ Custom error information You don’t use the ValidationSummary control, and you set
the Display property of the individual validators to None. In addition, you collect the
various error messages through the ErrorMessage property on the validation controls
and arrange your own feedback for the user.

Enabling Client Validation
As mentioned earlier, the verification normally takes place on the server as the result of the
postback event or after the Validate method is called. If scripting is enabled on the browser,
though, you can also activate the validation process on the client, with a significant gain in
responsiveness. In fact, there’s no real value in making a roundtrip to the server only to dis-
cover that a required field has been left empty. The sooner you can figure it out, the better.
On the other hand, you certainly can’t rely exclusively on client-side validation. To run secure
code and prevent malicious and underhanded attacks, you should validate any input data on
the server too.

When client-side validation is turned on, the page doesn’t post back until all the input fields
contain valid data. However, not all types of validation can be accomplished on the client.
In fact, if you need to validate against a database, well, there’s no other option than posting
back to the server. (AJAX facilities, which we’ll explore in Chapter 20, “AJAX,” might provide
relief for this problem.)

Client validation can be controlled on a per-validation control basis by using the
EnableClientScript Boolean property. By default, the property is set to true, meaning
 client validation is enabled as long as the browser supports it. By default, the code in the
BaseValidator class detects the browser’s capabilities through the Request.Browser property.
If the browser is considered up-level, the client validation will be implemented. In ASP.NET 4,
browsers and client devices that are considered up-level support at least the following:

■ ECMAScript version 1.2 or newer

■ W3C DOM Level 1 or greater

Today, nearly all browsers available meet these requirements. Generally, an up-level browser
matches the capabilities of Internet Explorer 6 and newer. Consider that ASP.NET 4 checks
the browser capabilities using the Request.Browser object. The information that this object
returns is influenced by the value of the ClientTarget property on the Page class. The prop-
erty indicates which set of browser capabilities the page assumes from the current browser.
Specifying a value for the ClientTarget property overrides the automatic detection of browser
capabilities that is normally accomplished. You can set the ClientTarget property via code,
using the @Page directive, or in the configuration file.

394 Part II ASP.NET Pages and Server Controls

What are the feasible values for ClientTarget?

In general, ClientTarget gets a string that refers to a user agent string. However, the root
web.config configuration file defines a couple of default aliases that you can use as shorthand
for common user-agent strings: uplevel and downlevel.

The uplevel alias specifies browser capabilities equivalent to Internet Explorer 6, whereas the
downlevel alias refers to the capabilities of older browsers that do not support client script.
You can define additional aliases in the clientTarget section of the application-level web.config
file. (See Chapter 3, “ASP.NET Configuration.”)

Validation Groups
By default, control validation occurs in an all-or-nothing kind of way. For example, if you
have a set of input and validation controls and two buttons on the form, clicking either
 button will always validate all controls. In other words, there’s no way to validate some
 controls when one button is clicked and some others when the other button is clicked.

The CausesValidation property on button controls allows you to disable validation on a
 button, but that is not the real point here. What would be desirable is the ability to perform
validation on a group of controls. This is exactly what the ValidationGroup property provides.
The property is available on validators, input controls, and button controls.

Using the ValidationGroup property is simple; just define it for all the validation controls that
you want to group together, and then assign the same name to the ValidationGroup property
of the button that you want to fire the validation. Here’s an example:

<asp:textbox runat="server" id="TextBox1" />
<asp:RequiredFieldValidator runat="server"
 ValidationGroup="Group1"
 ControlToValidate="TextBox1"
 ErrorMessage="TextBox1 is mandatory" />
<asp:textbox runat="server" id="TextBox2" />
<asp:RequiredFieldValidator runat="server"
 ValidationGroup="Group2"
 ControlToValidate="TextBox2"
 ErrorMessage="TextBox2 is mandatory" />
<asp:Button runat="server" Text="Check Group1"
 ValidationGroup="Group1" />
<asp:Button runat="server" Text="Check Group2"
 ValidationGroup="Group2" />

The two RequiredFieldValidator controls belong to distinct validation groups—Group1 and
Group2. The first button validates only the controls defined within Group1; the second button
takes care of the input associated with Group2. In this way, the validation process can be
made as granular as needed.

 Chapter 9 ASP.NET Input Forms 395

Important The ValidationGroup property can also be defined optionally on input controls.
This is required only if you use the CustomValidator control as a way to check whether a given
input control belongs to the right validation group. Unlike other validators, the CustomValidator
 control, in fact, is not strictly bound to a specific control.

Validation groups are well reflected on the server-side, where the Validate method of the
Page class features an overload that lets you select the group according to which the page
must be validated.

Dealing with Validation in Cross-Page Posts
Validation groups are especially helpful when combined with cross-page postbacks. As you
saw earlier in the chapter, a cross-page postback allows a button to post the contents of
the current form to another page, in a way overriding the single-form model of ASP.NET.
In a cross-page posting scenario, what if the original page contains validators? Imagine a
page with a text box whose value is to be posted to another page. You don’t want the post
to occur if the text box is empty. To obtain this behavior, you add a RequiredFieldValidator
 control and bind it to the text box:

<asp:TextBox ID="Keyword" runat="server" />
<asp:RequiredFieldValidator ID="Validator1" runat="server"
 ControlToValidate="Keyword" Text="*" />
<asp:Button ID="Button1" runat="server" Text="Search..."
 OnClick="Button1_Click" PostBackUrl="doSearch.aspx" />

As expected, when you click the button the page won’t post if the text box is empty;
and an asterisk (plus an optional message) is displayed to mark the error. This is because
RequiredFieldValidator benefits the client-side capabilities of the browser and validates the
input controls before proceeding with the post. Hence, in the case of empty text boxes, the
button doesn’t even attempt to make the post.

Is that all, or is there more to dig out?

Let’s work with a CustomValidator control, which instead requires that some server-side code
be run to check the condition. Can you imagine the scenario? You’re on, say, crosspage.aspx
and want to reach doSearch.aspx; to make sure you post only under valid conditions, though,
you first need to make a trip to crosspage.aspx to perform some validation. Add this control,
write the server validation handler in crosspage.aspx, and put a breakpoint in its code:

<asp:CustomValidator ID="CustomValidator1" runat="server"
 Text="*"
 ControlToValidate="Keyword"
 OnServerValidate="EnsureValidKeywords" />

396 Part II ASP.NET Pages and Server Controls

Debugging this sample page reveals that posting to another page is a two-step operation.
First, a classic postback is made to run any server-side code registered with the original page
(for example, server-side validation code or code associated with the click of the button).
Next, the cross-page call is made to reach the desired page:

void EnsureValidKeywords(Object source, ServerValidateEventArgs args)
{
 args.IsValid = false;
 if (String.Equals(args.Value, "Dino"))
 args.IsValid = true;
}

The preceding code sets the page’s IsValid property to false if the text box contains anything
other than “Dino.” However, this fact alone doesn’t prevent the transition to the target page.
In other words, you could still have invalid input data posted to the target page.

Fortunately, this issue has an easy workaround, as shown in the following code:

if (!PreviousPage.IsValid)
{
 Response.Write("Sorry, the original page contains invalid input.");
 Response.End();
 return;
}

In the target page, you test the IsValid property on the PreviousPage property and terminate
the request in the case of a negative answer. However, to avoid a server request and, worse
yet, a page transition, you can add a client check to the CustomValidator control:

<asp:CustomValidator ID="CustomValidator1" runat="server"
 Text="*"
 ControlToValidate="Keyword"
 ClientValidationFunction="ensureValidKeywords"
 OnServerValidate="EnsureValidKeywords" />

Here’s a possible implementation of the JavaScript function:

<script type="text/javascript">
 function ensureValidKeywords(source, arguments) {
 arguments.IsValid = false;
 var buf = arguments.Value;
 if (buf == "Dino")
 arguments.IsValid = true;
 }
</script>

 Chapter 9 ASP.NET Input Forms 397

Working with Wizards
An input form is used to collect data from users. However, it is not unusual that the amount
of data to be collected is quite large and dispersed. In these cases, a single form is hardly the
right solution. A wizard is a sequence of related steps, each associated with an input form
and a user interface.

Wizards are typically used to break up large forms to collect user input. Users move through
the wizard sequentially, but they are normally given a chance to skip a step or jump back to
modify some of the entered values. A wizard is conceptually pretty simple, but implementing
it over HTTP connections can be tricky. In ASP.NET, you have a readymade server control—
the Wizard control—that automates many of the tasks.

An Overview of the Wizard Control
The Wizard control supports both linear and nonlinear navigation. It allows you to move
backward to change values and skip steps that are unnecessary because of previous set-
tings or because users don’t want to fill in those fields. Like many other ASP.NET controls, the
Wizard control supports themes, styles, and templates.

Wizard is a composite control and automatically generates some constituent controls, such
as navigation buttons and panels. As you’ll see in a moment, the programming interface of
the control has multiple templates that provide for in-depth customization of the overall
user interface. The control also guarantees that state is maintained no matter where you
move—backward, forward, or to a particular page. All the steps of a wizard must be de-
clared within the boundaries of the same Wizard control. In other words, the wizard must be
 self-contained and not provide page-to-page navigation.

Structure of a Wizard
As shown in Figure 9-7, a wizard has four parts: a header, view, navigation bar, and sidebar.

Header

View

Navigation Finish< >

(Show wizard steps)

Si
de

ba
r

Step #1
Step #2

Step #n

..

FIGURE 9-7 The four parts of a Wizard control.

398 Part II ASP.NET Pages and Server Controls

The header consists of text you can set through the HeaderText property. You can change the
default appearance of the header text by using its style property; you can also change the
structure of the header by using the corresponding header template property. If HeaderText
is empty and no custom template is specified, no header is shown for the wizard.

The view displays the contents of the currently active step. The wizard requires you to define
each step in an <asp:wizardstep> element. An <asp:wizardstep> element corresponds to a
WizardStep control. Different types of wizard steps are supported; all wizard step classes
 inherit from a common base class named WizardStepBase.

All wizard steps must be grouped in a single <wizardsteps> tag, as shown in the following
code:

<asp:wizard runat="server" DisplaySideBar="true">
 <wizardsteps>
 <asp:wizardstep runat="server" steptype="auto" id="step1">
 First step
 </asp:wizardstep>
 <asp:wizardstep runat="server" steptype="auto" id="step2">
 Second step
 </asp:wizardstep>
 <asp:wizardstep runat="server" steptype="auto" id="finish">
 Final step
 </asp:wizardstep>
 </wizardsteps>
</asp:wizard>

The navigation bar consists of autogenerated buttons that provide any needed
 functionality—typically, going to the next or previous step or finishing. You can modify the
look and feel of the navigation bar by using styles and templates.

The optional sidebar is used to display content on the left side of the control. It provides
an overall view of the steps needed to accomplish the wizard’s task. By default, it displays a
 description of each step, with the current step displayed in boldface type. You can customize
the sidebar using styles and templates. Figure 9-8 shows the default user interface. Each step
is labeled using the ID of the corresponding <asp:wizardstep> tag.

 Chapter 9 ASP.NET Input Forms 399

FIGURE 9-8 A wizard with the default sidebar on the left side.

Wizard Styles and Templates
You can style all the various parts and buttons of a Wizard control by using the properties
listed in Table 9-5.

TABLE 9-5 The Wizard Control’s Style Properties
Style Description
CancelButtonStyle Sets the style properties for the wizard’s Cancel button

FinishCompleteButtonStyle Sets the style properties for the wizard’s Finish button

FinishPreviousButtonStyle Sets the style properties for the wizard’s Previous button when at
the finish step

HeaderStyle Sets the style properties for the wizard’s header

NavigationButtonStyle Sets the style properties for navigation buttons

NavigationStyle Sets the style properties for the navigation area

SideBarButtonStyle Sets the style properties for the buttons on the sidebar

SideBarStyle Sets the style properties for the wizard’s sidebar

StartStepNextButtonStyle Sets the style properties for the wizard’s Next button when at the
start step

StepNextButtonStyle Sets the style properties for the wizard’s Next button

StepPreviousButtonStyle Sets the style properties for the wizard’s Previous button

StepStyle Sets the style properties for the area where steps are displayed

400 Part II ASP.NET Pages and Server Controls

The contents of the header, sidebar, and navigation bar can be further customized with
 templates. Table 9-6 lists the available templates.

TABLE 9-6 The Wizard Control’s Template Properties
Style Description
FinishNavigationTemplate Specifies the navigation bar shown before the last page of the

 wizard. By default, the navigation bar contains the Previous and
Finish buttons.

HeaderTemplate Specifies the title bar of the wizard.

SideBarTemplate Used to display content on the left side of the wizard control.

StartNavigationTemplate Specifies the navigation bar for the first view in the wizard. By
 default, it contains only the Next button.

StepNavigationTemplate Specifies the navigation bar for steps other than first, finish, or
complete. By default, it contains Previous and Next buttons.

In addition to using styles and templates, you can control the programming interface of the
Wizard control through a few properties.

The Wizard’s Programming Interface
Table 9-7 lists the properties of the Wizard control, excluding style and template properties
and properties defined on base classes.

TABLE 9-7 Main Properties of the Wizard Control
Property Description
ActiveStep Returns the current wizard step object. The object is an instance of

the WizardStep class.

ActiveStepIndex Gets and sets the 0-based index of the current wizard step.

DisplayCancelButton Toggles the visibility of the Cancel button. The default value is false.

DisplaySideBar Toggles the visibility of the sidebar. The default value is false.

HeaderText Gets and sets the title of the wizard.

SkipLinkText The ToolTip string that the control associates with an invisible
image, as a hint to screen readers. The default value is “Skip
Navigation Links” and is localized based on the server’s current
locale.

WizardSteps Returns a collection containing all the WizardStep objects defined
in the control.

A wizard in action is fully represented by its collection of step views and buttons. In
 particular, you’ll recognize the following buttons: StartNext, StepNext, StepPrevious,
FinishComplete, FinishPrevious, and Cancel. Each button is characterized by properties to
get and set the button’s image URL, caption, type, and destination URL after a click. The
name of a property is the name of the button followed by a suffix. The available suffixes are
listed in Table 9-8.

 Chapter 9 ASP.NET Input Forms 401

TABLE 9-8 Suffix of Button Properties
Suffix Description
ButtonImageUrl Gets and sets the URL of the image used to render the button

ButtonText Gets and sets the text for the button

ButtonType Gets and sets the type of the button: push button, image, or link
button

DestinationPageUrl Gets and sets the URL to jump to once the button is clicked

Note that names in Table 9-8 do not correspond to real property names. You have the four
properties in this table for each distinct type of wizard button. The real name is composed
by the name of the button followed by any of the suffixes—for example, CancelButtonText,
FinishCompleteDestinationPageUrl, and so on.

The Wizard control also supplies a few interesting methods—for example, GetHistory, which
is defined as follows:

public ICollection GetHistory()

GetHistory returns a collection of WizardStepBase objects. The order of the items is
 determined by the order in which the wizard’s pages were accessed by the user. The first
 object returned—the one with an index of 0—is the currently selected wizard step. The
 second object represents the view before the current one, and so on.

The second method, MoveTo, is used to move to a particular wizard step. The method’s
 prototype is described here:

public void MoveTo(WizardStepBase step)

The method requires you to pass a WizardStepBase object, which can be problematic.
However, the method is a simple wrapper around the setter of the ActiveStepIndex property.
If you want to jump to a particular step and not hold an instance of the corresponding
WizardStep object, setting ActiveStepIndex is just as effective.

Table 9-9 lists the key events in the life of a Wizard control in an ASP.NET page.

TABLE 9-9 Events of the Wizard Control
Event Description
ActiveViewChanged Raised when the active step changes

CancelButtonClick Raised when the Cancel button is clicked

FinishButtonClick Raised when the Finish Complete button is clicked

NextButtonClick Raised when any Next button is clicked

PreviousButtonClick Raised when any Previous button is clicked

SideBarButtonClick Raised when a button on the sidebar is clicked

402 Part II ASP.NET Pages and Server Controls

As you can see, there’s a common click event for all Next and Previous buttons you can find
on your way. A Next button can be found on the Start page as well as on all step pages.
Likewise, a Previous button can be located on the Finish page too. Whenever a Next button is
clicked, the page receives a NextButtonClick event; whenever a Previous button is clicked, the
control raises a PreviousButtonClick event.

Adding Steps to a Wizard
A WizardStep object represents one of the child views that the wizard can display. The
WizardStep class ultimately derives from View and adds just a few public properties to it. A
View object represents a control that acts as a container for a group of controls. A view is
hosted within a MultiView control. To create its output, the wizard makes internal use of a
MultiView control. However, the wizard is not derived from the MultiView class.

You define the views of a wizard through distinct instances of the WizardStep class,
all grouped under the <WizardSteps> tag. The <WizardSteps> tag corresponds to the
WizardSteps collection property exposed by the Wizard control:

<WizardSteps>
 <asp:WizardStep>
 ...
 </asp:WizardStep>
 <asp:WizardStep>
 ...
 </asp:WizardStep>
</WizardSteps>

Each wizard step is characterized by a title and a type. The Title property provides a brief de-
scription of the view. This information is not used unless the sidebar is enabled. If the sidebar
is enabled, the title of each step is used to create a list of steps. If the sidebar is enabled but
no title is provided for the various steps, the ID of the WizardStep objects is used to populate
the sidebar, as shown earlier in Figure 9-8.

While defining a step, you can also set the AllowReturn property, which indicates whether the
user is allowed to return to the current step from a subsequent step. The default value of the
property is true.

Types of Wizard Steps
The StepType property indicates how a particular step should be handled and rendered
 within a wizard. Acceptable values for the step type come from the WizardStepType
 enumeration, as listed in Table 9-10.

 Chapter 9 ASP.NET Input Forms 403

TABLE 9-10 Wizard Step Types
Property Description
Auto The default setting, which forces the wizard to determine how each contained

step should be treated.

Complete The last page that the wizard displays, usually after the wizard has been
 completed. The navigation bar and the sidebar aren’t displayed.

Finish The last page used for collecting user data. It lacks the Next button, and it shows
the Previous and Finish buttons.

Start The first screen displayed, with no Previous button.

Step All other intermediate pages, in which the Previous and Next buttons are
 displayed.

When the wizard is in automatic mode—the default type Auto—it determines the type of
each step based on the order in which the steps appear in the source code. For example, the
first step is considered to be of type Start and the last step is marked as Finish. No Complete
step is assumed. If you correctly assign step types to your wizard steps yourself, rather
than use the Auto type, the order in which you declare your steps in the .aspx source is not
relevant.

Creating an Input Step
The following code shows a sample wizard step used to collect the provider name and the
connection string to connect to a database and search for some data. For better graphical
results, the content of the step is encapsulated in a fixed-height <div> tag. If all the steps
are configured in this way, users navigating through the wizard won’t experience sudden
 changes in the overall page size and layout:

<asp:wizardstep ID="Wizardstep1" runat="server" title="Connect">
 <div>
 <table>
 <tr><td>Provider</td><td>
 <asp:textbox runat="server" id="ProviderName"
 text="System.Data.SqlClient" />
 </td></tr>
 <tr><td>Connection String</td><td>
 <asp:textbox runat="server" id="ConnString"
 text="SERVER=(local);DATABASE=northwind;... " />
 </td></tr>
 <tr><td height="100px"></td></tr>
 </table>
 </div>
</asp:wizardstep>

Figure 9-9 shows a preview of the step. As you could probably guess, the step is recognized
as a Start step. As a result, the wizard is added only to the Next button.

404 Part II ASP.NET Pages and Server Controls

FIGURE 9-9 A sample Start wizard step.

A wizard is usually created for collecting input data, so validation becomes a critical is-
sue. You can validate the input data in two nonexclusive ways—using validators and using
 transition event handlers.

The first option involves placing validator controls in the wizard step. This guarantees that
invalid input—empty fields or incompatible data types—is caught quickly and, optionally,
already on the client:

<asp:requiredfieldvalidator ID="RequiredField1" runat="server"
 text="*"
 errormessage="Must indicate a connection string"
 setfocusonerror="true"
 controltovalidate="ConnString" />

If you need to access server-side resources to validate the input data, you’re better off using
transition event handlers. A transition event is an event the wizard raises when it is about to
switch to another view. For example, the NextButtonClick event is raised when the user clicks
the Next button to jump to the subsequent step. You can intercept this event, do any re-
quired validation, and cancel the transition if necessary. I’ll return to this topic in a moment.

Defining the Sidebar
The sidebar is a left-side panel that lists buttons to quickly and randomly reach any step of
the wizard. It’s a sort of quick-launch menu for the various steps that form the wizard. You

 Chapter 9 ASP.NET Input Forms 405

control the sidebar’s visibility through the Boolean DisplaySideBar attribute and define its
contents through the SideBarTemplate property.

Regardless of the template, the internal layout of the sidebar is not left entirely to your
 imagination. In particular, the <SideBarTemplate> tag must contain a DataList control with
a well-known ID—SideBarList. In addition, the <ItemTemplate> block must contain a but-
ton object with the name of SideBarButton. The button object must be any object that
 implements the IButtonControl interface.

Note For better graphical results, you might want to use explicit heights and widths for all
steps and the sidebar as well. Likewise, the push buttons in the navigation bar might look better
if they are made the same size. You do this by setting the Width and Height properties on the
NavigationButtonStyle object.

Navigating Through the Wizard
When a button is clicked to move to another step, an event is fired to the hosting page.
It’s up to you to decide when and how to perform any critical validation, such as deciding
whether or not conditions exist to move to the next step.

In most cases, you’ll want to perform server-side validation only when the user clicks the
Finish button to complete the wizard. You can be sure that whatever route the user has
taken within the wizard, clicking the Finish button will complete it. Any code you bind to the
FinishButtonClick event is executed only once, and only when strictly necessary.

By contrast, any code bound to the Previous or Next button executes when the user moves
back or forward. The page posts back on both events.

Filtering Page Navigation with Events
You should perform server-side validation if what the user can do next depends on the data
she entered in the previous step. This means that in most cases you just need to write a
NextButtonClick event handler:

<asp:wizard runat="server" id="QueryWizard"
 OnNextButtonClick="OnNext">
 ...
</asp:wizard>

If the user moves back to a previously visited page, you can usually ignore any data entered
in the current step and avoid validation. Because the user is moving back, you can safely as-
sume she is not going to use any fresh data. When a back movement is requested, you can
assume that any preconditions needed to visit that previous page are verified. This happens
by design if your users take a sequential route.

406 Part II ASP.NET Pages and Server Controls

If the wizard’s sidebar is enabled, users can jump from page to page in any order. If the logic
you’re implementing through the wizard requires that preconditions be met before a certain
step is reached, you should write a SideBarButtonClick event handler and ensure that the
 requirements have been met.

A wizard click event requires a WizardNavigationEventHandler delegate (which is defined for
you by ASP.NET):

public delegate void WizardNavigationEventHandler(
 object sender,
 WizardNavigationEventArgs e);

The WizardNavigationEventArgs structure contains two useful properties that inform
you about the 0-based indexes of the page being left and the page being displayed. The
CurrentStepIndex property returns the index of the last page visited; NextStepIndex returns
the index of the next page. Note that both properties are read-only.

The following code shows a sample handler for the Next button. The handler prepares a
summary message to show when the user is going to the Finish page:

void OnNext(object sender, WizardNavigationEventArgs e)
{
 // Collect the input data if going to the last page
 // -1 because of 0-based indexing, add -1 if you have a Complete page
 if (e.NextStepIndex == QueryWizard.WizardSteps.Count - 2)
 PrepareFinalStep();
}
void PrepareFinalStep()
{
 string cmdText = DetermineCommandText();

 // Show a Ready-to-go message
 var sb = new StringBuilder("");
 sb.AppendFormat("You’re about to run:

{0}<hr>", cmdText);
 sb.Append("
Ready to go?");
 ReadyMsg.Text = sb.ToString();
}

string DetermineCommandText()
{
 // Generate and return command text here
}

Each page displayed by the wizard is a kind of panel (actually, a view) defined within a parent
control—the wizard. This means that all child controls used in all steps must have a unique
ID. It also means that you can access any of these controls just by name. For example, if one
of the pages contains a text box named, say, ProviderName, you can access it from any event
handler by using the ProviderName identifier.

 Chapter 9 ASP.NET Input Forms 407

The preceding code snippet is an excerpt from a sample wizard that collects input and runs a
database query. The first step picks up connection information, whereas the second step lets
users define tables, fields, and optionally a WHERE clause. The composed command is shown
in the Finish page, where the wizard asks for final approval. (See Figure 9-10.)

FIGURE 9-10 Two successive pages of the sample wizard: query details and the Finish step.

Canceling Events
The WizardNavigationEventArgs structure also contains a read/write Boolean property
named Cancel. If you set this property to true, you just cancel the ongoing transition to the
destination page. The following code shows how to prevent the display of the next step if the
user is on the Start page and types in john as the user ID:

void OnNext(object sender, WizardNavigationEventArgs e)
{
 if (e.CurrentStepIndex == 0 &&
 ConnString.Text.IndexOf("UID=john") > -1)
 {
 e.Cancel = true;
 return;
 }
}

You can cancel events from within any transition event handler and not just from the
NextButtonClick event handler. This trick is useful to block navigation if the server-
side validation of the input data has failed. If you do cause a step to fail, though, you’re
 responsible for showing some feedback to the user.

408 Part II ASP.NET Pages and Server Controls

Note You can’t cancel navigation from within the ActiveViewChanged event. This event follows
any transition events, such as the NextButtonClick or PreviousButtonClick event, and it occurs
when the transition has completed. Unlike transition events, the ActiveViewChanged event
 requires a simpler, parameterless handler—EventHandler.

Finalizing the Wizard
All wizards have some code to execute to finalize the task. If you use the ASP.NET Wizard
control, you place this code in the FinishButtonClick event handler. Figure 9-11 shows the
 final step of a wizard that completed successfully.

void OnFinish(object sender, WizardNavigationEventArgs e)
{
 string finalMsg = "The operation completed successfully.";
 try
 {
 // Complete the wizard (compose and run the query)
 var command = DetermineCommandText();
 var table = ExecuteCommand(ConnString.Text, command);
 grid.DataSource = table;
 grid.DataBind();

 // OK color
 FinalMsg.ForeColor = Color.Blue;
 }
 catch (Exception ex) {
 FinalMsg.ForeColor = Color.Red;
 finalMsg = String.Format("The operation cannot be completed
 due to:
{0}", ex.Message);
 }
 finally {
 FinalMsg.Text = finalMsg;
 }
}

string DetermineCommandText()
{
 // Generate and return command text here
}

DataTable ExecuteCommand()
{
 // Execute database query here
}

 Chapter 9 ASP.NET Input Forms 409

FIGURE 9-11 Final step of a wizard that completed successfully.

If the wizard contains a Complete step, that page should be displayed after the Finish button
is clicked and the final task has completed. If something goes wrong with the update, you
should either cancel the transition to prevent the Complete page from even appearing or
adapt the user interface of the completion page to display an appropriate error message.
Which option you choose depends on the expected behavior of the implemented opera-
tion. If the wizard’s operation can fail or succeed, you let the wizard complete and display an
 error message if something went wrong. If the wizard’s operation must complete success-
fully unless the user quits, you should not make the transition to the Complete page; instead,
 provide users with feedback on what went wrong and give them a chance to try again.

Summary
Form-based programming is fundamental in Web applications because it’s the only way to
have users and applications interact. ASP.NET pages can have only one server-side form with
a fixed action property. Subsequently, pages are reentrant and always post to themselves.
The behavior of the form can’t be changed because it is crucial to the behavior of ASP.NET,
but a different feature—cross-page posting—comes to the rescue to let users post data from
one page to another. Cross-page posting is essential when you have legacy pages to inte-
grate in a new application that, for whatever reason, can’t be adapted to a more specific
ASP.NET architecture.

Input forms also bring to the table the whole theme of input validation. ASP.NET comes
with a stock of native validation controls to cover the basic needs of validation. Validators let

410 Part II ASP.NET Pages and Server Controls

you put declarative boundaries around input controls so that any user’s input is filtered and
 validated both on the client and server. This alone is not sufficient to certify an application as
secure, but it is a quantum leap in the right direction.

Finally, in this chapter entirely devoted to getting input data into an ASP.NET server
 application, we’ve covered wizards—namely, a semi-automatic way of breaking up large
forms into smaller pieces served individually to the user, while keeping track of some state.
Whether you use the ASP.NET Wizard control or roll your own custom solution, the aware-
ness that splitting large forms into sequential screens gives end users a more pleasant
 experience is what really matters for ASP.NET developers.

 411

Chapter 10

Data Binding
In matters of style, swim with the current; in matters of principle, stand like a rock.

—Thomas Jefferson

Web applications are, for the most part, just data-driven applications. For this reason, the
ability to bind HTML elements such as drop-down lists or tables to structured data is a key
feature for any Web development platform. Data binding is the process that retrieves data
from a given source and associates it with properties on UI elements. In ASP.NET, a valid
 target for a data binding operation is a server control, also known as a data-bound control.

Data-bound server controls are not another family of controls; they’re simply server controls
that feature a few well-known data-related properties and feed them using a well-known set
of collection objects.

In ASP.NET, there are three main categories of data-bound controls: list, iterative, and view
controls. As you’ll see in more detail later on, list controls repeat a fixed template for each
item found in the data source. Iterative controls are more flexible and let you explicitly define
the template to repeat, as well as other templates that directly influence the final layout of
the control. Finally, view controls are rich user interface components that provide fixed and
data-driven behavior, such as showing a table of records or a single record.

In this chapter, we’ll first review the pillars of data binding in ASP.NET and then proceed to
examine the various types of data-bound controls.

Foundation of the Data Binding Model
ASP.NET data binding is built around a few properties that any data-bound control exposes.
Page authors can assign collections of data to data-bound controls at any time by setting
data binding properties. However, the simple assignment of values to data binding proper-
ties is not sufficient to modify the control’s user interface. The actual data binding process
starts when the page execution flow executes the method DataBind on the page or a
 particular control.

For a control, performing a data binding action means updating its internal state to reflect
the collection of values assigned to its bindable properties. Finally, when the control renders
out its markup, the markup will incorporate any bound data.

What kind of data can you pass on to a data-bound control?

412 Part II ASP.NET Pages and Server Controls

Feasible Data Sources
Many .NET classes can be used as data sources—and not just those that have to do with
 database content. In ASP.NET, any object that exposes the IEnumerable interface is a valid
bindable data source. The IEnumerable interface defines the minimal API necessary to
 enumerate the contents of the data source:

public interface IEnumerable
{
 IEnumerator GetEnumerator();
}

Many bindable objects, though, actually implement more advanced versions of IEnumerable,
such as ICollection and IList. In particular, you can bind a Web control to the following classes:

■ Collections (including dictionaries, hashtables, and arrays)

■ ADO.NET container classes such as DataSet, DataTable, and DataView

■ ADO.NET data readers

■ Any IQueryable object that results from the execution of a LINQ query

To be honest, I should note that the DataSet and DataTable classes don’t actually implement
IEnumerable or any other interfaces that inherit from it. However, both classes do store
 collections of data internally. These collections are accessed using the methods of an inter-
mediate interface—IListSource—which performs the trick of making DataSet and DataTable
classes look like they implement a collection.

Collection Classes
At the highest level of abstraction, a collection serves as a container for instances of other
classes. A collection is like an array, but with a richer programming interface. All collection
classes implement the ICollection interface, which in turn implements the IEnumerable
 interface. As a result, all collection classes provide a basic set of functionalities.

All collection classes have a Count property to return the number of cached items; they have
a CopyTo method to copy their items, in their entirety or in part, to an external array; and
they have a GetEnumerator method that instantiates an enumerator object to loop through
the child items. GetEnumerator is the method behind the curtain whenever you call the
foreach statement in C# and the For...Each statement in Microsoft Visual Basic.

IList and IDictionary are two interfaces that extend ICollection, giving a more precise
 characterization to the resultant collection class. ICollection provides only basic and mini-
mal functionality for a collection. For example, ICollection does not have any methods to
add or remove items. Add and remove functions are exactly the capabilities that the IList
interface provides. In the IList interface, the Add and Insert methods place new items at

 Chapter 10 Data Binding 413

the bottom of the collection or at the specified index. The Remove and RemoveAt methods
 remove items, while Clear empties the collection. Finally, Contains verifies whether an item
with a given value belongs to the collection, and IndexOf returns the index of the specified
item. Commonly used container classes that implement both ICollection and IList are Array,
ArrayList, and StringCollection.

The IDictionary interface defines the API that represents a collection of key/value pairs. The
interface exposes methods similar to IList, but with different signatures. Dictionary classes
also feature two extra properties, Keys and Values. They return collections of keys and values,
respectively, found in the dictionary. Typical dictionary classes are ListDictionary, Hashtable,
and SortedList.

Most of the time, however, you’ll be using generic lists of custom objects, as shown here:

boundServerControl1.DataSource = new List<Customer>();

The net effect is that the data-bound control is linked to an object that contains a list of
Customer objects.

It is important that the element class—Customer, in the preceding code—implements data
members as properties, instead of fields.

public class Customer
{
 public Int32 CustomerId {get; set};
 public String Name {get; set;}
 ...
}

A property is a data member exposed through the filter represented by a get and/or a
set method. A field, instead, is a member that is exposed directly as a read/write location.
Data members coded as fields won’t be discovered at run time and therefore are useless
for data binding. This is by design. However, any .NET class can modify the conventional
algorithm through which its properties are discovered at run time by implementing the
ICustomTypeDescriptor interface.

Implementing the ICustomTypeDescriptor interface gives the object itself a chance to
 enumerate exactly the properties it wants to expose regardless of the actual schema of the
class. For example, the interface can be employed to convince a data-bound control that a
given field of the bound class is actually a property.

ADO.NET Classes
ADO.NET provides a bunch of data container classes that can be filled with any sort of data,
including results of a database query. These classes represent excellent resources for fill-
ing data-bound controls such as lists and grids. Having memory-based classes such as the
DataSet in the list is probably no surprise, but it’s good to find data readers there too. An

414 Part II ASP.NET Pages and Server Controls

open data reader can be passed to the data-binding engine of a control. The control will
then walk its way through the reader and populate the user interface while keeping the
 connection to the database busy.

Note Data binding works differently for Web pages and desktop applications (whether they are
Windows Forms or Windows Presentation Foundation applications). The biggest difference is that
in Web pages you must explicitly start the data binding process by calling the method DataBind
on the page or control class. In desktop solutions, the simple assignment of data to a bindable
property triggers the binding process for the specific component.

The DataSet class can contain more than one table; however, only one table at a time can be
associated with standard ASP.NET data-bound controls. If you bind the control to a DataSet,
you then need to set an additional property to select a particular table within the DataSet.
Be aware that this limitation is not attributable to ASP.NET as a platform; it is a result of the
implementation of the various data-bound controls. In fact, you could write a custom control
that accepts a DataSet as its sole data-binding parameter.

DataSet and DataTable act as data sources through the IListSource interface; DataView and
data readers, on the other hand, implement IEnumerable directly.

Queryable Objects
Short for Language INtegrated Query, LINQ is a query language that applies a SQL-like
syntax to enumerable collections of data. The typical result of a LINQ query is a queryable
object that you can see as an abstraction for a command to execute that will actually get
you the data. The peculiarity of queryable objects is that you can bind them to controls
 regardless of whether data has been retrieved or not.

A queryable object implements the IQueryable interface which, in turn, derives from
IEnumerable. The actual object you get from a LINQ query, though, implements this interface
in a lazy way such that any attempt to read from the object during data binding will actually
execute the query against whatever data store you queried—an in-memory collection, XML
file, DataSet, or perhaps SQL Server table. Here’s an example:

// This is a query, defined but not executed yet. The returned
// variable is of a type that implements IQueryable.
var query = from c in customers
 where c.Country == "USA"
 select c;

// Assignment works because IQueryable derives from IEnumerable.
// As soon as data binding is triggered, an attempt to read from the
// results of the query is made, which will ultimately perform the query.
boundServerControl1.DataSource = query;

 Chapter 10 Data Binding 415

A simple attempt to enumerate the elements in the query result set is sufficient to trigger the
data fetch operation.

Note More information on LINQ can be found starting at the following page: http://msdn.
microsoft.com/en-us/library/bb397926.aspx.

Data-Binding Properties
All data-bound controls implement the DataSource and DataSourceID properties, plus a few
more. The full class diagram for data binding in ASP.NET is detailed in Figure 10-1.

List Control CompositeDataBoundControl
DataTextField

DataTextFormatString
DataValueField

AppendDataBoundItems

DataKeyField

DataBoundControl

BaseDataBoundControl

WebControl

BaseDataList

DataListDataGrid

ListView

This control has its
own set of properties

BulletedList
ListBox
DropDownList
CheckBoxList
RadioButtonList

GridView
FormView
DetailsView Each control has its

own set of properties

DataMember
DataSourceObject

DataSource
DataSourceID

DataSource
DataSourceID
DataMember
DataKeyField
DataKeys

FIGURE 10-1 Class diagram for data binding in ASP.NET.

http://msdn.�microsoft.com/en-us/library/bb397926.aspx
http://msdn.�microsoft.com/en-us/library/bb397926.aspx
http://msdn.�microsoft.com/en-us/library/bb397926.aspx

416 Part II ASP.NET Pages and Server Controls

As you can see, there are two base classes and subsequently two main subtrees—one rooted
in BaseDataList and one rooted in BaseDataBoundControl. The diagram doesn’t extend in a
uniform manner and clearly denotes that the various controls have been added at different
times. You see this clearly from the distribution of the same set of fundamental properties in
the controls derived from BaseDataList and BaseDataBoundControl.

Let’s explore in more detail the various data-binding properties.

Note For some reason, the Repeater control—a low-level iterative control—doesn’t inherit
from either of the classes in the diagram. It inherits directly from the Control class. In spite of this,
Repeater has everything that’s needed to be considered an iterative control.

The DataSource Property
The DataSource property lets you specify the data source object the control is linked to.

Note that this link is logical and does not result in any overhead or underlying operation until
you explicitly choose to bind the data to the control. This operation is triggered by calling the
DataBind method. When the DataBind method executes, the control actually loads data from
the associated data source, evaluates the data-bound properties (if any), and generates the
markup to reflect changes. The property is defined as follows:

public virtual object DataSource {get; set;}

The DataSource property is declared of type object and can ultimately accept objects that
implement either IEnumerable (including data readers) or IListSource. By the way, only
DataSet and DataTable implement the IListSource interface.

The DataSource property of a data-bound control is generally set programmatically.
However, nothing prevents you from adopting a kind of declarative approach as follows:

<asp:DropDownList runat="server" id="theList" DataSource="<%# GetData() %>"
 ...
/>

The content of the drop-down list control will be determined by the object returned by the
GetData method. In this example, GetData is a public or protected member of the code-
behind page class that returns a bindable object. The # symbol in the code block indicates
that the expression will be evaluated only after a call is made to the method DataBind on the
page that contains the DropDownList control or on the control itself.

 Chapter 10 Data Binding 417

Note How can a data-bound control figure out which actual object it is bound to? Will it be a
collection, a data reader, or perhaps a DataTable?

All standard data-bound controls are designed to work only through the IEnumerable interface.
For this reason, any object bound to DataSource is normalized to an object that implements
IEnumerable. In some cases, the normalization is as easy (and fast) as casting the object to the
IEnumerable interface. In other cases—specifically, when DataTable and DataSet are involved—
an extra step is performed to locate a particular named collection of data that corresponds to
the value assigned to the DataMember property.

There’s no public function to do all this work, although a similar helper class exists in the ASP.NET
framework but is flagged as internal. What this helper class does, though, can be easily replicated
by custom code: it just combines an array of if statements to check types and does casting and
conversion as appropriate.

The DataSourceID Property
The DataSourceID property gets or sets the ID of the data source component from which the
data-bound control retrieves its data. This property is the point of contact between data-
bound controls and a special family of controls—the data source controls—that includes
SqlDataSource and ObjectDataSource. (I’ll cover these controls in more detail later in the
chapter.)

public virtual string DataSourceID {get; set;}

By setting DataSourceID, you tell the control to turn to the associated data source control for
any needs regarding data—retrieval, paging, sorting, counting, or updating.

Like DataSource, DataSourceID is available on all data-bound controls. The two properties
are mutually exclusive. If both are set, you get an invalid operation exception at run time.
Note, though, that you also get an exception if DataSourceID is set to a string that doesn’t
 correspond to an existing data source control.

The DataMember Property
The DataMember property gets or sets the name of the data collection to extract when data
binding to a data source:

public virtual string DataMember {get; set;}

You use the property to specify the name of the DataTable to use when the DataSource
property is bound to a DataSet object:

var data = new DataSet();
var adapter = new SqlDataAdapter(commandText, connectionString);
adapter.Fill(data);

418 Part II ASP.NET Pages and Server Controls

// Table is the default name of the first table in a
// DataSet filled by an adapter
grid.DataMember = "Table";
grid.DataSource = data;
grid.DataBind();

DataMember and DataSource can be set in any order, provided that both are set before
DataBind is invoked. DataMember has no relevance if you bind to data using DataSourceID
with standard data source components.

The DataTextField Property
Typically used by list controls, the DataTextField property specifies which property of a
 data-bound item should be used to define the display text of the nth element in a list control:

public virtual string DataTextField {get; set;}

For example, for a drop-down list control the property feeds the displayed text of each item
in the list. The following code creates the control shown in Figure 10-2:

CountryList.DataSource = data;
CountryList.DataTextField = "country";
CountryList.DataBind();

FIGURE 10-2 A drop-down list control filled with the country column of a database table.

An analogous behavior can be observed for other list controls, such as ListBox and
CheckBoxList.

Note List controls can automatically format the content of the field bound through the
DataTextField property. The format expression is indicated via the DataTextFormatString
 property.

 Chapter 10 Data Binding 419

The DataValueField Property
Similar to DataTextField, the DataValueField property specifies which property of a
 data-bound item should be used to identify the nth element in a list control:

public virtual string DataValueField {get; set;}

To understand the role of this property, consider the markup generated for a drop-down list,
set as in the code snippet shown previously:

<select name="CountryList" id="CountryList">
 <option selected="selected" value="[All]">[All]</option>
 <option value="Argentina">Argentina</option>
 <option value="Austria">Austria</option>
 ...
</select>

The text of each <option> tag is determined by the field specified through DataTextField; the
value of the value attribute is determined by DataValueField. Consider the following code
that fills a ListBox with customer names:

CustomerList.DataMember = "Table";
CustomerList.DataTextField = "companyname";
CustomerList.DataValueField = "customerid";
CustomerList.DataSource = data;
CustomerList.DataBind();

If DataValueField is left blank, the value of the DataTextField property is used instead. Here’s
the corresponding markup:

<select size="4" name="CustomerList" id="CustomerList">
 <option value="BOTTM">Bottom-Dollar Markets</option>
 <option value="LAUGB">Laughing Bacchus Wine Cellars</option>
 ...
</select>

As you can see, the value attribute now is set to the customer ID—the unique, invisible value
determined by the customerid field. The content of the value attribute for the currently
 selected item is returned by the SelectedValue property of the list control. If you want to
 access programmatically the displayed text of the current selection, use the SelectedItem.Text
expression.

The AppendDataBoundItems Property
This Boolean property indicates whether the data-bound items should be appended to
the existing contents of the control or whether they should overwrite them. By default,
AppendDataBoundItems is set to false, meaning that data-bound contents replace any
 existing contents.

public virtual bool AppendDataBoundItems {get; set;}

420 Part II ASP.NET Pages and Server Controls

AppendDataBoundItems is useful when you need to combine constant items with data-
bound items. For example, imagine you need to fill a drop-down list with all the distinct
countries/regions in which you have a customer. The user will select a country/region and see
the list of customers who live there. To let users see all the customers in any country/region,
you add an unbound element, such as [All].

<asp:DropDownList runat="server" ID="CountryList"
 AppendDataBoundItems="true">
 <asp:ListItem Text="[All]" />
</asp:DropDownList>

With AppendDataBoundItems set to false, the [All] item will be cleared before data-bound
items are added.

The DataKeyField Property
The DataKeyField property gets or sets the key field in the specified data source. The
 property serves the need of some data list controls that allow item selection and master/
detail views. Controls that support this property are viewable in Figure 10-1 and are
DataGrid, DataList, and view controls.

All of these controls allow you to select a displayed item over a postback. Following the
 selection, however, these controls provide some reference about the data item associated
with the selected row. The DataKeyField indicates which property on the bound data item
identifies the selected record.

Note that the identification of the record is unequivocal only if the field is uniquely
 constrained in the original data source.

public virtual string DataKeyField {get; set;}

For example, imagine you display customers in a grid and allow users to click and drill down
on the orders placed by that customer. When the user clicks, a postback occurs in which
you can retrieve the value of the key field that uniquely identifies the selected data item. By
 setting DataKeyField to the CustomerId property—presumably the primary key field—you
retrieve the ID of the selected customer and can plan further drill-down queries.

The DataKeyField property is coupled with the DataKeys array property. When DataKeyField
is set, DataKeys contains the value of the specified key field for all the control’s data items
currently displayed in the page. You retrieve the actual key value using the following
expression:

// Gets you the value of the specified data key for the item at the given position
GridView1.DataKeys[GridView1.SelectedIndex];

Most controls, however, provide a handy SelectedValue property that just wraps the previous
expression.

 Chapter 10 Data Binding 421

Note View controls (for example, GridView and FormView) have a richer programming
 interface, and they extend the DataKeyField property to an array of strings and rename it to
DataKeyNames. In this way, you can identify data items using multiple key values.

Data-Bound Controls
Data-bound controls are components whose whole interface is driven by one or more
 columns of data read from of a feasible data source. As you can see in Figure 10-1, there are
quite a few types of data-bound controls. We can summarize that into three main categories:
list controls, iterative controls and, the functionally richest of all, view controls.

List Controls
List controls display (or at least store in memory) many items at the same time—specifically,
the contents of the bound data source. Depending on its expected behavior, the control
picks the needed items from memory and properly formats and displays them. List controls
include DropDownList, CheckBoxList, RadioButtonList, ListBox, and BulletedList. All list controls
inherit from the base ListControl class. Let’s find out some more details.

The DropDownList Control
The DropDownList control enables users to select one item from a single-selection drop-
down list. You can specify the size of the control by setting its height and width in pixels, but
you can’t control the number of items displayed when the list drops down. Table 10-1 lists
the most commonly used properties of the control.

TABLE 10-1 Properties of the DropDownList Control

Property Description
AppendDataBoundItems Indicates whether statically defined items should be maintained or

cleared when adding data-bound items

AutoPostBack Indicates whether the control should automatically post back to the
server when the user changes the selection

DataMember The name of the table in the DataSource to bind

DataSource The data source that populates the items of the list

DataSourceID ID of the data source component to provide data

DataTextField Name of the data source field to supply the text of list items

DataTextFormatString Formatting string used to visually format list items to be displayed

DataValueField Name of the data source field used to supply the value of a list item

422 Part II ASP.NET Pages and Server Controls

Property Description
Items Gets the collection of items in the list control

SelectedIndex Gets or sets the index of the selected item in the list

SelectedItem Gets the selected item in the list

SelectedValue Gets the value of the selected item in the list

The DropDownList control, as well as many other server controls, features some properties
to configure the graphical aspect of the final markup. At rendering time, these properties
are transformed in cascading style sheet (CSS) style properties. The best practice today is
to avoid style properties such as BorderColor and ForeColor and use CSS classes instead.
Whenever possible and suitable, you should adhere to this de facto standard and emit plain
HTML markup out of server controls.

The DataTextField and DataValueField properties don’t accept expressions, only plain prop-
erty names. If you need to combine and display two or more fields from the data source, it is
recommended that you preprocess that data at the source and bind data already in a display
format.

Note The ASP.NET DropDownList control doesn’t support groups of options as provided by the
HTML <optgroup> element. There are various ways to work around this limitation.

To start off, you can create your own customized drop-down control and override the
RenderContents methods. The method is invoked just when the control is requested to write out
its markup. You can add a new attribute to any option that indicates the group. If you take this
route, remember also to update the view state to also store the additional group attribute. I’ll
return to custom controls and their view state management in the next chapter.

Another approach entails creating a <tagMapping> section in the configuration file and mapping
standard DropDownList controls to your customized drop-down control. In this way, you don’t
even need to change the markup of your ASPX pages and can just add option groups.

Finally, you can keep on using standard DropDownList controls but add some jQuery code
that adds option groups on the fly as the page is loaded in the browser. I’ll cover jQuery in
Chapter 21.

The CheckBoxList Control
The CheckBoxList control is a single monolithic control that groups a collection of selectable
list items with an associated check box, each of which is rendered through an individual
CheckBox control. The properties of the child check boxes are set by reading the associated
data source. You insert a check box list in a page as follows:

<asp:CheckBoxList runat="server" id="employeesList">

Table 10-2 lists the specific properties of the CheckBoxList control.

 Chapter 10 Data Binding 423

TABLE 10-2 Properties of the CheckBoxList Control

Property Description
AppendDataBoundItems Indicates whether statically defined items should be maintained or

cleared when adding data-bound items

AutoPostBack Indicates whether the control should automatically post back to the
server when the user changes the selection

CellPadding Indicates pixels between the border and contents of the cell

CellSpacing Indicates pixels between cells

DataMember The name of the table in the DataSource to bind

DataSource The data source that populates the items of the list

DataSourceID ID of the data source component to provide data

DataTextField Name of the data source field to supply the text of list items

DataTextFormatString Formatting string used to visually format list items to be displayed

DataValueField Name of the data source field used to supply the value of a list item

Items Gets the collection of items in the list control

RepeatColumns Gets or sets the number of columns to display in the control

RepeatDirection Gets or sets a value that indicates whether the control displays vertically
or horizontally

RepeatLayout Gets or sets the layout of the check boxes: Table, Flow, OrderedList,
UnorderedList

SelectedIndex Gets or sets the index of the first selected item in the list—the one with
the lowest index

SelectedItem Gets the first selected item

SelectedValue Gets the value of the first selected item

TextAlign Gets or sets the text alignment for the check boxes

The CheckBoxList does not supply any properties that know which items have been
 selected. But this aspect is vital for any Web application that uses selectable elements. The
CheckBoxList can have any number of items selected, but how can you retrieve them?

Any list control has an Items property that contains the collection of the child items. The
Items property is implemented through the ListItemCollection class and makes each con-
tained item accessible via a ListItem object. The following code loops through the items
stored in a CheckBoxList control and checks the Selected property of each of them:

foreach (var item in chkList.Items)
{
 if (item.Selected) {
 // This item is selected
 var itemValue = item.Value;
 ...
 }
}

424 Part II ASP.NET Pages and Server Controls

Figure 10-3 shows a sample page that lets you select some country/region names and
 composes an ad hoc query to list all the customers from those countries/regions.

FIGURE 10-3 A horizontally laid out CheckBoxList control in action.

Note that the SelectedXXX properties work in a slightly different manner for a CheckBoxList
control. The SelectedIndex property indicates the lowest index of a selected item. By setting
SelectedIndex to a given value, you state that no items with a lower index should be selected
any longer. As a result, the control automatically deselects all items with an index lower than
the new value of SelectedIndex. Likewise, SelectedItem returns the first selected item, and
SelectedValue returns the value of the first selected item.

The RadioButtonList Control
The RadioButtonList control acts as the parent control for a collection of radio buttons. Each
of the child items is rendered through a RadioButton control. By design, a RadioButtonList
can have zero or one item selected. The SelectedItem property returns the selected element
as a ListItem object. Note, though, that there is nothing to guarantee that only one item is
selected at any time. For this reason, be extremely careful when you access the SelectedItem
of a RadioButtonList control—it could be null.

 Chapter 10 Data Binding 425

if (radioButtons.SelectedValue != null)
{
 // Process the selection here
 ...
}

The control supports the same set of properties as the CheckBoxList control and, just like it,
accepts some layout directives. In particular, you can control the rendering process of the list
with the RepeatLayout and RepeatDirection properties. By default, the list items are rendered
within a table, which ensures the vertical alignment of the companion text. The property that
governs the layout is RepeatLayout. The alternative is to display the items as free HTML text,
using blanks and breaks to guarantee some sort of minimal structure. RepeatDirection is the
property that controls the direction in which, with or without a tabular structure, the items
flow. Feasible values are Vertical (the default) and Horizontal. RepeatColumns is the property
that determines how many columns the list should have. By default, the value is 0, which
means all the items will be displayed in a single row, vertical or horizontal, according to the
value of RepeatDirection.

The ListBox Control
The ListBox control represents a vertical sequence of items displayed in a scrollable window.
The ListBox control allows single-item or multiple-item selection and exposes its contents
through the usual Items collection, as shown in the following code:

<asp:listbox runat="server" id="theListBox"
 rows="5" selectionmode="Multiple" />

You can decide the height of the control through the Rows property. The height is measured
in number of rows rather than pixels or percentages. When it comes to data binding, the
ListBox control behaves like the controls discussed earlier in the chapter.

Two properties make this control slightly different than other list controls—the Rows
 property, which represents the number of visible rows in the control, and the SelectionMode
property, which determines whether one or multiple items can be selected. The program-
ming interface of the list box also contains the set of SelectedXXX properties we considered
earlier. In this case, they work as they do for the CheckBoxList control—that is, they return the
selected item with the lowest index.

Note All the list controls examined so far support the SelectedIndexChanged event, which is
raised when the selection from the list changes and the page posts back to the server. You can
use this event to execute server-side code whenever a control is selected or deselected.

426 Part II ASP.NET Pages and Server Controls

The BulletedList Control
The BulletedList control is a programming interface built around the and HTML
tags, with some extra features such as the bullet style, data binding, and support for custom
images. The following example uses a custom bullet object:

<asp:bulletedlist runat="server" bulletstyle="Square">
 <asp:listitem>One</asp:listitem>
 <asp:listitem>Two</asp:listitem>
 <asp:listitem>Three</asp:listitem>
</asp:bulletedlist>

The bullet style lets you choose the style of the element that precedes the item. You can
use numbers, squares, circles, and uppercase and lowercase letters. The child items can be
rendered as plain text, hyperlinks, or buttons. Table 10-3 details the main properties of a
BulletedList control.

TABLE 10-3 Properties of the BulletedList Control

Property Description
AppendDataBoundItems Indicates whether statically defined items should be maintained or

cleared when adding data-bound items

BulletImageUrl Gets or sets the path to the image to use as the bullet

BulletStyle Determines the style of the bullet

DataMember The name of the table in the DataSource to bind

DataSource The data source that populates the items of the list

DataSourceID ID of the data source component to provide data

DataTextField Name of the data source field to supply the text of list items

DataTextFormatString Formatting string used to visually format list items to be displayed

DataValueField Name of the data source field to supply the value of a list item

DisplayMode Determines how to display the items: as plain text, link buttons, or
 hyperlinks

FirstBulletNumber Gets or sets the value that starts the numbering

Items Gets the collection of items in the list control

Target Indicates the target frame in the case of hyperlink mode

The items of a BulletedList control support a variety of graphical styles—disc, circle, custom
image, plus a few types of numberings, including roman numbering. The initial number can
be programmatically set through the FirstBulletNumber property. The DisplayMode property
determines how to display the content of each bullet—plain text (the default), link button, or
hyperlink. In the case of link buttons, the Click event is fired on the server to let you handle
the event when the page posts back. In the case of hyperlinks, the browser displays the
 target page in the specified frame—the Target property. The target URL coincides with the
contents of the field specified by DataValueField.

 Chapter 10 Data Binding 427

Figure 10-4 shows a sample page that includes RadioButtonList and BulletedList controls.
The radio-button list is bound to the contents of a system enumerated type—BulletStyle—
and displays as selectable radio buttons the various bullet styles. To bind the contents of an
 enumerated type to a data-bound control, you do as follows:

BulletOptions.DataSource = Enum.GetValues(typeof(BulletStyle));
BulletOptions.SelectedIndex = 0;
BulletOptions.DataBind();

To retrieve and set the selected value, use the following code:

var style = (BulletStyle) Enum.Parse(typeof(BulletStyle),
 BulletOptions.SelectedValue);
BulletedList1.BulletStyle = style;

FIGURE 10-4 A sample page to preview the style of a BulletedList control.

Iterative Controls
Iterative controls supply a template-based mechanism to create free-form user interfaces.
Iterative controls take a data source, loop through the items, and iteratively apply user-
defined HTML templates to each row. This basic behavior is common to all three ASP.NET
iterators: Repeater, DataList, and DataGrid. Beyond that, iterative controls differ from each
other in terms of layout capabilities and functionality.

Iterative controls differ from list controls because of their greater rendering flexibility. An
iterative control lets you apply an ASP.NET template to each row in the bound data source.

428 Part II ASP.NET Pages and Server Controls

A list control, on the other hand, provides a fixed and built-in template for each data item.
List controls are customizable to some extent, but you can’t change anything other than the
text displayed. No changes to layout are supported. On the other hand, using a list control is
considerably easier than setting up an iterative control, as you’ll see in a moment. Defining
templates requires quite a bit of declarative code, and if accomplished programmatically, it
requires that you write a class that implements the ITemplate interface. A list control requires
only that you go through a few data-binding properties.

Meanwhile, let’s briefly meet each control. When they are properly customized and
 configured, there’s no graphical structure—be it flat or hierarchical—that Repeater and
DataList controls can’t generate.

The Repeater Control
The Repeater displays data using user-provided layouts. It works by repeating a specified
ASP.NET template for each item displayed in the list. The Repeater is a rather basic templated
data-bound control. It has no built-in layout or styling capabilities. All formatting and layout
information must be explicitly declared and coded using HTML literals, CSS classes, and
ASP.NET controls.

Table 10-4 lists the main properties exposed by the control, not counting those inherited
from the base class WebControl.

TABLE 10-4 Properties of the Repeater Control

Property Description
AlternatingItemTemplate Template to define how every other item is rendered.

DataMember The name of the table in the DataSource to bind.

DataSource The data source that populates the items of the list.

DataSourceID ID of the data source component to provide data.

FooterTemplate Template to define how the footer is rendered.

HeaderTemplate Template to define how the header is rendered.

Items Gets a RepeaterItemCollection object—that is, a collection of
RepeaterItem objects. Each element of the collection represents a
displayed data row in the Repeater.

ItemTemplate Template to define how items are rendered.

SeparatorTemplate Template to define how the separator between items is to be
 rendered.

For the most part, properties are the template elements that form the control’s user inter-
face. The Repeater populates the Items collection by enumerating all the data items in the
bound data source. For each data-bound item (for example, a table record), it creates a

 Chapter 10 Data Binding 429

RepeaterItem object and adds it to the Items collection. The RepeaterItemCollection class is a
plain collection class with no special or peculiar behavior. The RepeaterItem class represents
a displayed element within the overall structure created by the Repeater. The RepeaterItem
contains properties to point to the bound data item (such as a table record), the index, and
the type of the item (regular item, alternating item, header, footer, and so on). Here’s a quick
example of a Repeater:

<asp:Repeater ID="Repeater1" runat="server">
 <HeaderTemplate>
 <h2>We have customers in the following cities</h2>
 <hr />
 </HeaderTemplate>
 <SeparatorTemplate>
 <hr />
 </SeparatorTemplate>
 <ItemTemplate>
 <%# Eval("City")%>

 <%# Eval("Country")%>
 </ItemTemplate>
 <FooterTemplate>
 <hr />
 <%# CalcTotal() %> cities
 </FooterTemplate>
</asp:Repeater>

Bound to the output of the following method call, the structure produces what’s shown in
Figure 10-5:

// Currently selected country name
var country = Countries.SelectedValue;

// Make a call to the DAL to grab cities and countries
var repo = new CustomerRepository();
var data = repo.GetCitiesWithCustomers(country);

// Bind
Repeater1.DataSource = data;
Repeater1.DataBind();

The method on the data access layer ends up placing a SQL query like the one shown next.
(As you’ll see in Chapter 14, the data access layer can be written using plain ADO.NET as
well as LINQ-to-SQL, Entity Framework, NHibernate, or any other Object/Relational Mapper
framework.)

SELECT DISTINCT country, city FROM customers WHERE country=@TheCountry

The @TheCountry parameter is the name of the country/region picked from the
drop-down list.

430 Part II ASP.NET Pages and Server Controls

FIGURE 10-5 A sample Repeater control in action. No predefined list control can generate such a
free-form output.

Of all the templates, only ItemTemplate and AlternatingItemTemplate are data-bound,
 meaning that they are repeated for each item in the data source. You need a mechanism
to access public properties on the data item (such as a table record) from within the tem-
plate. The Eval method takes the name of the property (for example, the name of the table
 column) and returns the content. You’ll learn more about Eval and <%# … %> code blocks in
a moment when we’re discussing data-binding expressions.

The DataList Control
The DataList is a data-bound control that begins where the Repeater ends and terminates a
little before the starting point of the DataGrid control. In some unrealistically simple cases,
you can even take some code that uses a Repeater, replace the control, and not even notice
any difference. The DataList overtakes the Repeater in several respects, mostly in the area of
graphical layout. The DataList supports directional rendering, meaning that items can flow
horizontally or vertically to match a specified number of columns. Furthermore, it provides
facilities to retrieve a key value associated with the current data row and has built-in support
for selection and in-place editing.

In addition, the DataList control supports more templates and can fire some extra events
 beyond those of the Repeater. Data binding and the overall behavior are nearly identical for
the Repeater and DataList controls.

In addition to being a naming container, the DataList class implements the IRepeatInfoUser
interface. The IRepeatInfoUser interface defines the properties and methods that must be
implemented by any list control that repeats a list of items. This interface is also supported
by the CheckBoxList and RadioButtonList controls and is the brains behind the RepeatXXX

 Chapter 10 Data Binding 431

 properties you met earlier. Here’s how to rewrite the previous example to get stricter control
over the output:

<asp:DataList ID="DataList1" runat="server" RepeatColumns="5"
 GridLines="Both">
 <FooterStyle Font-Bold="true" ForeColor="blue" />
 <HeaderTemplate>
 <h2>We have customers in the following cities</h2>
 </HeaderTemplate>
 <ItemTemplate>
 <%# Eval("City") %> <%# Eval("Country")%>
 </ItemTemplate>
 <FooterTemplate>
 <%# CalcTotal() %> cities
 </FooterTemplate>
</asp:DataList>

Note the FooterStyle tag; the DataList also lets you explicitly style the content of each
 supported template.

Note The DataList control is deprecated in ASP.NET 4. If you’re building a feature-rich user
interface, you might want to take into account more recent view controls, such as the ListView
control.

The DataGrid Control
The DataGrid is an extremely versatile data-bound control that is a fixed presence in any
real-world ASP.NET application. Although it is fully supported, the DataGrid is pushed into
the background by the introduction of a new and much more powerful grid control—the
GridView.

The DataGrid control renders a multicolumn, fully templated grid and provides a highly
customizable, Microsoft Office Excel–like user interface. In spite of the rather advanced
 programming interface and the extremely rich set of attributes, the DataGrid simply
 generates an HTML table with interspersed hyperlinks to provide interactive functionalities
such as sorting, paging, selection, and in-place editing.

The DataGrid is a column-based control and supports various types of data-bound columns,
including text columns, templated columns, and command columns. You associate the
 control with a data source using the DataSource property. Just as for other data-bound
 controls, no data will be physically loaded and bound until the DataBind method is called.
The simplest way of displaying a table of data using the ASP.NET grid is as follows:

<asp:DataGrid runat="server" id="grid" />

432 Part II ASP.NET Pages and Server Controls

The control will then automatically generate an HTML table column for each property
 available in the bound data source. This is only the simplest scenario, however. If needed, you
can specify which columns should be displayed and style them at will.

View Controls
The internal architecture of data-bound controls has changed quite a bit over the years. The
first version of ASP.NET came with Repeater, DataList, and DataGrid controls. They were fully
integrated in the page life cycle, capable of raising postback events and able to render data
according to different types of layouts and algorithms.

In successive versions of ASP.NET, the range of data-bound controls extended to include
FormView and DetailsView, which were providing loudly demanded tools for displaying and
editing a single record of data. These controls, however, were based on a revised internal
architecture that made them capable of handling (not just raising) specific postback events.
This was a big change. Along with FormView and DetailsView, Microsoft also introduced the
GridView control—a revamped data grid control based on the same architecture of other
view controls. Finally, in ASP.NET 3.5 Microsoft also made available the ListView control,
which probably is the only view control you would ever want to use. The ListView control
sums up the characteristics of all the others, and by properly programming it you can obtain
data-driven interfaces of any kind.

Let’s briefly review the characteristics of these controls, reserving a deeper look at GridView
and ListView for later in the chapter.

The DetailsView Control
The DetailsView is a control that renders a single record of data at a time from its associated
data source, optionally providing paging buttons to navigate between records. It is similar to
the Form View of a Microsoft Access database and is typically used for updating and insert-
ing records in a master/detail scenario.

The DetailsView control binds to any data source control and executes its set of data
 operations. It can page, update, insert, and delete data items in the underlying data source as
long as the data source supports these operations. In most cases, no code is required to set
up any of these operations. You can customize the user interface of the DetailsView control
by choosing the most appropriate combination of data fields and styles from within Visual
Studio. You do not have much control over its markup, however.

Finally, note that although the DetailsView is commonly used as an update and insert
 interface, it does not natively perform any input validation against the data source schema,
nor does it provide any schematized user interface such as foreign key field drop-down lists
or made-to-measure edit templates for particular types of data.

 Chapter 10 Data Binding 433

The FormView Control
FormView can be considered the templated version of the DetailsView. It renders one record
at a time, picked from the associated data source and, optionally, provides paging buttons to
navigate between records. Unlike the DetailsView control, FormView doesn’t use any internal
generation of markup and requires the programmer to define the rendering of each item by
using templates. The FormView can support any basic operation its data source provides.

Note that the FormView requires you to define everything through templates, not just the
things you want to change. The FormView has no built-in rendering engine and is limited to
printing out the user-defined templates.

In ASP.NET 4, the FormView control offers a new property—the RenderOuterTable Boolean
property—through which you can skip the usual <table> tag surrounding the generated
markup. This opens up easier CSS styling opportunities, but it also comes at the cost of losing
autoformatting capabilities.

The GridView Control
The GridView is the successor to the DataGrid control and provides its same set of basic
capabilities, plus a long list of extensions and improvements. As mentioned, the DataGrid—
which is still fully supported in ASP.NET—is an extremely powerful and versatile control.
However, it has one big drawback: it requires you to write a lot of custom code, even to
handle relatively simple and common operations such as paging, sorting, editing, or deleting
data. The GridView control was designed to work around this limitation and make two-way
data binding happen with as little code as possible. The control is tightly coupled to the
 family of new data source controls, and it can handle direct data source updates as long as
the underlying data source object supports these capabilities.

This virtually codeless two-way data binding is by far the most notable feature of the
new GridView control, but other enhancements are numerous. The GridView control is an
 improvement over the DataGrid control also because it has the ability to define multiple
 primary key fields, new column types, and style and templating options. The GridView also
has an extended eventing model that allows you to handle or cancel events such as inserting,
deleting, updating, paging, and more.

The ListView Control
The ListView control is fully template-based and allows you to control all aspects of the user
interface via templates and properties. ListView operates in a way that closely resembles the
behavior of existing data-bound controls, such as FormView or DataList. However, unlike
these controls, the ListView control never creates any user-interface layout on its own. Every
markup tag that the control emits is entirely under the developer’s control, including header,
footer, body, item, selected item, and so on.

434 Part II ASP.NET Pages and Server Controls

The ListView control binds to any data source control and executes its set of data operations.
It can page, update, insert, and delete data items in the underlying data source as long as the
data source supports these operations. In most cases, no code is required to set up any of
these operations. If code is required, you can also explicitly bind data to the control using the
more traditional DataSource property and related DataBind method.

The rendering capabilities of the ListView control make it suitable for publishing scenarios
where a read-only, but compelling, user interface is needed. The control also works great in
editing scenarios even though it lacks some advanced features such as input validation or
made-to-measure edit templates for particular types of data or foreign keys.

I’ll say more on the ListView control in Chapter 11.

Data-Binding Expressions
As you might have figured out, most of the differences between the various data-bound
controls is in how they use custom templates. A template is a piece of markup that the
 control injects in the page at a very specific point. More interestingly, the template contains
bindable elements, which are placeholder markup elements whose content is determined by
bound data.

How would you define the content of such bindable elements? In ASP.NET, a special syntax
is required that we’ll examine right away. After this, we’ll return to the two most widely used
view controls and examine some of their advanced capabilities.

Simple Data Binding
A data-binding expression is any executable code wrapped by <% … %> and prefixed by the
symbol #. Typically, you use data-binding expressions to set the value of an attribute in the
opening tag of a server control. A data-binding expression is programmatically managed via
an instance of the DataBoundLiteralControl class.

Note The binding expression is really any executable code that can be evaluated at run time. Its
purpose is to generate data that the control can use to bind for display or editing. Typically, the
code retrieves data from the data source, but there is no requirement that this be the case. Any
executable code is acceptable as long as it returns data for binding. A data-binding expression is
evaluated only when something happens that fires the control’s DataBinding event.

The following code snippet shows how to set the text of a label with the current time:

<asp:label runat="server" Text='<%# DateTime.Now %>' />

 Chapter 10 Data Binding 435

Within the delimiters, you can invoke user-defined page methods, static methods, and
 properties and methods of any other page component. The following code demonstrates a
label bound to the name of the currently selected element in a drop-down list control:

<asp:label runat="server" Text='<%# dropdown.SelectedItem.Text %>' />

Note that if you’re going to use quotes within the expression, you should wrap the expression
itself with single quotes. The data-binding expression can accept a minimal set of opera-
tors, mostly for concatenating subexpressions. If you need more advanced processing and
use external arguments, resort to a user-defined method. The only requirement is that the
method be declared as public or protected.

Important Any data-bound expression you define in the page is evaluated only after DataBind
is called. You can call DataBind either on the page object or on the specific control. If you call
DataBind on the page object, it will recursively call DataBind on all controls defined in the page.
If DataBind is not called, no <%# …%> expressions will ever be evaluated.

Binding in Action
Data-binding expressions are particularly useful to update, in a pure declarative manner,
properties of controls that depend on other controls in the same page. For example, suppose
you have a drop-down list of colors and a label and that you want the text of the label to
 reflect the selected color:

<asp:DropDownList ID="SelColors" runat="server" AutoPostBack="True">
 <asp:ListItem>Orange</asp:ListItem>
 <asp:ListItem>Green</asp:ListItem>
 <asp:ListItem>Red</asp:ListItem>
 <asp:ListItem>Blue</asp:ListItem>
</asp:DropDownList>
<asp:Label runat="server" ID="lblColor"
 Text='<%# "You selected: " + SelColors.SelectedValue %>' />

Note that in the <%# ... %> expression you can use any combination of methods, constants,
and properties as long as the final result matches the type of the bound property. Also note
that the evaluation of the expression requires a postback and a call to DataBind in the post-
back event handler. You set the AutoPostBack property to true just to force a postback when
the selection changes in the drop-down list. At the same time, a call to the page’s or label’s
DataBind method is required for the refresh to occur.

protected void Page_Load(object sender, EventArgs e)
{
 ...
 DataBind();
}

You can bind to expressions virtually any control properties regardless of the type.

436 Part II ASP.NET Pages and Server Controls

Note You can use data-binding expressions to set control properties in a declarative manner;
you cannot use plain code blocks—that is, <% … %> expressions—without the # symbol for the
same purpose.

Implementation of Data-Binding Expressions
What really happens when a data-binding expression is found in a Web page? How does the
ASP.NET runtime process it? Let’s consider the following code:

<asp:label runat="server" id="today" text='<%# DateTime.Now %>' />

When the page parser takes care of the ASPX source file, it generates a class where each
server control has a factory method. The factory method simply maps the tag name to a
server-side control class and transforms attributes on the tag into property assignments. In
addition, if a data-binding expression is found, the parser adds a handler for the DataBinding
event of the control—a Label in this case. Here’s some pseudocode to illustrate the point:

private Control __BuildControlToday() {
 Label __ctrl = new Label();
 this.today = __ctrl;
 __ctrl.ID = "today";

 __ctrl.DataBinding += new EventHandler(this.__DataBindToday);
 return __ctrl;
}

The handler assigns the data-binding expression verbatim to the property:

public void __DataBindToday(object sender, EventArgs e) {
 Label target;
 target = (Label) sender;
 target.Text = Convert.ToString(DateTime.Now);
}

If the value returned by the data-binding expression doesn’t match the expected type, you
generally get a compile error. However, if the expected type is string, the parser attempts a
standard conversion through the Convert.ToString method. (All .NET Framework types are
convertible to a string because they inherit the ToString method from the root object type.)

The DataBinder Class
Earlier in this chapter, you met <%# … %> expressions in the context of templates, along with
the Eval method. The Eval method is a kind of tailor-made operator you use in data-binding
expressions to access a public property on the bound data item. The Eval method we used in
past code snippets is a shortcut method defined on the Page class that wraps the services of
another Eval method, but one that’s defined on another class—DataBinder.

 Chapter 10 Data Binding 437

Important Through the Eval method—even if it comes from DataBinder or Page—you can
access public properties on the bound data item. A data-bound control is linked to a collection
of data objects. The data item just represents the element in the bound data source that is being
processed at some point. Therefore, the Eval method ends up querying the data item object for
its set of properties.

The DataBinder class supports generating and parsing data-binding expressions. Of
 particular importance is its overloaded static method Eval. The method uses reflection to
parse and evaluate an expression against a run-time object. Clients of the Eval method
 include Rapid Application Development (RAD) tools such as Microsoft Visual Studio .NET
designers and Web controls that declaratively place calls to the method to feed dynamically
changing values to properties.

The Eval Method
The syntax of DataBinder.Eval typically looks like this:

<%# DataBinder.Eval(Container.DataItem, expression) %>

A third, optional, parameter is omitted in the preceding snippet. This parameter is a string
that contains formatting options for the bound value. The Container.DataItem expression
references the object on which the expression is evaluated. The expression is typically a
string with the name of the field to access on the data item object. It can be an expression
that includes indexes and property names. The DataItem property represents the object
within the current container context. Typically, a container is the current instance of the item
 object—for example, a DataGridItem object—that is about to be rendered.

The code shown earlier is commonly repeated, always in the same form. Only the expression
and the format string change from page to page.

A More Compact Eval
The original syntax of the DataBinder.Eval can be simplified in ASP.NET by writing the
following:

<%# Eval(expression) %>

Any piece of code that appears within the <%# ... %> delimiters enjoys special treatment
from the ASP.NET runtime. Let’s briefly look at what happens with this code. When the page
is compiled for use, the Eval call is inserted in the source code of the page as a standalone
call. The following code gives you an idea of what happens:

object o = Eval("lastname");
string result = Convert.ToString(o);

438 Part II ASP.NET Pages and Server Controls

The result of the call is converted to a string and is assigned to a data-bound literal control—
an instance of the DataBoundLiteralControl class. Then the data-bound literal is inserted in
the page’s control tree.

The TemplateControl class—the parent of Page—is actually enriched with a new protected
(but not virtual) method named Eval. The following pseudocode illustrates how the method
works:

protected object Eval(string expression)
{
 if (Page == null)
 throw new InvalidOperationException(…);
 return DataBinder.Eval(Page.GetDataItem(), expression);
}

As you can see, Eval is a simple wrapper built around the DataBinder.Eval method. The
DataBinder.Eval method is invoked using the current container’s data item. Quite obviously,
the current container’s data is null outside a data-binding operation—that is, in the stack
of calls following a call to DataBind. This fact brings up a key difference between Eval and
DataBinder.Eval.

Getting the Default Data Item
The pseudocode that illustrates the behavior of the page’s Eval method shows a GetDataItem
method from the Page class. What is it? As mentioned, the simplified syntax assumes a
 default Container.DataItem context object. GetDataItem is simply the function that returns
that object.

More precisely, GetDataItem is the endpoint of a stack-based mechanism that traces the
 current binding context for the page. Each control in the control tree is pushed onto this
stack at the time the respective DataBind method is called. When the DataBind method
 returns, the control is popped from the stack. If the stack is empty and you attempt to call
Eval programmatically, GetDataItem throws an invalid operation exception. In summary,
you can use the Eval shortcut only in templates; if you need to access properties of a data
item anywhere else in the code, resort to DataBinder.Eval and indicate the data item object
explicitly.

Managing Tables of Data
Let’s delve deeper into the programming features of a very popular and widely used view
control—the GridView control.

 Chapter 10 Data Binding 439

The GridView’s Object Model
The GridView control provides a tabular, grid-like view of the contents of a data source. Each
column represents a data source field, and each row represents a record. The GridView sup-
ports a large set of properties that fall into the following broad categories: behavior, visual
settings, style, state, and templates. Table 10-5 details the properties that affect the behavior
of the GridView.

TABLE 10-5 Behavior Properties of the GridView Control

Property Description
AllowPaging Indicates whether the control supports paging.

AllowSorting Indicates whether the control supports sorting.

AutoGenerateColumns Indicates whether columns are automatically created for each field
in the data source. The default is true.

AutoGenerateDeleteButton Indicates whether the control includes a button column to let users
delete the record that is mapped to the clicked row.

AutoGenerateEditButton Indicates whether the control includes a button column to let users
edit the record that is mapped to the clicked row.

AutoGenerateSelectButton Indicates whether the control includes a button column to let users
select the record that is mapped to the clicked row.

ClientIDMode Indicates the algorithm used to generate the client ID.

ClientIDRowSuffix Gets and sets the names of the data fields whose values will
be appended to the client ID when the client ID mode is set to
Predictable.

ClientIDRowSuffixDataKeys Gets and sets the values appended to the client ID.

DataMember Indicates the specific table in a multimember data source to bind
to the grid. The property works in conjunction with DataSource.
If DataSource is a DataSet object, it contains the name of the
 particular table to bind.

DataSource Gets or sets the data source object that contains the values to
 populate the control.

DataSourceID Indicates the bound data source control.

RowHeaderColumn Name of the column to use as the column header. This property is
designed for improving accessibility.

SortDirection Gets the direction of the column’s current sort.

SortExpression Gets the current sort expression.

The SortDirection and SortExpression properties specify the direction and the sort expression
on the column that currently determine the order of the rows. Both properties are set by the
control’s built-in sorting mechanism when users click a column’s header. The whole sorting
engine is enabled and disabled through the AllowSorting property.

440 Part II ASP.NET Pages and Server Controls

Each row displayed within a GridView control corresponds to a special type of grid item. The
list of predefined types of items is nearly identical to that of the DataGrid, and it includes
items such as the header, rows and alternating rows, the footer, and the pager. These items
are static in the sense that they remain in place for the lifetime of the control in the applica-
tion. Other types of items are active for a short period of time—the time needed to accom-
plish a certain operation. Dynamic items are the edit row, selected row, and EmptyData item.
EmptyData identifies the body of the grid when the grid is bound to an empty data source.

Note The GridView control provides a few properties specifically designed for accessibility.
They are UseAccessibleHeader, Caption, CaptionAlign, and RowHeaderColumn. When you set
RowHeaderColumn, all the column cells will be rendered with the default header style (boldface
type). However, ShowHeader, HeaderStyle, and other header-related properties don’t affect the
column indicated by RowHeaderColumn.

Table 10-6 details the style properties available on the GridView control.

TABLE 10-6 Style Properties of the GridView Control

Style Description
AlternatingRowStyle Defines the style properties for every other row in the table

EditRowStyle Defines the style properties for the row being edited

FooterStyle Defines the style properties for the grid’s footer

HeaderStyle Defines the style properties for the grid’s header

EmptyDataRowStyle Defines the style properties for the empty row, which is rendered when
the GridView is bound to empty data sources

PagerStyle Defines the style properties for the grid’s pager

RowStyle Defines the style properties for the rows in the table

SelectedRowStyle Defines the style properties for the currently selected row

Table 10-7 lists most of the properties that affect the appearance of the control, and Table
10-8 details the templating properties.

TABLE 10-7 Appearance Properties of the GridView Control

Property Description
BackImageUrl Indicates the URL to an image to display in the background

Caption The text to render in the control’s caption

CaptionAlign Alignment of the caption text

CellPadding Indicates the amount of space (in pixels) between the contents of a cell
and the border

CellSpacing Indicates the amount of space (in pixels) between cells

EmptyDataText Indicates the text to render in the control when it is bound to an empty
data source

 Chapter 10 Data Binding 441

Property Description
GridLines Indicates the gridline style for the control

HorizontalAlign Indicates the horizontal alignment of the control on the page

PagerSettings References an object that lets you set the properties of the pager buttons

ShowFooter Indicates whether the footer row is displayed

ShowHeader Indicates whether the header row is displayed

The PagerSettings object groups together all the visual properties you can set on the pager.
Many of these properties should sound familiar to DataGrid programmers. The PagerSettings
class also adds some new properties to accommodate new predefined buttons (first and last
pages), and it uses images instead of text in the links. (You need to figure out a trick to do
the same with a DataGrid.)

TABLE 10-8 Templating Properties of the GridView Control

Template Description
EmptyDataTemplate Indicates the template content to be rendered when the control is bound

to an empty source. This property takes precedence over EmptyDataText if
both are set. If neither is set, the grid isn’t rendered if bound to an empty
data source.

PagerTemplate Indicates the template content to be rendered for the pager. This property
overrides any settings you might have made through the PagerSettings
property.

The final block of properties—the state properties—is shown in Table 10-9. State properties
return information about the internal state of the control.

TABLE 10-9 State Properties

Property Description
BottomPagerRow Returns a GridViewRow object that represents the bottom pager of the

grid.

Columns Gets a collection of objects that represent the columns in the grid. The
collection is always empty if columns are autogenerated.

DataKeyNames Gets an array that contains the names of the primary key fields for the
currently displayed items.

DataKeys Gets a collection of DataKey objects that represent the values of the pri-
mary key fields set in DataKeyNames for the currently displayed records.

EditIndex Gets and sets the 0-based index that identifies the row currently ren-
dered in edit mode.

EnablePersistedSelection Indicates whether the current selection is persisted across postbacks. (It’s
true by default.) This is the property you want to set to false to avoid the
scenario in which when row 1 is selected on page 1 and you move to
another page, row 1 is selected automatically also on the new page.

442 Part II ASP.NET Pages and Server Controls

Property Description
FooterRow Returns a GridViewRow object that represents the footer.

HeaderRow Returns a GridViewRow object that represents the header.

PageCount Gets the number of pages required to display the records of the data
source.

PageIndex Gets and sets the 0-based index that identifies the currently displayed
page of data.

PageSize Indicates the number of records to display on a page.

Rows Gets a collection of GridViewRow objects that represent the data rows
currently displayed in the control.

SelectedDataKey Returns the DataKey object for the currently selected record.

SelectedPersistedDataKey Returns the DataKey object for the record selected on the previous page.

SelectedIndex Gets and sets the 0-based index that identifies the row currently
 selected.

SelectedRow Returns a GridViewRow object that represents the currently selected row.

SelectedValue Returns the explicit value of the key as stored in the DataKey object. It’s
similar to SelectedDataKey.

TopPagerRow Returns a GridViewRow object that represents the top pager of the grid.

The GridView is designed to leverage the new data source object model, and it works best
when bound to a data source control via the DataSourceID property. The GridView also sup-
ports the classic DataSource property, but if you bind data in that way, some of the features
(such as built-in updates and paging) become unavailable.

Events of the GridView Control
Many controls in ASP.NET feature pairs of events of the type doing/done. Key operations in
the control life cycle are wrapped by a pair of events—one firing before the operation takes
place, and one firing immediately after the operation is completed. The GridView class is no
exception. The list of events is shown in Table 10-10.

TABLE 10-10 Events Fired by the GridView Control

Event Description
PageIndexChanging,
PageIndexChanged

Both events occur when one of the pager buttons is clicked. They
fire before and after the grid control handles the paging operation,
respectively.

RowCancelingEdit Occurs when the Cancel button of a row in edit mode is clicked, but
before the row exits edit mode.

RowCommand Occurs when a button is clicked.

RowCreated Occurs when a row is created.

RowDataBound Occurs when a data row is bound to data.

 Chapter 10 Data Binding 443

Event Description
RowDeleting, RowDeleted Both events occur when a row’s Delete button is clicked. They fire

before and after the grid control deletes the row, respectively.

RowEditing Occurs when a row’s Edit button is clicked, but before the control
enters edit mode.

RowUpdating, RowUpdated Both events occur when a row’s Update button is clicked. They fire
before and after the grid control updates the row, respectively.

SelectedIndexChanging,
SelectedIndexChanged

Both events occur when a row’s Select button is clicked. The two
events occur before and after the grid control handles the select
operation, respectively.

Sorting, Sorted Both events occur when the hyperlink to sort a column is clicked.
They fire before and after the grid control handles the sort
 operation, respectively.

RowCreated and RowDataBound events are the same as the DataGrid’s ItemCreated and
ItemDataBound events, with new names. The same is true of the RowCommand event, which
is the same as the DataGrid’s ItemCommand event.

The availability of events that announce a certain operation significantly enhances your
 programming power. By hooking the RowUpdating event, you can cross-check what is being
updated and validate the new values. Likewise, you might want to handle the RowUpdating
event to HTML-encode the values supplied by the client before they are persisted to the
 underlying data store. This simple trick helps you to fend off script injections.

Binding Data to the Grid
If no data source property is set, the GridView control doesn’t render anything. If an empty
data source object is bound and an EmptyDataTemplate template is specified, the results
shown to the user have a friendlier look:

<asp:gridview runat="server" datasourceid="MySource">
 <emptydatatemplate>
 <asp:label runat="server">
 There's no data to show in this view.
 </asp:label>
 </emptydatatemplate>
</asp:gridview>

The EmptyDataTemplate property is ignored if the bound data source is not empty.

When you use a declared set of columns, the AutoGenerateColumns property of the grid
is typically set to false. However, this is not a strict requirement—a grid can have declared
and autogenerated columns. In this case, declared columns appear first. Note also that
 autogenerated columns are not added to the Columns collection. As a result, when column
 autogeneration is used, the Columns collection is typically empty.

444 Part II ASP.NET Pages and Server Controls

Configuring Columns
The Columns property is a collection of DataControlField objects. The DataControlField object
is akin to the DataGrid’s DataGridColumn object, but it has a more general name because
these field objects can be reused in other data-bound controls that do not necessarily render
columns. (For example, in the DetailsView control, the same class is used to render a row.)

You can define your columns either declaratively or programmatically. In the latter case, you
just instantiate any needed data field objects and add them to the Columns collection. The
following code adds a data-bound column to the grid:

var field = new BoundField();
field.DataField = "companyname";
field.HeaderText = "Company Name";
grid.ColumnFields.Add(field);

Columns of data are displayed in the order that the column fields appear in the collection. To
statically declare your columns in the .aspx source file, you use the <Columns> tag, as shown
here:

<columns>
 <asp:boundfield datafield="customerid" headertext="ID" />
 <asp:boundfield datafield="companyname" headertext="Company Name" />
</columns>

Table 10-11 lists the column field classes that can be used in a GridView control. All the
 classes inherit DataControlField.

TABLE 10-11 Supported Column Types in GridView Controls

Type Description
BoundField Default column type, displays the value of a field as plain text.

ButtonField Displays the value of a field as a command button. You can choose the link or
the push button style.

CheckBoxField Displays the value of a field as a check box. It is commonly used to render
Boolean values.

CommandField Enhanced version of ButtonField, represents a special command such as Select,
Delete, Insert, or Update. It’s rarely useful with GridView controls; the field is
tailor-made for DetailsView controls. (GridView and DetailsView share the set of
classes derived from DataControlField.)

HyperLinkField Displays the value of a field as a hyperlink. When the hyperlink is clicked, the
browser navigates to the specified URL.

ImageField Displays the value of a field as the Src property of an HTML tag. The
content of the bound field should be the URL to the physical image.

TemplateField Displays user-defined content for each item in the column. You use this column
type when you want to create a custom column field. The template can contain
any number of data fields combined with literals, images, and other controls.

 Chapter 10 Data Binding 445

Table 10-12 lists the main properties shared by all column types.

TABLE 10-12 Common Properties of GridView Columns

Property Description
AccessibleHeaderText The text that represents abbreviated text read by screen readers of

Assistive Technology devices.

FooterStyle Gets the style object for the column’s footer.

FooterText Gets and sets the text for the column’s footer.

HeaderImageUrl Gets and sets the URL of the image to place in the column’s header.

HeaderStyle Gets the style object for the column’s header.

HeaderText Gets and sets the text for the column’s header.

InsertVisible Indicates whether the field is visible when its parent data-bound control is
in insert mode. This property does not apply to GridView controls.

ItemStyle Gets the style object for the various columns’ cells.

ShowHeader Indicates whether the column’s header is rendered.

SortExpression Gets and sets the expression used to sort the grid contents when the
 column’s header is clicked. Typically, this string property is set to the name
of the bound data field.

The properties listed in the table represent a subset of the properties that each column type
actually provides. In particular, each type of column defines a tailor-made set of properties to
define and configure the bound field.

Bound Fields
The BoundField class represents a field that is displayed as plain text in a data-bound control
such as GridView or DetailsView. To specify the field to display, you set the DataField prop-
erty to the field’s name. You can apply a custom formatting string to the displayed value by
 setting the DataFormatString property. The NullDisplayText property lets you specify alterna-
tive text to display should the value be null. Finally, by setting the ConvertEmptyStringToNull
property to true, you force the class to consider empty strings as null values.

A BoundField can be programmatically hidden from view through the Visible property, while
the ReadOnly property prevents the displayed value from being modified in edit mode.
To display a caption in the header or footer sections, set the HeaderText and FooterText
 properties, respectively. You can also choose to display an image in the header instead of
text. In this case, you set the HeaderImageUrl property.

Button Fields
A button field is useful to put a clickable element in a grid’s column. You typically use a
 button field to trigger an action against the current row. A button field represents any action

446 Part II ASP.NET Pages and Server Controls

that you want to handle through a server-side event. When the button is clicked, the page
posts back and fires a RowCommand event. Figure 10-6 shows a sample.

FIGURE 10-6 Button fields in a GridView control.

The following listing shows the markup code behind the grid in the figure:

<asp:GridView ID="GridView1" runat="server" DataSourceID="ObjectDataSource1"
 AutoGenerateColumns="false" AllowPaging="true"
 OnRowCommand="GridView1_RowCommand">
 <PagerSettings Mode="NextPreviousFirstLast" />
 <Columns>
 <asp:BoundField datafield="productname"
 headertext="Product" />
 <asp:BoundField datafield="quantityperunit"
 headertext="Packaging" />
 <asp:BoundField datafield="unitprice"
 headertext="Price"
 htmlencode="false"
 DataFormatString="{0:c}">
 <itemstyle width="80px" horizontalalign="right" />
 </asp:BoundField>
 <asp:ButtonField buttontype="Button" text="Add" CommandName="Add" />
 </Columns>
</asp:GridView>

Product information is displayed using a few BoundField objects. The sample button col-
umn allows you to add the product to the shopping cart. When users click the button,
the RowCommand server event is fired. In case multiple button columns are available, the
CommandName attribute lets you figure out which button was clicked. The value you assign
to CommandName is any unique string that the code-behind class can understand. Here’s an
example:

 Chapter 10 Data Binding 447

void GridView1_RowCommand(object sender, GridViewCommandEventArgs e)
{
 if (e.CommandName.Equals("Add"))
 {
 // Get the index of the clicked row
 int index = Convert.ToInt32(e.CommandArgument);

 // Create a new shopping item and add it to the cart
 AddToShoppingCart(index);
 }
}

In the sample, the button column shows fixed text for all data items. You get this by setting
the Text property on the ButtonField class. If you want to bind the button text to a particular
field on the current data item, you set the DataTextField property to the name of that field.

You can choose different styles for the button—push, link, or image. To render the button as
an image, do as follows:

<asp:buttonfield buttontype="Image" CommandName="Add"
 ImageUrl="/images/cart.gif" />

To add a ToolTip to the button (or the image), you need to handle the RowCreated event. (I’ll
discuss this in more detail later in the chapter.)

Note The DataFormatString property of the BoundField class doesn’t work properly without the
additional attribute HtmlEncode=”false”. The reason is because ASP.NET first HTML-encodes the
value of bound field and then applies the formatting. But at that point, the bound value is no
longer affected by the specified format string. Enabling HTML-encoding earlier in the cycle is a
security measure aimed at preventing cross-site scripting attacks.

Hyperlink Fields
Hyperlink columns point the user to a different URL, optionally displayed in an inner
frame. Both the text and URL of the link can be obtained from the bound source. In par-
ticular, the URL can be set in either of two ways: through a direct binding to a data source
field or by using a hard-coded URL with a customized query string. You choose the di-
rect binding if the URL is stored in one of the data source fields. In this case, you set the
DataNavigateUrlFields property to the name of the column. In some situations, though, the
URL to access is application specific and is not stored in the data source. In this case, you can

448 Part II ASP.NET Pages and Server Controls

set the DataNavigateUrlFormatString property with a hard-coded URL and with an array of
 parameters in the query string, as follows:

<asp:HyperLinkField DataTextField="productname"
 HeaderText="Product"
 DataNavigateUrlFields="productid"
 DataNavigateUrlFormatString="productinfo.aspx?id={0}"
 Target="ProductView" />

When the user clicks, the browser fills the specified frame window with the contents of the
productinfo.aspx?id=xxx URL, where xxx comes from the productid field. The URL can include
multiple parameters. To include more data-bound values, just set the DataNavigateUrlFields
property to a comma-separated list of field names. This behavior extends that of the
DataGrid’s hyperlink column in that it supports multiple parameters.

The text of the hyperlink can be formatted too. The DataTextFormatString property can
contain any valid markup and uses the {0} placeholder to reserve space for the data-bound
value. (See Figure 10-7.)

FIGURE 10-7 Hyperlink fields in a GridView control.

Check Box Fields
The CheckBoxField column is a relatively simple bound column that displays a check box. You
can bind it only to a data field that contains Boolean values. A valid Boolean value is a value
taken from a column of type Bit in a SQL Server table (and analogous types in other databas-
es) or a property of type bool if the control is bound to a custom collection. Any other form
of binding will result in a parsing exception. In particular, you get an exception if you bind a
CheckBoxField column to an integer property, thus implicitly assuming that 0 is false and a
nonzero value is true.

Image Fields
The ImageField column type represents a field that is displayed as an image in a data-
bound control. The cell contains an element, so the underlying field must refer-
ence a valid URL. You can compose the URL at will, though. For example, you can use the
DataImageUrlField to perform a direct binding where the content of the field fills the Src

 Chapter 10 Data Binding 449

attribute of the tag. Alternatively, you can make the column cells point to an external
page (or HTTP handler) that retrieves the bytes of the image from any source and passes
them down to the browser. The following code illustrates this approach:

<Columns>
 <asp:ImageField DataImageUrlField="employeeid"
 DataImageUrlFormatString="showemployeepicture.ashx?id={0}"
 DataAlternateTextField="lastname">
 <ControlStyle Width="120px" />
 </asp:ImageField>
 <asp:TemplateField headertext="Employee">
 <ItemStyle Width="220px" />
 <ItemTemplate>
 <%# Eval("titleofcourtesy") + " " +
 Eval("lastname") + ", " +
 Eval("firstname") %>

 <%# Eval("title")%>
 <hr />
 <i><%# Eval("notes")%></i>
 </ItemTemplate>
 </asp:templatefield>
</Columns>

Cells in the ImageField column are filled with the output of the next URL:

ShowEmployeePicture.ashx?id=xxx

Obviously, xxx is the value in the employeeid field associated with DataImageUrlField.
Interestingly enough, the alternate text can also be data bound. To do this, you use the
DataAlternateTextField property. Figure 10-8 gives a sneak preview of the feature. The page
in Figure 10-8 employs a template column to render the employee’s information. I’ll return to
template columns in a moment.

FIGURE 10-8 Image fields in a GridView control.

450 Part II ASP.NET Pages and Server Controls

Templated Fields
Figure 10-9 shows a customized column where the values of several fields are combined. This
is exactly what you can get by using templates. A TemplateField column gives each row in the
grid a personalized user interface that is completely defined by the page developer. You can
define templates for various rendering stages, including the default view, in-place editing,
the header, and the footer. The supported templates are listed in Table 10-13.

TABLE 10-13 Supported Templates

Template Description
AlternatingItemTemplate Defines the contents and appearance of alternating rows. If these items

are not specified, ItemTemplate is used.

EditItemTemplate Defines the contents and appearance of the row currently being edited.
This template should contain input fields and possibly validators.

FooterTemplate Defines the contents and appearance of the row’s footer.

HeaderTemplate Defines the contents and appearance of the row’s header.

ItemTemplate Defines the default contents and appearance of the rows.

A templated view can contain anything that makes sense to the application you’re building—
server controls, literals, and data-bound expressions. Data-bound expressions allow you to
insert values contained in the current data row. You can use as many fields as needed in a
template. Notice, though, that not all templates support data-bound expressions. The header
and footer templates are not data-bound, and any attempt to use expressions will result in
an exception.

The following code shows how to define the item template for a product column. The
 column displays on two lines and includes the name of the product and some information
about the packaging.

<asp:templatefield headertext="Product">
 <itemtemplate>
 <%# Eval("productname")%>

 available in <%# Eval("quantityperunit")%>
 </itemtemplate>
</asp:templatefield>

Figure 10-9 demonstrates template fields in action.

 Chapter 10 Data Binding 451

FIGURE 10-9 Template fields in a GridView control.

Working with the GridView
A big difference between the old-fashioned DataGrid control and the GridView control is in
how the control interacts with the host page. The interaction that is established between the
DataGrid and the host page is limited to exchanging notifications in the form of postback
events. The DataGrid lets the page know that something happened and leaves the page free
to react as appropriate. The GridView, instead, if bound to a data source component can
resolve postbacks on its own by interacting autonomously with the bound component. For
both DataGrid and GridView controls, however, the main operations are paging, sorting, and
in-place editing.

Paging Data
The ability to scroll a potentially large set of data is an important but challenging feature for
modern, distributed applications. An effective paging mechanism allows customers to inter-
act with a database without holding resources. To enable paging on a GridView control, all
you do is set the AllowPaging property to true. When the AllowPaging property is set to true,
the grid displays a pager bar and prepares to detect a user’s pager button clicks.

When a user clicks to see a new page, the page posts back, but the GridView traps the
event and handles it internally. With the GridView, there’s no need to write a handler for the
PageIndexChanged event. The event is still exposed (and partnered with PageIndexChanging),

452 Part II ASP.NET Pages and Server Controls

but you should handle it only to perform extra actions. The GridView knows how to retrieve
and display the requested new page. Let’s take a look at the following control declaration:

<asp:GridView ID="GridView1" runat="server"
 DataSourceID="ObjectDataSource1" AllowPaging="true" />

Any data the data source component binds to the grid is immediately pageable. As shown
in Figure 10-10, the control displays a pager with a few predefined links (first, previous, next,
and last) and automatically selects the correct subset of rows that fit in the selected page.

FIGURE 10-10 Moving through pages in a GridView control.

The default user interface you get with the GridView doesn’t include the page number.
Adding a page number label is as easy as writing a handler for the PageIndexChanged event:

protected void GridView1_PageIndexChanged(object sender, EventArgs e)
{
 ShowPageIndex();
}
private void ShowPageIndex()
{
 CurrentPage.Text = (GridView1.PageIndex + 1).ToString();
}

Once again, note that the PageIndexChanged handler is not involved with data binding or
page selection as it is with DataGrids. If you don’t need any post-paging operation, you can
blissfully omit it altogether.

What’s the cost of this apparently free (and magical) paging mechanism?

The GridView control doesn’t really know how to get a new page. It simply asks the bound
data source control to return the rows that fit in the specified page. Paging is ultimately
up to the data source control. When a grid is bound to a SqlDataSource control, paging

 Chapter 10 Data Binding 453

requires that the whole data source be bound to the control. When a grid is bound to an
ObjectDataSource control, paging depends on the capabilities of the business object you’re
connecting to.

When the AllowPaging property is set to true, the grid displays a pager bar. You can con-
trol the characteristics of the pager to a large extent, through the <PagerSettings> and
<PagerStyle> tags or their equivalent properties. The pager of the GridView control also
supports first and last page buttons and lets you assign an image to each button. (This is
also possible for DataGrids, but it requires a lot of code.) The pager can work in either of two
modes—displaying explicit page numbers, or providing a relative navigation system. In the
former case, the pager contains numeric links, one representing a page index. In the latter
case, buttons are present to navigate to the next or previous page and even to the first or
last page. The Mode property rules the user interface of the pager. Available modes are listed
in Table 10-14.

TABLE 10-14 Modes of a Grid Pager

Mode Description
NextPrevious Displays next and previous buttons to access the next and previous pages

of the grid

NextPreviousFirstLast Displays next and previous buttons, plus first and last buttons to directly
access the first and last pages of the grid

Numeric Displays numeric link buttons corresponding to the pages of the grid

NumericFirstLast Displays numeric link buttons corresponding to the pages of the grid, plus
first and last buttons to directly access the first and last pages of the grid

Ad hoc pairs of properties—xxxPageText and xxxPageImageUrl—let you set the labels for
these buttons as desired. The xxx stands for any of the following: First, Last, Next, or Previous.

Sorting Data
Sorting is a delicate, nonlinear operation that normally is quite expensive if performed on the
client. Generally speaking, in fact, the best place to sort records is in the database environ-
ment because of the super-optimized code you end up running most of the time. Be aware
of this as we examine the sorting infrastructure of the GridView control and data source
controls. The GridView doesn’t implement a sorting algorithm; instead, it relies on the data
source control (or the page, if bound to an enumerable object) to provide sorted data.

To enable the GridView’s sorting capabilities, you set the AllowSorting property to true. When
sorting is enabled, the GridView gains the ability of rendering the header text of columns as
links. You can associate each column with a sorting expression by using the SortExpression
property. A sorting expression is any comma-separated sequence of column names. Each
column name can be enriched with an order qualifier such as DESC or ASC. DESC indicates

454 Part II ASP.NET Pages and Server Controls

a descending order, while ASC denotes the ascending order. The ASC qualifier is the default;
if the order qualifier value is omitted, the column is sorted in ascending order. The following
code sets up the GridView column for sorting on the productname data source column:

<asp:GridView runat="server" id="MyGridView" DataSourceID="MySource"
 AllowSorting="true" AutoGenerateColumns="false">
 <Columns>
 <asp:BoundField datafield="productname" headertext="Product"
 sortexpression="productname" />
 <asp:BoundField datafield="quantityperunit"
 headertext="Packaging" />
 </Columns>
</asp:GridView>

Just as for paging, with a GridView no manually written code is required to make sorting
work. If properly configured, the GridView’s sorting infrastructure works without further in-
tervention and in a bidirectional way—that is, if you click on a column sorted in descending
order, it is sorted in ascending order and vice versa. You need to add some custom code only
if you want to implement more advanced capabilities such as showing a glyph in the header
to indicate the direction. Just as for paging, the main snag with sorting is how the underlying
data source control implements it.

Editing Data
A major strength of the GridView control—which makes up for a major shortcoming of the
DataGrid—is the ability to handle updates to the data source. The DataGrid control provides
only an infrastructure for data editing. The DataGrid provides the necessary user interface
elements and fires appropriate events when the user modifies the value of a certain data
field, but it does not submit those changes back to the data source. Developers are left with
the disappointing realization that they have to write a huge amount of boilerplate code to
really persist changes.

With the GridView control, when the bound data source supports updates, the control can
automatically perform this operation, thus providing a truly out-of-the-box solution. The
data source control signals its capability to update through the CanUpdate Boolean property.

The GridView can render a column of command buttons for each row in the grid. These
special command columns contain buttons to edit or delete the current record. With the
DataGrid, you must explicitly create an edit command column using a special column type—
the EditCommandColumn class. The GridView simplifies things quite a bit for update and
delete operations.

 Chapter 10 Data Binding 455

In-place editing refers to the grid’s ability to support changes to the currently displayed
 records. You enable in-place editing on a grid view by turning on the AutoGenerateEditButton
Boolean property:

<asp:gridview runat="server" id="GridView1" datasourceid="MySource"
 autogeneratecolumns="false" autogenerateeditbutton="true">
 ...
</asp:gridview>

When the AutoGenerateEditButton property is set to true, the GridView displays an additional
column, like that shown in Figure 10-11. By clicking the Edit button, you put the selected row
in edit mode and can enter new data at will.

FIGURE 10-11 A GridView that supports in-place editing.

To abort editing and undo any changes, users simply click the Cancel button. The GridView
can handle this click without any external support; the row returns to its original read-only
state; and the EditIndex property takes back its –1 default value—meaning no row is cur-
rently being edited. But what if users click the update link? The GridView first fires the
RowUpdating event and then internally checks the CanUpdate property on the data source
control. If CanUpdate returns false, an exception is thrown. CanUpdate returns false if the
data source control has no update command defined. The successful completion of an up-
date command is signaled throughout the grid via the RowUpdated event.

The GridView collects values from the input fields and populates a dictionary of name/value
pairs that indicate the new values for each field of the row. The GridView also exposes a
RowUpdating event that allows the programmer to validate the values being passed to the
data source object. In addition, the GridView automatically calls Page.IsValid before starting
the update operation on the associated data source. If Page.IsValid returns false, the opera-
tion is canceled. This is especially useful if you’re using a custom template with validators. If
the grid is bound to an ObjectDataSource control, things go a bit differently. The bound busi-
ness object must have an update method. This method will receive as many arguments as it
needs to work. You can decide to pass parameters individually or grouped in a unique data
structure. This second option is preferable if you have a well-done data access layer (DAL).

456 Part II ASP.NET Pages and Server Controls

Data Source Components
A data source component is a server control designed to interact with data-bound controls
and hide the complexity of the manual data-binding pattern. Data source components not
only provide data to controls, they also support data-bound controls in the execution of oth-
er common operations such as insertions, deletions, sorting, and updates. Each data source
component wraps a particular data provider—relational databases, XML documents, special
object models, or custom classes. The support for custom classes means that you can now
directly bind your controls to existing classes—for example, classes in your business or data
access layer.

Internals of Data Source Controls
A data source control represents one or more named views of data. Each view manages a
collection of data. The data associated with a data source control is managed through SQL-
like operations such as SELECT, INSERT, DELETE, and COUNT and through capabilities such
as sorting and paging. Data source controls come in two flavors: tabular and hierarchical.
Tabular controls are described in Table 10-15.

TABLE 10-15 Tabular Data Source Controls

Class Description
AccessDataSource Represents a connection to a Microsoft Access database. It inherits from the

SqlDataSource control, but it points to an MDB file and uses the Jet 4.0 OLE
DB provider to connect to the database.

EntityDataSource Allows binding to the results of an Entity Framework query.

LinqDataSource Allows binding to the results of any supported LINQ provider, including of
course LINQ-to-SQL. The control offers properties for you to specify the
data context, table name, projection parameters, and where clause.

ObjectDataSource Allows binding to a custom .NET business object that returns data. The class
is expected to follow a specific design pattern and include, for example, a
parameterless constructor and methods that behave in a certain way.

SqlDataSource Represents a connection to an ADO.NET data provider that returns SQL
data, including data sources accessible through OLE DB and ODBC. The
name of the provider and the connection string are specified through prop-
erties.

Note that the SqlDataSource class is not specific to SQL Server. It can connect to any ADO.
NET provider that manages relational data. Hierarchical data source controls are listed in
Table 10-16.

 Chapter 10 Data Binding 457

TABLE 10-16 Hierarchical Data Source Controls

Class Description
SiteMapDataSource Allows binding to any provider that supplies site map information. The

default provider supplies site map data through an XML file in the root
folder of the application.

XmlDataSource Allows binding to XML files and strings with or without schema
 information.

Note that data source controls have no visual rendering. They are implemented as controls to
allow for “declarative persistence” (automatic instantiation during the request processing) as
a native part of the .aspx source code and to gain access to the page view state.

Data Source Views
A named view is represented by a data source view object—an instance of the
DataSourceView class. These classes represent a customized view of data in which special set-
tings for sorting, filtering, and other data operations have been defined. The DataSourceView
class is the base class for all views associated with a data source control. The number of views
in a data source control depends on the connection string, characteristics, and actual con-
tents of the underlying data source. In ASP.NET, built-in data source controls support only
one view, the default view. Table 10-17 lists the properties of the DataSourceView class.

TABLE 10-17 Properties of the DataSourceView Class

Property Description
CanDelete Indicates whether deletions are allowed on the underlying data

source. The deletion is performed by invoking the Delete method.

CanInsert Indicates whether insertions are allowed on the underlying data
source. The insertion is performed by invoking the Insert method.

CanPage Indicates whether the data in the view can be paged.

CanRetrieveTotalRowCount Indicates whether information about the total row count is available.

CanSort Indicates whether the data in the view can be sorted.

CanUpdate Indicates whether updates are allowed on the underlying data
source. The update is performed by invoking the Update method.

Name Returns the name of the current view.

The CanXXX properties indicate not only whether the data source control is capable of
 performing the specified operation but also whether that operation is appropriate given the
current status of the data. Table 10-18 lists all the methods supported by the class.

458 Part II ASP.NET Pages and Server Controls

TABLE 10-18 Methods of the DataSourceView Class

Method Description
Delete Performs a delete operation on the data associated with the view

Insert Performs an insert operation on the data associated with the view

Select Returns an enumerable object filled with the data contained in the underlying
data storage

Update Performs an update operation on the data associated with the view

All data source view objects support data retrieval through the Select method. The method
returns an object that implements the IEnumerable interface. The real type of the object
 depends on the data source control and the attributes set on it.

Hierarchical Data Source Views
Unlike tabular data source controls, which typically have only one named view, hierarchical
data source controls support a view for each level of data that the data source control rep-
resents. Hierarchical and tabular data source controls share the same conceptual specifica-
tion of a consistent and common programming interface for data-bound controls. The only
 difference is the nature of the data they work with—hierarchical vs. flat and tabular.

The view class is different and is named HierarchicalDataSourceView. The class features only
one method—Select—which returns an enumerable hierarchical object. Hierarchical data
source controls are, therefore, read-only.

Important Frankly speaking, I don’t like data source components much. It’s nothing personal;
it’s only business—my business layer, to be precise! Data source components have been one of
the several approaches of Microsoft to make programming easier. With data source components
you write less code and write most of your code in classes instead of ASPX pages. The risk I see
with data source components—and the reason why I don’t much like them—is that they end up
being used everywhere and the entire back-end of the application is built around the needs of
some data source components. I haven’t used the SqlDataSource control for years now; I never
used the LinqDataSource and have no plans to use the EntityDataSource.

My advice, reflected in the book, can be summarized as follows. If you feel you have the need
to model your business domain via an object model, use LINQ-to-SQL or Entity Framework
and write a serious business layer around that. If the classes in the business layer don’t match
up with the expectations of rich controls like a GridView, add another layer of components that
can be easily plugged in via ObjectDataSource. In any case, if you are going to use data source
components for data binding, the only control worth a look is, in my humble opinion, the
ObjectDataSource control.

 Chapter 10 Data Binding 459

The ObjectDataSource Control
The ObjectDataSource class enables user-defined classes to associate the output of their
methods to data-bound controls. Like other data source controls, ObjectDataSource sup-
ports declarative parameters to allow developers to pass page-level variables to the object’s
methods. The ObjectDataSource class makes some assumptions about the objects it wraps.
As a consequence, an arbitrary class can’t be used with this data source control. In particular,
bindable classes are expected to have a default constructor, be stateless, and have methods
that easily map to select, update, insert, and delete semantics. Also, the object must perform
updates one item at a time; objects that update their state using batch operations are not
supported. The bottom line is that managed objects that work well with ObjectDataSource
are designed with this data source class in mind.

Programming Interface of ObjectDataSource
The ObjectDataSource component provides nearly the same programmatic interface (events,
methods, properties, and associated behaviors) as the SqlDataSource, with the addition
of three new events and a few properties. The events the ObjectDataSource fires are re-
lated to the lifetime of the underlying business object the ObjectDataSource is bound to—
ObjectCreating, ObjectCreated, and ObjectDisposing. Table 10-18 lists other key properties of
ObjectDataSource.

TABLE 10-18 Main Properties of ObjectDataSource

Property Description
ConvertNullToDBNull Indicates whether null parameters passed to insert, delete,

or update operations are converted to System.DBNull. This
property is set to false by default.

DataObjectTypeName Gets or sets the name of a class that is to be used as a
 parameter for a select, insert, update, or delete operation.

DeleteMethod, DeleteParameters Gets or sets the name of the method and related parameters
used to perform a delete operation.

EnablePaging Indicates whether the control supports paging.

FilterExpression, FilterParameters Indicates the filter expression (and parameters) to filter the
output of a select operation.

InsertMethod, InsertParameters Gets or sets the name of the method and related parameters
used to perform an insert operation.

MaximumRowsParameterName If the EnablePaging property is set to true, indicates the
 parameter name of the Select method that accepts the value
for the number of records to retrieve.

OldValuesParameterFormatString Gets or sets a format string to apply to the names of any
parameters passed to the Delete or Update methods.

SelectCountMethod Gets or sets the name of the method used to perform a
 select count operation.

460 Part II ASP.NET Pages and Server Controls

Property Description
SelectMethod, SelectParameters Gets or sets the name of the method and related parameters

used to perform a select operation.

SortParameterName Gets or sets the name of an input parameter used to sort
retrieved data. It raises an exception if the parameter is
 missing.

StartRowIndexParameterName If the EnablePaging property is set to true, indicates the
 parameter name of the Select method that accepts the value
for the starting record to retrieve.

UpdateMethod, UpdateParameters Gets or sets the name of the method and related parameters
used to perform an update operation.

The ObjectDataSource control uses reflection to locate and invoke the method to handle the
specified operation. The TypeName property returns the fully qualified name of the assembly
that defines the class to call.

Implementing Data Retrieval
The following code snippet illustrates a class that can be used with an object data source. In
the example, the class does not use LINQ-to-SQL or Entity Framework; it is instead based on
plain ADO.NET code. You can easily rewrite it to perform data access via the context of LINQ-
to-SQL or Entity Framework. The Employee class being used is assumed to be a custom class
created just to simplify data manipulation.

public class EmployeeRepository
{
 public static string ConnectionString {
 ...
 }
 public static void Load(int employeeID) {
 ...
 }
 public static IList<Employee> LoadAll() {
 ...
 }
 public static IList<Employee> LoadByCountry(string country) {
 ...
 }
 public static void Save(Employee emp) {
 ...
 }
 public static void Insert(Employee emp) {
 ...
 }
 public static void Delete(int employeeID) {
 ...
 }
 ...
}

 Chapter 10 Data Binding 461

If you don’t use static methods, the worker class you use with ObjectDataSource must have a
default parameterless constructor. Furthermore, the class should not maintain any state. (The
main drawback of static methods is that they might trip you up when it comes to unit testing
the DAL, if you ever do it.)

The worker class must be accessible from within the .aspx page and can be bound to the
ObjectDataSource control, as shown here:

<asp:ObjectDataSource runat="server" ID="MyObjectSource"
 TypeName="DAL.EmployeeRepository"
 SelectMethod="LoadAll" />

When the HTTP runtime encounters a similar block in a Web page, it generates code that
calls the LoadAll method on the specified class. The returned data—a collection of Employee
instances—is bound to any control that links to MyObjectSource via the DataSourceID
 property. Let’s take a brief look at the implementation of the LoadAll method:

public static EmployeeCollection LoadAll()
{
 var coll = new List<Employee>();

 using (var conn = new SqlConnection(ConnectionString)
 {
 var cmd = new SqlCommand("SELECT * FROM employees", conn);
 conn.Open();
 var reader = cmd.ExecuteReader();
 HelperMethods.FillEmployeeList(coll, reader);
 reader.Close();
 }
 return coll;
}

Although it’s a bit oversimplified so that it can fit in this section, the preceding code remains
quite clear: you execute a command, fill in a custom collection class, and return it to the
data-bound control. Binding is totally seamless.

The method associated with the SelectMethod property must return any of the following: an
IEnumerable object such as a collection, a DataSet, a DataTable, or an Object. Preferably, the
Select method is not overloaded, although ObjectDataSource doesn’t prevent you from using
an overloaded method in your business classes.

462 Part II ASP.NET Pages and Server Controls

Using Parameters
In most cases, methods require parameters. SelectParameters is the collection you use to add
input parameters to the select method. Imagine you have a method to load employees by
country/region. Here’s the code you need to come up with:

<asp:ObjectDataSource ID="ObjectDataSource1" runat="server"
 TypeName="DAL.EmployeeRepository"
 SelectMethod="LoadByCountry">
 <SelectParameters>
 <asp:ControlParameter Name="country" ControlID="Countries"
 PropertyName="SelectedValue" />
 </SelectParameters>
</asp:ObjectDataSource>

The preceding code snippet is the declarative version of the following pseudocode, where
Countries is expected to be a drop-down list filled with country/region names:

string country = Countries.SelectedValue;
EmployeeCollection coll = Employees.LoadByCountry(country);

The ControlParameter class automates the retrieval of the actual parameter value and the
binding to the parameter list of the method. What if you add an [All Countries] entry to the
drop-down list? In this case, if the All Countries option is selected, you need to call LoadAll
without parameters; otherwise, if a particular country/region is selected, you need to call
LoadByCountry with a parameter. Declarative programming works great in the simple
 scenarios; otherwise, you just write code.

void Page_Load(object sender, EventArgs e)
{
 // Must be cleared every time (or disable the viewstate)
 ObjectDataSource1.SelectParameters.Clear();

 if (Countries.SelectedIndex == 0)
 ObjectDataSource1.SelectMethod = "LoadAll";
 else
 {
 ObjectDataSource1.SelectMethod = "LoadByCountry";
 ControlParameter cp = new ControlParameter("country",
 "Countries", "SelectedValue");
 ObjectDataSource1.SelectParameters.Add(cp);
 }
}

Note that data source controls are like ordinary server controls and can be programmatically
configured and invoked. In the code just shown, you first check the selection the user made
and, if it matches the first option (All Countries), configure the data source control to make a
parameterless call to the LoadAll method.

 Chapter 10 Data Binding 463

You must clean up the content of the SelectParameters collection upon page loading.
The data source control (more precisely, the underlying view control) caches most of its
properties to the view state. As a result, SelectParameters is not empty when you refresh
the page after changing the drop-down list selection. The preceding code clears only the
SelectParameters collection; performancewise, it could be preferable to disable the view state
altogether on the data source control. However, if you disable the view state, all collections
will be empty on the data source control upon loading.

Important ObjectDataSource allows data to be retrieved and updated while keeping data
 access and business logic separate from the user interface. The use of the ObjectDataSource class
doesn’t automatically transform your system into a well-designed, effective n-tiered system. Data
source controls are mostly a counterpart to data-bound controls so that the latter can work more
intelligently.

To take full advantage of ObjectDataSource, you need to have your DAL already in place. It
doesn’t work the other way around. ObjectDataSource doesn’t necessarily have to be bound to
the root of the DAL, which could be on a remote location and perhaps behind a firewall. In this
case, you write a local intermediate object and connect it to ObjectDataSource on one end and
to the DAL on the other end. The intermediate object acts as an application-specific proxy and
works according to the application’s specific rules. ObjectDataSource doesn’t break n-tiered sys-
tems, nor does it transform existing systems into truly n-tier systems. It greatly benefits, instead,
from existing business and data layers.

Caching Data and Object Instances
The ObjectDataSource component supports caching only when the specified select method
returns a DataSet or DataTable object. If the wrapped object returns a custom collection (as
in the example we’re considering), an exception is thrown. Custom object caching is some-
thing you must do on your own.

ObjectDataSource is designed to work with classes in the business layer of the application.
An instance of the business class is created for each operation performed and is destroyed
shortly after the operation is completed. This model is the natural offspring of the stateless
programming model that ASP.NET promotes. In the case of business objects that are par-
ticularly expensive to initialize, you can resort to static classes or static methods in instance
classes. (If you do so, bear in mind what I said earlier regarding unit testing classes with static
methods.)

Instances of the business object are not automatically cached or pooled. Both options,
though, can be manually implemented by properly handling the ObjectCreating and
ObjectDisposing events on an ObjectDataSource control. The ObjectCreating event fires when

464 Part II ASP.NET Pages and Server Controls

the data source control needs to get an instance of the business class. You can write the han-
dler to retrieve an existing instance of the class and return that to the data source control:

// Handle the ObjectCreating event on the data source control
public void BusinessObjectBeingCreated(object sender,
 ObjectDataSourceEventArgs e)
{
 BusinessObject bo = RetrieveBusinessObjectFromPool();
 if (bo == null)
 bo = new BusinessObject();
 e.ObjectInstance = bo;
}

Likewise, in ObjectDisposing you store the instance again and cancel the disposing operation
being executed:

// Handle the ObjectDisposing event on the data source control
public void BusinessObjectBeingDisposed(object sender,
 ObjectDataSourceDisposingEventArgs e)
{
 ReturnBusinessObjectToPool(e.ObjectInstance);
 e.Cancel = true;
}

The ObjectDisposing event allows you to perform cleanup actions in your business object
before the ObjectDataSource calls the business object’s Dispose method. If you’re caching the
business object, as the preceding code has done, be sure to set the cancel flag so that the
business object’s Dispose method isn’t invoked and the cached object isn’t as a result stored
in a disposed state.

Setting Up for Paging
Three properties participate in paging: EnablePaging, StartRowIndexParameterName, and
MaximumRowsParameterName. As the name clearly suggests, EnablePaging toggles sup-
port for paging on and off. The default value is false, meaning that paging is not turned
on automatically. ObjectDataSource provides an infrastructure for paging, but actual pag-
ing must be implemented in the class bound to ObjectDataSource. In the following code
snippet, the Customers class has a method, LoadByCountry, that takes two additional
parameters to indicate the page size and the index of the first record in the page. The
names of these two parameters must be assigned to MaximumRowsParameterName and
StartRowIndexParameterName, respectively.

<asp:ObjectDataSource ID="ObjectDataSource1" runat="server"
 TypeName="DAL.CustomerRepository"
 StartRowIndexParameterName="firstRow"
 MaximumRowsParameterName="totalRows"
 SelectMethod="LoadByCountry">
 <SelectParameters>
 <asp:ControlParameter Name="country" ControlID="Countries"

 Chapter 10 Data Binding 465

 PropertyName="SelectedValue" />
 <asp:ControlParameter Name="totalRows" ControlID="PageSize"
 PropertyName="Text" />
 <asp:ControlParameter Name="firstRow" ControlID="FirstRow"
 PropertyName="Text" />
 </SelectParameters>
</asp:ObjectDataSource>

The implementation of paging is up to the method and must be coded manually.
LoadByCountry provides two overloads, one of which supports paging. Internally, paging is
actually delegated to FillCustomerList.

public static CustomerCollection LoadByCountry(string country)
{
 return LoadByCountry(country, -1, 0);
}
public static CustomerCollection LoadByCountry(string country,
 int totalRows, int firstRow)
{
 CustomerCollection coll = new CustomerCollection();

 using (SqlConnection conn = new SqlConnection(ConnectionString))
 {
 SqlCommand cmd;
 cmd = new SqlCommand(CustomerCommands.cmdLoadByCountry, conn);
 cmd.Parameters.AddWithValue("@country", country);

 conn.Open();
 SqlDataReader reader = cmd.ExecuteReader();
 HelperMethods.FillCustomerList(coll, reader, totalRows, firstRow);
 reader.Close();
 conn.Close();
 }

 return coll;
}

As you can see in the companion source code, FillCustomerList simply scrolls the whole result
set using a reader and discards all the records that don’t belong in the requested range. You
could perhaps improve upon this approach to make paging smarter. What’s important here
is that paging is built into your business object and exposed by data source controls to the
pageable controls through a well-known interface.

Updating and Deleting Data
To update underlying data using ObjectDataSource, you need to define an update/insert/
delete method. All the actual methods you use must have semantics that are well suited to
implement such operations. Here are some good prototypes for the update operations:

public static void Save(Employee emp)
public static void Insert(Employee emp)
public static void Delete(Employee emp)
public static void Delete(int id)

466 Part II ASP.NET Pages and Server Controls

More so than with select operations, update operations require parameters. To update a
 record, you need to pass new values and one or more old values to make sure the right
record to update is located and to take into account the possibility of data conflicts. To
delete a record, you need to identify it by matching a supplied primary key parameter. To
specify input parameters, you can use command collections such as UpdateParameters,
InsertParameters, or DeleteParameters. Let’s examine update/insert scenarios first.

To update an existing record or insert a new one, you need to pass new values. This can be
done in either of two ways—listing parameters explicitly or aggregating all parameters in an
all-encompassing data structure. The prototypes shown previously for Save and Insert follow
the latter approach. An alternative might be the following:

void Save(int id, string firstName, string lastName, ...)
void Insert(string firstName, string lastName, ...)

You can use command parameter collections only if the types involved are simple types—
numbers, strings, dates.

To make a custom class such as Employee acceptable to the ObjectDataSource control, you
need to set the DataObjectTypeName property:

<asp:ObjectDataSource ID="RowDataSource" runat="server"
 TypeName="DAL.EmployeeRepository"
 SelectMethod="Load"
 UpdateMethod="Save"
 DataObjectTypeName="DAL.Employee">
 <SelectParameters>
 <asp:ControlParameter Name="id" ControlID="GridView1"
 PropertyName="SelectedValue" />
 </SelectParameters>
</asp:ObjectDataSource>

The preceding ObjectDataSource control saves rows through the Save method, which
takes an Employee object. Note that when you set the DataObjectTypeName property, the
UpdateParameters collection is ignored. The ObjectDataSource instantiates a default instance
of the object before the operation is performed and then attempts to fill its public members
with the values of any matching input fields found around the bound control. Because this
work is performed using reflection, the names of the input fields in the bound control must
match the names of public properties exposed by the object in the DataObjectTypeName
property. A practical limitation you must be aware of is the following: you can’t define the
Employee class using complex data types, as follows:

public class Employee {
 public string LastName { get; set; }
 public string FirstName { get; set; }
 ...
 public Address HomeAddress {...}
}

 Chapter 10 Data Binding 467

Representing individual values (strings in the sample), the LastName and FirstName members
have good chances to match an input field in the bound control. The same can’t be said for
the HomeAddress member, which is declared with a custom aggregate type such as Address.
If you go with this schema, all the members in Address will be ignored; any related informa-
tion won’t be carried into the Save method, with resulting null parameters. All the members
in the Address data structure should become members of the Employee class.

Unlike the insert operation, the update operation also requires a primary key value to
uniquely identify the record being updated. If you use an explicit parameter listing, you just
append an additional parameter to the list to represent the ID, as follows:

<asp:ObjectDataSource runat="server" ID="MyObjectSource"
 TypeName="DAL.SimpleBusinessObject"
 SelectMethod="GetEmployees"
 UpdateMethod="SetEmployee">
 <UpdateParameters>
 <asp:Parameter Name="employeeid" Type="Int32" />
 <asp:Parameter Name="firstname" Type="string" />
 <asp:Parameter Name="lastname" Type="string" />
 <asp:Parameter Name="country" Type="string" DefaultValue="null" />
 </UpdateParameters>
</asp:ObjectDataSource>

Note that by setting the DefaultValue attribute to null, you can make a parameter optional.
A null value for a parameter must then be gracefully handled by the business object method
that implements the update.

There’s an alternative method to set the primary key—through the DataKeyNames property
of GridView and DetailsView controls. I’ll briefly mention it here and cover it in much greater
detail in the next two chapters:

<asp:GridView runat="server" ID="grid1"
 DataKeyNames="employeeid"
 DataSourceId="MyObjectSource"
 AutoGenerateEditButton="true">
 ...
</asp:GridView>

When DataKeyNames is set on the bound control, data source controls automatically add a
parameter to the list of parameters for update and delete commands. The default name of
the parameter is original_XXX, where XXX stands for the value of DataKeyNames. For the
operation to succeed, the method (or the SQL command if you’re using SqlDataSource) must
handle a parameter with the same name. Here’s an example:

UPDATE employees SET lastname=@lastname
 WHERE employeeid=@original_employeeid

468 Part II ASP.NET Pages and Server Controls

The name format of the key parameter can be changed at will through the
OldValuesParameterFormatString property. For example, a value of ‘{0}’ assigned to the
 property would make the following command acceptable:

UPDATE employees SET lastname=@lastname
 WHERE employeeid=@employeeid

Setting the DataKeyNames property on the bound control (hold on, note that it’s not a
 property on the data source control) is also the simplest way to configure a delete operation.
For a delete operation, in fact, you don’t need to specify a whole record with all its fields; the
key is sufficient.

Configuring Parameters at Runtime
When using ObjectDataSource with an ASP.NET made-to-measure control (for example,
GridView), most of the time the binding is totally automatic and you don’t have to deal
with it. If you need it, though, there’s a back door you can use to take control of the update
 process—the Updating event:

protected void Updating(object sender,
 ObjectDataSourceMethodEventArgs e)
{
 var emp = e.InputParameters[0] as Employee;
 if (emp == null) return;
 emp.LastName = "WhosThisGuy";
}

The event fires before the update operation climaxes. The InputParameters collection lists the
parameters being passed to the update method. The collection is read-only, meaning that
you can’t add or delete elements. However, you can modify objects being transported, as the
preceding code snippet demonstrates.

This technique is useful when, for whatever reasons, the ObjectDataSource control doesn’t
load all the data its method needs to perform the update. A similar approach can be taken
for deletions and insertions as well.

 Chapter 10 Data Binding 469

Summary
ASP.NET data binding has three faces: classic source-based binding, data source controls, and
data-binding expressions. Data-binding expressions serve a different purpose than the other
two binding techniques. Expressions are used declaratively and within templated controls.
They represent calculated values bindable to any property.

The old data-binding model (the same one introduced with ASP.NET 1.x) is maintained intact
with enumerable collections of data bound to controls through the DataSource property and
a few others that are related. In addition, a new family of controls has made its debut over
the years—data source controls. By virtue of being implemented as a control, a data source
component can be declaratively persisted into a Web page without any further effort in
code. In addition, data source controls can benefit from other parts of the page infrastruc-
ture, such as the view state and ASP.NET cache. Data source controls accept parameters, pre-
pare and execute a command, and return results (if any). Commands include the typical data
operations: select, insert, update, delete, and total count.

The most interesting consequence of data source controls is the tight integration with
some new data-bound controls. These smarter data-bound controls (GridView, FormView,
DetailsView) contain logic to automatically bind at appropriate times on behalf of the page
developer, and they interact with the underlying data source intelligently, requiring you to
write much less code. Existing data-bound controls have been extended to support data
source controls, but only for select operations.

Data source controls make declarative, codeless programming easier and likely to happen in
reality. Data source controls, though, are just tools and not necessarily the right tool for the
job you need to do. Use your own judgment on a per-case basis.

In the next chapter, we take a look at the ListView control—probably the only data-bound
control you would have in ASP.NET if ASP.NET were to be rewritten from scratch today.

 471

Chapter 11

The ListView Control
It’s a job that’s never started that takes the longest to finish.

—J. R. R. Tolkien

The ListView control sums up the features of multiple view controls in a single one. For
 example, it can be used to create a tabular view of data nearly identical to the view you can
obtain from a GridView or DataGrid control. At the same time, the ListView control can be
employed to generate a multicolumn layout with the flexibility that only a general-purpose
Repeater or, better yet, DataList control can offer.

The ListView control doesn’t only have similarities with other controls; it also has a number of
unique features that, when evaluated from a wider perspective, make similarities shine under
a different light. ListView uses similarities with other controls as the starting point for building
more advanced and unique capabilities that warrant it having its own space in the toolbox of
ASP.NET controls.

In this chapter, I’ll focus on exploring the programming interface of the ListView control and
its usage in a variety of common scenarios.

The ListView Control
The control is fully template based and allows you to control all aspects of the user interface
via templates and properties. ListView operates in a way that closely resembles the behavior
of existing data-bound controls, such as FormView or DataList. However, unlike these con-
trols, the ListView control never creates any user-interface layout. Every markup tag that the
control generates is entirely under the developer’s control, including header, footer, body,
item, selected item, and so on.

The ListView control binds to any data source control and executes its set of data operations.
It can page, update, insert, and delete data items in the underlying data source as long as the
data source supports these operations. In most cases, no code is required to set up any of
these operations. If code is required, you can also explicitly bind data to the control using the
more traditional DataSource property and related DataBind method.

The rendering capabilities of the ListView control make it suitable for publishing scenarios
where a read-only, but compelling, user interface is needed. The control also works great in
editing scenarios even though it lacks some advanced features such as input validation or
made-to-measure edit templates for particular types of data or foreign keys.

472 Part II ASP.NET Pages and Server Controls

The ListView Object Model
Data binding and template support are the principal characteristics of the ListView control
that are most obvious when you examine the control’s programming model. From the pro-
grammer’s perspective, the key thing to be aware of is that you need to specify at least two
template properties for the ListView control to compile and work. They are LayoutTemplate
and ItemTemplate. In addition, the overall layout template must expose a connection point to
the control so that bound records can be merged into the final markup.

Properties of the ListView Control
The ListView layout supports several properties that fall into two main categories: behavior
and templates. It also supports a few general ASP.NET control properties and binding
 properties. Table 11-1 lists the behavioral properties.

TABLE 11-1 ListView Behavior Properties
Property Description
ConvertEmptyStringToNull Boolean value, indicates whether empty string values are automatically

converted to null values when any contents edited in the control’s
 interface are saved back to the data source.

EditIndex Gets or sets the index of the item being edited.

EditItem Gets the item that is currently in edit mode within a ListView control.
The type of the item is ListViewItem.

GroupItemCount Gets or sets the number of items to display per group.

GroupPlaceholderID Gets or sets the ID of the page element where the content for the
ListView groups will be placed. The placeholder must be a server
 element flagged with the runat attribute. If a value for this property is
not specified, a value of groupPlaceholder is assumed.

InsertItem Gets the item that is currently in insert mode within a ListView control.
The type of the item is ListViewItem.

InsertItemPosition Gets or sets the location of the insert template. Feasible values are
 defined in the InsertItemPosition enumerated type: FirstItem, LastItem,
or None.

ItemPlaceholderID Gets or sets the ID of the page element that will host data-bound
items. The placeholder must be a server element flagged with
the runat attribute. If this property is not specified, a value of
ItemPlaceholder is assumed.

Items Gets the collection of bound items.

SelectedDataKey Gets the data-key array of values for the selected item. This value
 coincides with SelectedValue except when multiple key fields are used.

SelectedIndex Gets or sets the index of the currently selected item.

SelectedValue Gets the data-key value of the first key field of the selected item.

SortDirection Gets the sort direction of the field or fields being sorted.

SortExpression Gets the sort expression that is associated with the field or fields
 being sorted.

 Chapter 11 The ListView Control 473

Two properties in this list are somewhat new even to seasoned ASP.NET developers. They are
ItemPlaceholderID and GroupPlaceholderID. When you are using groups to represent bound
items, the group placeholder is the server-side ASP.NET control that, when added to the
layout template, indicates where the group will be rendered. Similarly, the item placeholder
indicates where bound items will be rendered. You add the item placeholder to the item
template or to the group template if you are using groups.

The key thing about the ListView control is its full support for templates and the subsequent
highly flexible rendering engine. Table 11-2 lists the templates the control supports.

TABLE 11-2 ListView Template Properties
Property Description
AlternatingItemTemplate Indicates the template used to render every other bound item. If this

property is not specified, all items are usually rendered using the item
template. The alternating item template usually contains the same
controls and content as the item, but with a different style to distin-
guish items.

EditItemTemplate Indicates the template to use for editing each bound item. The edit
template usually contains input controls to update the values of the
bound record. An edit template should also contain buttons to save
and discard changes.

EmptyDataTemplate Indicates the template to render when the data source bound to the
ListView control is empty. When this happens, the empty data tem-
plate is rendered instead of the layout template. Note, though, that
the InsertItemTemplate takes precedence if InsertItemPosition is not set
to None.

EmptyItemTemplate Indicates the template to render when there are no more data items
to display in the last group.

GroupSeparatorTemplate Indicates the template used to put custom content between each
group in the ListView control.

GroupTemplate Indicates the template used to create a tiled layout for the contents of
the ListView control. In a tiled layout, the items are repeated horizon-
tally in a row according to the value of the GroupItemCount property.

InsertItemTemplate Indicates the template to use for inserting a new data item. The insert
template contains input controls to gather data to initialize a new
record. An insert template should also contain buttons to save and
discard changes.

ItemSeparatorTemplate Indicates the template used to specify the content for the separator
between the items of a ListView control.

ItemTemplate Indicates the template to use to render items bound to the control.

LayoutTemplate Indicates the template to render the root container of any contents
displayed through the ListView control. This template is no longer
r equired in ASP.NET 4.

SelectedItemTemplate Indicates the template used to render the currently selected data item.

474 Part II ASP.NET Pages and Server Controls

In addition to the properties listed in Table 11-1 and Table 11-2, the ListView control has a
number of data-binding properties, including DataKeyNames, DataSource, DataSourceID,
and DataMember.

The DataKeyNames property specifies the fields that represent the primary key of the
data source. When you set this property declaratively, you use a comma-separated list of
field names. The underlying type is an array of strings. Strictly related to DataKeyNames is
DataKeys. This property contains an object that identifies the unique key for each item that is
currently displayed in the ListView control. Through the DataKeys collection, you can access
the individual values that form the primary key for each displayed record.

DataSource and DataSourceID provide two mutually exclusive ways of bringing data inside
of the control. The DataSource property represents an enumerable collection of bindable
records; the DataSourceID property points to a data source control in the page that does the
entire job of retrieving and binding data. Starting with ASP.NET 2.0, all data controls can be
bound to a data source control, but not all of them can fully leverage the capabilities of a
data source control. Only view controls such as GridView and DetailsView can, for example,
update the record in the data source or page and sort based on the capabilities of the under-
lying data source. Older data-bound controls, such as DataList, support only the read-only
interface of data source controls. In this regard, the ListView control is a logical specialization
of the DataList control that does provide full support for the capabilities of the underlying
data source control. (In the OO meaning of the word, ListView and DataList have nothing in
common.)

Finally, because the ListView control inherits from WebControl, it features a bunch of
 user-interface properties, including Style, CssClass, SkinID, Visible, and EnableTheming.

Note  The ListView control lacks the usual ton of style properties that characterize all other view
controls in ASP.NET. The output of the ListView control can be styled at your leisure, but only by
using cascading style sheets (CSS) directly, without even the mediation from ASP.NET themes.

This is intentional for a number of reasons. First, the control benefits from the momentum that
CSS-based layouts are gaining in the industry. Second, Microsoft Visual Studio comes with a CSS
editor through which editing and attaching styles to HTML elements is a breeze. Finally, the ex-
treme flexibility of the markup generated by the ListView control would be hindered in several
ways by ASP.NET themes. Themes work with entire ASP.NET controls, whereas the ListView con-
trol is an ASP.NET control that generates its output based on a template that is, when all is said
and done, made of pure HTML you control at a fine-grained level.

Events of the ListView Control
The ListView control has no specific methods worth mentioning. Table 11-3 lists the events
that the control fires during its life cycle.

 Chapter 11 The ListView Control 475

TABLE 11-3 Events of the ListView Class
Event Description
ItemCanceling Occurs when the user requests a cancel operation, but before the

control cancels the ongoing insert or edit operation.

ItemCommand Occurs when the user clicks on any buttons found in the body of the
control.

ItemCreated Occurs when a new item in the ListView control is being created.

ItemDataBound Occurs when an item is bound to its data.

ItemDeleting, ItemDeleted The two events occur before and after, respectively, the deletion of
an item. The operation is requested by the interface of the ListView
control.

ItemEditing Occurs when an edit operation is requested, but before the ListView
switches to the edit template.

ItemInserting, ItemInserted The two events occur before and after, respectively, the insertion of
an item. The operation is requested by the interface of the ListView
control.

ItemUpdating, ItemUpdated The two events occur before and after, respectively, the update of
an item. The operation is requested by the interface of the ListView
control.

LayoutCreated Occurs when the layout template is created.

PagePropertiesChanging,
PagePropertiesChanged

The two events occur before and after, respectively, the properties of
a page of data in the ListView control change. A page of data is the
set of items that form a page in a paged ListView control. Page prop-
erties include page size and start row index.

SelectedIndexChanging,
SelectedIndexChanged

The two events occur before and after, respectively, the ListView
control handles the selection of a displayed item and switches to the
selected-item template.

Sorting, Sorted The two events occur before and after, respectively, the associated
data source is sorted.

As you can see, most of the events are related to the life cycle of individual data items. You
can control when an item is created, deleted, inserted, or edited. Events fire before and after
a given operation is accomplished. So you find doing/done pairs of events for each funda-
mental operation, such as ItemInserting/ItemInserted or ItemDeleting/ItemDeleted events. You
can determine which item type is being created by using the ItemType property on the event
data structure. Feasible values are DataItem, InsertItem, and EmptyItem. These values belong
to the ListViewItemType enumerated type.

The ListView control also features typical events of ASP.NET controls such as Init, Load,
PreRender, DataBinding, and Unload. You can handle these events the same way you handle
them for other ASP.NET controls.

476 Part II ASP.NET Pages and Server Controls

Note The ItemCommand event fires only if the original click event is not handled by a
 predefined method. This typically occurs if you define custom buttons in one of the templates.
You do not need to handle this event to intercept any clicking on the Edit or Insert button.

Compared to Other View Controls
The view controls introduced with previous versions of ASP.NET solved many problems that
developers were facing every day. Controls such as GridView and DetailsView make it a snap
to create a list of records and even arrange a master/detail view. However, they offer limited
control over the actual markup generated. Want an example? With a GridView control, plac-
ing a TBODY tag around the group of child rows is not a trivial task. And it is almost impos-
sible to do with a DataGrid control, unless you resort to your most advanced skills and take
on the tough task of deriving a custom grid control.

On the other hand, adapting the final markup to the actual needs would be quite a simple
task if the view controls introduced with earlier versions of ASP.NET provided a bit more
programmatic control over the rendering process and templating. This is just one of the key
capabilities you gain with the ListView control. As you’ll see in a moment, the ListView con-
trol is flexible enough to render out in a tabular or tiled manner. It can be used to replace
the GridView control, at least in relatively common situations, but also to create completely
 custom layouts.

This said, let’s briefly compare the ListView control to the other view controls available in
ASP.NET to see exactly what each control can do and cannot do. Table 11-4 lists and briefly
describes the view controls.

TABLE 11-4 Rich, Data-Bound View Controls in ASP.NET
Control Description
DetailsView Designed to represent a single record of data, the control renders out a tabular and

fixed layout. You decide the fields to be rendered and their format. You can use tem-
plates to customize the appearance of individual data fields, but you can’t change
the overall table-based layout. The control supports in-place editing as well as inser-
tion and deletion, and it goes down to the bound data source control for the actual
data access tasks. As long as the underlying data source supports paging and sort-
ing, the control makes these functionalities available through its own user interface.

FormView The FormView control can be considered to be the fully templated version of the
DetailsView control. It renders one record at a time, picked from the associated data
source and, optionally, supplies paging buttons to navigate between records. It
doesn’t provide any free user interface. You have to build all of it using header, item,
and footer templates. FormView doesn’t use data control fields and requires the user
to define the rendering of each item by using templates. It supports any basic data
access operation its data source supports, but you have to provide ad hoc trigger
buttons.

 Chapter 11 The ListView Control 477

Control Description
GridView The GridView control provides a tabular, grid-like view of the contents of a data

source. Each column represents a data source field, and each row represents a re-
cord. You can use templates to customize individual data fields, but you are forced
to use the tabular representation of contents. The granularity of customizable items
is the table cell. With some hard work, though, you can change the structure of the
table row—for example, you can add or remove cells. You can hardly do more than
this, however. Like other view controls, the GridView also fully supports two-way
data binding.

So where does the ListView control fit in this puzzle of data-bound controls? Like all the
 controls listed in Table 11-4, the ListView control supports two-way data binding—that is, the
ability of displaying and editing the contents of the bound data source. Unlike the others,
though, the ListView control provides the greatest flexibility as far as the generation of the
markup is concerned. It is not limited to a single record like FormView and DetailsView are,
and it is not limited to a tabular layout like the GridView is. It is essentially a repeater with rich
layout capabilities (like a DataList control) and the two-way data-binding capabilities of other
view controls.

Simple Data Binding
You use the ListView control to generate any user interface that needs to be built as
you iterate a collection of records. You associate data with a ListView control using the
DataSource property or, better yet, using the DataSourceID property. In the former case, you
explicitly provide the data and control any aspect of the binding process. The DataSourceID
property connects the control to a data source component. The binding process is mostly
automatic, but it works both ways—it reads and saves data. The following data source
 control populates a ListView control with customers who reside in the United States:

<asp:ObjectDataSource ID="ObjectDataSource1" runat="server"
 TypeName="DAL.CustomerRepository"
 SelectMethod="LoadByCountry"
 OldValuesParameterFormatString="original_{0}">
 <SelectParameters>
 <asp:Parameter DefaultValue="USA" Name="country" />
 </SelectParameters>
</asp:ObjectDataSource>

478 Part II ASP.NET Pages and Server Controls

The data source control invokes the LoadByCountry method on the specified business object
and makes the response available to any bound control. Let’s use a ListView control:

<asp:ListView ID="ListView1" runat="server"
 DataSourceID="ObjectDataSource1"
 ItemPlaceholderID="ListViewContent">
 <LayoutTemplate>
 <div id="header">
 <h1 id="logo">Customer List</h1>
 </div>
 <div runat="server" id="ListViewContent">
 <%-- ListView contents display here --%>
 </div>
 </LayoutTemplate>
 <ItemTemplate>
 <asp:Label runat="server" ID="lblCompany" Text='<%# Eval("CompanyName") %>' />
 ,
 <asp:Label runat="server" ID="lblCountry" Text='<%# Eval("Country") %>' />
 </ItemTemplate>
 <ItemSeparatorTemplate>
 <hr />
 </ItemSeparatorTemplate>
</asp:ListView>

In this example, the ListView control comprises three templates: layout, item, and item
separator. Of the three, only the item separator template is optional. The layout template
defines the overall structure of the output. The <div> element in the layout marked with the
runat=server attribute represents the insertion point for a pair of item and item separator
templates. The item template is finally filled with the actual data from the n.th record. The
Eval method evaluates the specified property on the data item being currently bound. The
Eval method works in reading; as we’ll see later, the Bind method works also in writing.

The item markup is made of a company name and country separated by a comma, and
they are vertically separated from one another by a horizontal rule. Figure 11-1 shows
the final results.

 Chapter 11 The ListView Control 479

FIGURE 11-1  A simple ListView control in action.

Defining the Layout of the List
Most templated ASP.NET controls provide optional header and footer templates along with a
repeated and data-bound item template. Header and footer templates are instantiated only
once each, at the beginning and end, respectively, of the data binding loop. You can hide the
header and footer, but most controls implicitly force you to think about the layout in terms of
three components placed vertically: the header, body, and footer.

In this regard, the ListView control is different. It has no header or footer template, and it
 features just one template for the structure of the resulting markup: the layout template. If
you need a header or a footer, you can easily place them in the layout. But if you need to
 develop the layout horizontally or in a tiled manner, the ListView approach makes it easier.

Up until ASP.NET 3.5, the layout template was mandatory in any ListView control. This is no
longer the case, however, with ASP.NET 4. You can use the layout template as follows:

<LayoutTemplate>
 <div runat="server" ID="Body">
 ...
 </div>
</LayoutTemplate>

480 Part II ASP.NET Pages and Server Controls

Instead of the <div> tag, you can use a tag or provide appropriate CSS styling if you
like the output flow with the rest of the page. The layout template must contain a server-
side element that acts as the insertion point for data-bound item templates. This can be an
HTML element decorated with the runat attribute or an ASP.NET server control. The ID of this
 placeholder element must be passed to the ListView’s ItemPlaceholderID property.

The LayoutTemplate property alone is not enough, though. At a minimum, you must also
specify content for the ItemTemplate or GroupTemplate property. As mentioned, to bind to
data, you use ASP.NET <%# … %> data-binding expressions and the Eval or Bind method.

Note Like any other template properties in ASP.NET controls, the template properties of
the ListView control can be set programmatically as well as declaratively. You can assign to a
template property any managed object that implements the ITemplate interface. Such an object
can be obtained from an ASCX user control by using the LoadTemplate method on the
System.Web.UI.Page class.

Let’s put the graphical flexibility of the ListView control through its paces by examining how
to render bound data using a number of layouts.

Building a Tabular Layout
The ListView control is the perfect tool to build a table-based interface with more liberty
than specialized controls such as DataGrid and GridView typically allow. By properly design-
ing the layout template of a ListView control, you can create an outermost table and then
arrange a completely custom output for the child rows. In this way, you gain control over the
rows and can, for example, employ two rows per record and even give each row a different
number of cells. This level of control is extremely hard to achieve with a GridView control,
 although it’s not impossible. To customize the GridView control to this level of detail, you
need to override some of its protected virtual methods. Doing this requires the creation of a
new derived control whose behavior touches on parts of the internal mechanics of the grid.

A ListView control lets you achieve the same results, but much more comfortably and with
full support from Visual Studio 2008 designers.

Definition of the Overall Layout
To generate an HTML table, the ListView control needs to have a layout template defined as
in the following code snippet:

<LayoutTemplate>
 <div>
 <h1 id="logo">Customer List</h1>
 </div>

 Chapter 11 The ListView Control 481

 <div>
 <table>
 <thead>
 <tr>
 <th>Company</th>
 <th>Country</th>
 </tr>
 <tbody runat="server" id="ListViewContent">
 </tbody>
 </thead>
 </table>
 </div>
</LayoutTemplate>

The layout comprises two <div> elements, both of which are optional from a purely
 functional perspective. The <div> element, in fact, simplifies the process of styling the
 output, as you’ll see later in this chapter. Generally, the output is made of two HTML blocks—
one for the header and one for the actual data.

The layout template defines the overall markup by defining the <table> tag and adding a
child <thead> tag. Next, a <tbody> tag wraps the child rows, each of which will be bound
to a data record. In this case, the <tbody> tag hosts the item templates. For this reason, it
features the runat attribute and has its own ID set as the argument of the ItemPlaceholderID
property of the ListView control:

<asp:ListView ID="ListView1" runat="server"
 DataSourceID="ObjectDataSource1"
 ItemPlaceholderID="ListViewContent">
 ...
</asp:ListView>

The actual body of the resulting table is determined by the item and alternating item
templates.

Definition of the Item Template
In a tabular layout, created using an HTML table, the item template can’t be anything but a
sequence of <tr> tags. Unlike with a pure grid control such as GridView, in a ListView layout
you have no limitation on the number of rows per data item you can display. The following
example uses two table rows per bound item:

<ItemTemplate>
 <tr>
 <td>
 <asp:Label runat="server" ID="lblCompany" Text='<%# Eval("CompanyName") %>' />
 </td>
 <td>
 <asp:Label runat="server" ID="lblCountry" Text='<%# Eval("Country") %>' />
 </td>
 </tr>

482 Part II ASP.NET Pages and Server Controls

 <tr>
 <td colspan="2">
 <i>To contact this customer, please call <%# Eval("Phone") %></i>
 </td>
 </tr>
</ItemTemplate>

The first row contains two cells: one for the company name, and one for the country/region.
The second row shows the phone number on a single-cell row. Both rows are rendered for
each record bound to the ListView control. Figure 11-2 demonstrates the markup you obtain
in this way.

FIGURE 11-2 A tabular layout built with the ListView control.

As you can see in the figure, some extremely simple styles have been applied to the table
items. In particular, the <th> tags and the <td> tag of the second row have been styled to
show a bottom border. Style properties can be applied using CSS styles or explicit inline style
properties, as shown next. (Once again, although inline styles are supported in ASP.NET, they
are considered a deprecated technique. You should always go with CSS classes.)

<th style="border-bottom:solid 3px black;">Company</th>

When comparing this sort of flexibility with the GridView control, the GridView control
 provides a number of free facilities, but it doesn’t offer as much flexibility in design, as seen

 Chapter 11 The ListView Control 483

in this example. To choose, you have to first evaluate your requirements and make a choice
between flexibility of rendering and functions to implement.

Using Alternate Rendering for Data Items
ItemTemplate is mandatory in a ListView control and indicates the template to use for each
bound item. The AlternatingItemTemplate property can be used to differentiate every other
item, as shown in Figure 11-3.

FIGURE 11-3  A tabular layout built with the ListView control using an alternating item template.

Most of the time, the alternating item template just features the same layout as regular items
but styles it differently. However, changes to the template are allowed to any extent that can
keep your users happy. The following code uses a small indentation for alternating rows:

<AlternatingItemTemplate>
 <tr>
 <td>

 <asp:Label runat="server" ID="lblCompany" Text='<%# Eval("CompanyName") %>' />
 </td>

484 Part II ASP.NET Pages and Server Controls

 <td>
 <asp:Label runat="server" ID="lblCountry" Text='<%# Eval("Country") %>' />
 </td>
 </tr>
 <tr>

 <td>

 <i>To contact this customer, please call <%# Eval("Phone") %></i>
 </td>
 </tr>
</AlternatingItemTemplate>

Figure 11-4 shows the result.

FIGURE 11-4  Using a slightly different layout for alternating items.

Reflecting On the Table Layout
HTML tables are an essential, but too often abused, piece of the Web jigsaw puzzle. HTML
tables were designed for presenting tabular information. And they are still great at doing

 Chapter 11 The ListView Control 485

this. So any developer of a Web page that needs to incorporate a matrix of data is correct in
using HTML tables. The problem with tables is that they are often used to define the page
layout—a task they weren’t designed for.

To illustrate, a grid control that uses HTML tables to output its content is more than accept-
able. A tree-view control that uses HTML tables to list its contents is less desirable. It’s not by
mere chance that the ASP.NET team released the CSS adapter toolkit to allow you to change
the rendering engine of some controls to make them inherently more CSS-friendly. And
the TreeView is just one of the controls whose rendering style can be modified by using the
toolkit.

Note Using tables for creating multicolumn layouts—which is still common these days in most
Web sites—has a number of significant drawbacks. Tables require a lot of code (or tags if you
create tables declaratively) that has little to do with the data you intend to display through them.
This code is tedious to write, verbose, and difficult to maintain. Worse yet, it makes for longer
downloads and slower rendering in the browsers (a factor of growing importance for wireless
devices). In addition, tables tend to mix up information and layout instead of forcing you to keep
them neatly separated, and they result in less accessible content.

Building a Flow Layout
Visual Studio provides some facilities to work with ListView controls. Specifically, once you
have bound the control to a data source, Visual Studio queries the data source and offers to
generate some templates for you.

Definition of the Overall Layout
A flow layout is the simplest layout you can get. It requires only that you define a container—
typically, a <div>—and then the markup for each record. The ListView control simply com-
poses the resulting markup by concatenating the markup in a unique flow of HTML tags.
Needless to say, the resulting markup can flow horizontally or vertically, depending on the
tags you use (block or inline) and the CSS styles you apply.

If you’re looking for a block flow layout, your LayoutTemplate property will probably always
look as simple as the one shown here:

<LayoutTemplate>
 <div ID="ListViewContent" runat="server">
 <!-- your markup -->
 </div>
</LayoutTemplate>

486 Part II ASP.NET Pages and Server Controls

If you opt for a tag, instead of getting a new block you get a piece of markup that
flows inline with the rest of the ASP.NET page.

Note that in ASP.NET 4 the LayoutTemplate is optional. You can get the same results if you
simply wrap the markup directly in an ItemTemplate element, as shown here:

<ItemTemplate>
 <!-- your markup -->
</ItemTemplate>

This approach simplifies the definition of a ListView without loss of programming power and
generality.

Definition of the Item Layout
A good example of a flowing template is shown in Figure 11-1. Here’s another example:

<ItemTemplate>
 <div class="border" >
 ID:
 <asp:Label ID="IDLabel" runat="server" Text='<%# Eval("ID") %>' />

 CompanyName:
 <asp:Label ID="CompanyNameLabel" runat="server"
 Text='<%# Eval("CompanyName") %>' />

 ContactName:
 <asp:Label ID="ContactNameLabel" runat="server"
 Text='<%# Eval("ContactName") %>' />

 ContactTitle:
 <asp:Label ID="ContactTitleLabel" runat="server"
 Text='<%# Eval("ContactTitle") %>' />
 </div>
</ItemTemplate>

The <div> tag normally creates a new block of markup and breaks the current flow of HTML.
However, if you give it the float:left CSS style, it will float in the specified direction. As a result,
the block of markup forms a horizontal sequence that wraps to the next line when the border
of the browser’s window is met. Figure 11-5 offers a preview.

Note In the previous chunk of HTML markup, I used and <div> tags with styles applied
and also mixed CSS styles with HTML tags used for controlling the appearance of the page, such
as and
. This approach is clearly arguable. The reason why I haven’t opted for a niftier,
pure CSS-based code in the snippet is clarity. By reading which CSS styles are applied to which
tag, you can more easily make sense of the output depicted in Figure 11-5.

 Chapter 11 The ListView Control 487

FIGURE 11-5  Using the float CSS attribute to display <div> tags as a horizontal sequence.

Building a Tiled Layout
Admittedly, the output of Figure 11-5 is not really attractive, even though it contains a
few elements that, if improved a bit, might lead to more compelling results. The output
of Figure 11-5 shows blocks of markup that flow horizontally and wrap to the next row.
However, they share no common surrounding layout. In other words, those blocks are not
tiled. To build a perfectly tiled output, you need to leverage group templates.

Grouping Items
So far we’ve used the ListView control to repeat the item template for each bound record.
The GroupTemplate property adds an intermediate (and optional) step in this rendering
 process. When you specify a group template, the total number of bound records is par-
titioned in groups and the item template is applied to the records in each group. When a
group has been rendered, the control moves to the next one. Each group of records can have
its own particular template—the group template—and a separator can be inserted between
items and groups. How is the size of each determined? That has to be a fixed value that you

488 Part II ASP.NET Pages and Server Controls

set, either declaratively or programmatically, through the GroupItemCount property. Let’s
consider the following layout and group templates:

<LayoutTemplate>
 <table border="1">
 <tr ID="groupPlaceholder" runat="server">
 </tr>
 </table>
</LayoutTemplate>
<GroupTemplate>
 <tr>
 <td ID="itemPlaceholder" runat="server">
 </td>
 </tr>
</GroupTemplate>

It indicates that the final output will be an HTML table where a new row is created for each
group of items. Each table row contains as many cells as the value of GroupItemCount
sets. The default value is 1. Note that in the preceding code snippet we’re using the de-
fault names for group and item containers—that is, groupPlaceholder and itemPlaceholder.
When these names are used, there’s no need to set corresponding GroupPlaceholderID and
ItemPlaceholderID properties on the ListView markup. Here’s the top-level markup for a tiled
layout:

<asp:ListView ID="ListView1" runat="server"
 DataSourceID="ObjectDataSource1" GroupItemCount="4">
 ...
</asp:ListView>

As an example, if you set GroupItemCount to 4, you’ll have rows of 4 cells each until there are
less than 4 records left. And after that? What if the number of bound records is not a perfect
multiple of the group item count? That’s where the EmptyItemTemplate property fits in:

<EmptyItemTemplate>
 <td />
</EmptyItemTemplate>

This template is used to complete the group when no more data items are available.
Figure 11-6 shows a typical tiled output you obtain by employing a ListView control.

 Chapter 11 The ListView Control 489

FIGURE 11-6  A four-cell tiled layout built with the ListView control.

Using the Group Separator Template
Each group of items can be separated by a custom block of markup defined through the
GroupSeparatorTemplate property. Here’s an example:

<GroupSeparatorTemplate>
 <tr>
 <td colspan='4'> </td>
 </tr>
</GroupSeparatorTemplate>

If you add this markup to the preceding example, you’ll display a blank row in between rows
with data-bound cells. It’s a kind of vertical spacing.

The same can be done horizontally to separate data-bound cells within the same table row.
To do so, you use the ItemSeparatorTemplate property instead. In both cases, the markup
you put in must be consistent with the overall markup being created for the whole ListView
control.

Modifying the Group Item Count Dynamically
The GroupItemCount property is read-write, meaning that you can change the size of each
group programmatically based on some user actions. The following code snippet shows a
pair of event handlers associated with the Click event of two Button controls:

protected void Button1_Click(object sender, EventArgs e)
{
 // There's no upper limit to the value of the property
 ListView1.GroupItemCount += 1;
}

490 Part II ASP.NET Pages and Server Controls

protected void Button2_Click(object sender, EventArgs e)
{
 // The property can't be 2 or less
 if (ListView1.GroupItemCount >2)
 ListView1.GroupItemCount -= 1;
}

The GroupItemCount property itself can’t take any value less than 1, but it has no upper limit.
However, it should not accept any value larger than the actual number of data items cur-
rently bound.

As you assign a new value, the set modifier of the property resets the internal data-binding
flag and orders a new binding operation. If you change the value of GroupItemCount over a
postback, the ListView control automatically renders the updated markup back to the client.
(See Figure 11-7.)

FIGURE 11-7  Changing the size of ListView groups dynamically.

 Chapter 11 The ListView Control 491

The ListView control doesn’t natively support more advanced capabilities—such as uneven
groups of items where, for example, the association between an item and a group is based
on a logical condition and not merely determined by an index. In this scenario, you could
have a list where the first group contains customers whose name begins with A and the sec-
ond group contains those beginning with B, and so on. You would have to provide the logic
for this yourself. Let’s look at this next.

Data-Driven Group Templates
The support for groups built into the ListView control is not data driven. In other words, the
layout (groups and items) is first created and it is then bound to data. When the binding step
occurs, the group template is not directly involved and you won’t receive any event that tells
you that a group has been either created or bound to its data.

However, this doesn’t mean that your group templates must have a fixed layout and can’t be
dynamically populated using data from its contained items. The ListView’s ItemDataBound
event is the key to obtaining output such as that shown in Figure 11-8.

FIGURE 11-8  The header of each group is determined dynamically by looking at the bound contents.

To start out, let’s take a look at the overall layout template of the ListView control:

<asp:ListView ID="ListView1" runat="server"
 DataSourceID="ObjectDataSource1"
 GroupItemCount="5"
 OnItemDataBound="ListView1_ItemDataBound">
 <ItemTemplate>
 <%# Eval("CompanyName") %>
 </ItemTemplate>

492 Part II ASP.NET Pages and Server Controls

 <ItemSeparatorTemplate>

 </ItemSeparatorTemplate>
 <LayoutTemplate>
 <div id="groupPlaceholder" runat="server">
 </div>
 </LayoutTemplate>
 <GroupTemplate>
 <asp:Label runat="server" ID="groupHeader" Text="Group" />
 <hr />
 <div id="itemPlaceholder" runat="server">
 </div>

 </GroupTemplate>
</asp:ListView>

The group template is made of a Label control followed by an <hr> tag and the list of data
items. Each bound item is expressed through an tag. Let’s see how to change the Text
property of the groupHeader control for each group being created. Here’s the structure of
the ItemDataBound event handler:

private int lastGroup = -1;
protected void ListView1_ItemDataBound(object sender, ListViewItemEventArgs e)
{
 // To assign the group a data-bound title, retrieve the data item first
 if (e.Item.ItemType == ListViewItemType.DataItem)
 {
 var currentItem = (ListViewDataItem) e.Item;
 CustomizeGroupHeader((ListView) sender, currentItem);
 }
}

The ListViewItemEventArgs argument contains an Item property that refers to the item being
bound to data. This item can be of a few types—InsertItem, EmptyItem, or DataItem. The list
of feasible values is in the ListViewItemType enumerated type. In this case, we’re interested
only in data items—that is, regular items showing some bound data.

To put your hands on the real data being bound to the item, you need to cast the ListView
item to the ListViewDataItem type, from which you can access a number of data-related
properties:

private void CustomizeGroupHeader(ListView root, ListViewDataItem currentItem)
{
 // The type of the data item depends on the data you bound--in this case,
 // a collection of Customer objects
 var cust = (DAL.Customer) currentItem.DataItem;

 // Get a ListViewContainer object--the container of the group template
 Control container = currentItem.NamingContainer;
 if (container == null)
 return;

 Chapter 11 The ListView Control 493

 // Look up for a particular control in the group template--the Label
 Label groupHeader = (Label)container.FindControl("groupHeader");
 if (groupHeader == null)
 return;

 // Figure out the 0-based index of current group. Note that the display index
 // refers to the index of the item being bound, not the group
 int groupIndex = currentItem.DisplayIndex / root.GroupItemCount;
 if (groupIndex != lastGroup)
 {
 // This is a new group
 lastGroup = groupIndex;

 // Update the UI
 groupHeader.Text = String.Format("Group {0} starting with {1}",
 groupIndex + 1,
 cust.CompanyName.Substring(0, 1).ToUpper());
 }
}

You first get a reference to the naming container of the item. This container is the wrapper
control for the group template. By using the FindControl method, you gain access to the
Label control in the group template. The final step entails determining the value for the Text
property of the Label control.

As mentioned, the ListView control doesn’t provide any readymade information about
groups. So you don’t know about the index of the current group. The DisplayIndex prop-
erty tells you only the index of the item being processed. Because the size of each group is
fixed—and is based on the GroupItemCount property—you can easily obtain the 0-based
index of the current group. You track the index of the current group in a global variable, and
whenever a new group is found, you update the header.

Styling the List
Unlike other view controls, the ListView control doesn’t feature the usual long list of style
properties such as HeaderStyle, ItemStyle, SelectedItemStyle, and so forth. After a few years of
industry use, Microsoft downsized the importance of style properties and their role. Today, as
evidenced by the ListView control, in ASP.NET, CSS styles are emerging as the most effective
and efficient way to modify the appearance of the markup.

Style Properties
ASP.NET controls let you set style attributes in two nonexclusive ways—using the CssClass
property and using style properties. The CssClass property takes the name of a CSS class
and passes it on to the class attribute of the root HTML tag generated for the control. More
often than not, though, ASP.NET controls produce a complex markup where multiple HTML
tags are rendered together but yet need to be styled differently. Although this is far from

494 Part II ASP.NET Pages and Server Controls

being an impossible goal to achieve with CSS styles, for a few years Microsoft pushed style
 properties as the way to go.

Developers are probably more inclined to use style properties than CSS styles, which require
some specific skills. Anyway, style properties let you specify CSS attributes to apply to par-
ticular regions of the markup being generated. For example, the ItemStyle property in a
GridView control allows you to define the colors, font, and borders of each displayed item.
In the end, the value of these properties are translated to CSS attributes and assigned to the
HTML tags via the style attribute. The developers don’t have to build up any CSS skills and
can leverage the Visual Studio editors and designers to get a preview.

Is there anything wrong with this approach?

The problem is that style attributes are defined as part of the page’s code, and there’s no
clear separation between layout and style. ASP.NET themes are helpful and certainly miti-
gate the problem. All in all, for view controls with a relatively fixed layout, style properties—
which are better if used through the intermediation of themes—are still a good option. The
ListView control, though, is kind of an exception.

Using Cascading Style Sheets
The ListView control provides an unprecedented level of flexibility when it comes to
 generating the markup for the browser. The item that for, say, a GridView control can be
safely identified with a table row, can be virtually anything with a ListView control.

The CSS designer in Visual Studio allows you to style controls and save everything back to
a CSS class. So, as a developer, you always work with properties and scalar values but have
them saved back to the CSS class instead of the view state.

This is another important factor that leads developers to prefer cascading style sheets over
style properties. The CSS is a separate file that is downloaded only once. Style properties, on
the other hand, are saved to the view state and continually uploaded and downloaded with
the page.

Cool cascading style sheets are usually developed by designers and assign a style to the vast
majority of HTML tags. Often cascading style sheets incorporate layout information and
influence the structure of the page they are applied to. A common trick used by cascading
style sheets consists of assigning a particular ID to <div> tags and treating them in a special
way. Let’s see how to radically improve the user interface of a previous ListView-based page
with a cool CSS.

First, you explicitly link any relevant CSS file to the page (or the master page) by using the
<link> tag. The HtmlHead control also allows you to load CSS files programmatically. Note

 Chapter 11 The ListView Control 495

that most realistic CSS files have an auxiliary folder of images that you have to set up on the
production server too. The CSS file I’m using in the next example assigns a special role to
<div> tags with the following IDs: header, footer, page, and content. The alternative is to ex-
plicitly assign a CSS class using the class attribute. Both ways are widely accepted. The class
approach makes more obvious that something has been styled and what class it has been
assigned to. But, in the end, it’s a matter of preference. If you opt for styling via IDs, you are
totally free to choose any names you want. (Note, however, that IDs must be unique to allow
them to be used with client scripts. This can be hard to achieve with multiple controls in one
page, so, class names are really preferred.)

<asp:ListView ID="ListView1" runat="server"
 DataSourceID="ObjectDataSource1"
 ItemPlaceholderID="ListViewContent">
 <LayoutTemplate>
 <div id="header">
 <h1 id="logo">Customer List</h1>
 </div>
 <div id="page">
 <div id="content">
 <table>
 <thead>
 <tr>
 <th>Company</th>
 <th>Country</th>
 </tr>
 <tbody runat="server" id="ListViewContent">
 </tbody>
 </thead>
 </table>
 </div>
 </div>
 <div id="footer">
 </div>
 </LayoutTemplate>
 <ItemTemplate>
 <tr>
 <td><asp:Label runat="server" ID="lblName"
 Text='<%# Eval("CompanyName") %>' /></td>
 <td><asp:Label runat="server" ID="lblCountry"
 Text='<%# Eval("Country") %>' /></td>
 </tr>
 </ItemTemplate>
</asp:ListView>

The result is shown in Figure 11-9.

496 Part II ASP.NET Pages and Server Controls

FIGURE 11-9  Using cascading style sheets to style the markup of a ListView control.

Working with the ListView Control
The ListView control makes it easy to handle common data-based operations, such as insert,
update, delete, or sorting. All that you have to do is place buttons in the layout template and
associate buttons with command names. Buttons can be global to the list (such as insert,
sort, and page buttons) or specific to a particular item (such as update and delete buttons).
Command names are just strings that are assigned to the CommandName property of the
Button control.

So far, we have considered only scenarios with relatively static and noninteractive templates.
It is definitely possible, though, to use the ListView control to create rich user interfaces that
allow in-place editing, selection of items, paging, and updates back to the data source. Let’s
start with in-place editing.

In-Place Editing
Unlike the GridView control, the ListView control doesn’t automatically generate an Edit
 button; nor does it automatically adapt the edit mode user interface from the item template.

 Chapter 11 The ListView Control 497

This responsibility falls to the developer by design. The developer is required to define an
edit template that will be used to edit the contents of the selected item, in keeping with the
flexible nature of the control.

Defining the Edit Item Template
The edit template is any piece of markup you intend to display to your users when they click
to edit a record. It can have any layout you like and can handle data access in a variety of
ways.

If you’ve bound the ListView control to a data source control—for example, an
ObjectDataSource control—you can take advantage of the ASP.NET built-in support for
 two-way data binding. Simply put, you use data binding <%# … %> expressions to bind to
data, the Eval method for read-only operations, and the Bind method for full I/O operations.

The following markup defines a classic two-column table for editing some fields of a
 customer record:

<table>
 <tr>
 <td>ID</td>
 <td><asp:Label runat="server" ID="lblID" Text='<%# Eval("ID") %>' /></td>
 </tr>
 <tr>
 <td>Name</td>
 <td><asp:TextBox runat="server" ID="txtName"
 Text='<%# Bind("CompanyName") %>' /></td>
 </tr>
 <tr>
 <td>Country</td>
 <td><asp:TextBox runat="server" ID="txtCountry"
 Text='<%# Bind("Country") %>' /></td>
 </tr>
 <tr>
 <td>Street</td>
 <td><asp:TextBox runat="server" ID="txtStreet"
 Text='<%# Bind("Street") %>' /></td>
 </tr>
 <tr>
 <td>City</td>
 <td><asp:TextBox runat="server" ID="txtCity"
 Text='<%# Bind("City") %>' /></td>
 </tr>
</table>

Only one displayed item at a time can be in edit mode; the EditIndex property is used to get
or set this 0-based index. If an item is being edited and the user clicks on a button to edit
another one, the last-win policy applies. As a result, editing on the previous item is canceled
and it’s enabled on the last-clicked item.

498 Part II ASP.NET Pages and Server Controls

To turn the ListView user interface into edit mode, you need an ad hoc button control with a
command name of Edit:

<asp:Button ID="Button1" runat="server" Text="Edit" CommandName="Edit" />

When this button is clicked, the ItemEditing event fires on the server. By handling this event,
you can run your own checks to ensure that the operation is legitimate. If something comes
up to invalidate the call, you set the Cancel property of the event data structure to cancel the
operation, like so:

protected void ListView1_ItemEditing(object sender, ListViewEditEventArgs e)
{
 // Just deny the edit operation
 e.Cancel = true;
}

Adding Predefined Command Buttons
An edit item template wouldn’t be very helpful without at least a couple of predefined
 buttons to save and cancel changes. You can define buttons using a variety of controls,
 including Button, LinkButton, ImageButton, and any kind of custom control that implements
the IButtonControl interface.

Command names are plain strings that can be assigned to the CommandName property of
button controls. The ListView (and other view controls) recognizes a number of predefined
command names, as listed in Table 11-5.

TABLE 11-5  Supported Command Names
Command Description
Cancel Cancels the current operation (edit, insert), and returns to the default view (item

template)

Delete Deletes the current record from the data source

Edit Turns the ListView control into edit mode (edit item template)

Insert Inserts a new record into the data source

Page Moves to the next or previous page

Select Selects the clicked item, and switches to the selected item template

Sort Sorts the bound data source

Update Saves the current status of the record back to the data source

The following code shows how to add a pair of Save/Cancel buttons:

<asp:Button ID="btnSave" runat="server" Text="Save" CommandName="Update" />
<asp:Button ID="btnCancel" runat="server" Text="Cancel" CommandName="Cancel" />

 Chapter 11 The ListView Control 499

Any button clicking done within the context of a ListView control originates a server-side
event—the ItemCommand event:

protected void ListView1_ItemCommand(object sender, ListViewCommandEventArgs e)
{
 // Use e.CommandName to check the command requested
}

Clicking buttons associated with predefined command buttons can result in subsequent,
and more specific, events. For example, ItemUpdating and ItemUpdated are fired before and
after, respectively, a record is updated. You can use the ItemUpdating event to make any last-
minute check on the typed data before this data is sent to the database.

Note that before the update is made, ListView checks the validity of any data typed by
 calling the IsValid method on the Page class. If any validator is defined in the template, it is
 evaluated at this time.

Adding Custom Command Buttons
In the edit mode user interface, you can have custom buttons too. A custom button differs
from a regular Save or Cancel button only in terms of the command name. The command
name of a custom button is any name not listed in Table 11-5. Here’s an example:

<asp:Button ID="btnMyCommand" runat="server" Text="Custom"
 CommandName="mycommand" />

To execute any code in response to the user’s clicking on this button, all you can do is add an
ItemCommand event handler and check for the proper (custom) command name and react
accordingly:

protected void ListView1_ItemCommand(object sender, ListViewCommandEventArgs e)
{
 // Check the command requested
 if (e.CommandName == "MyCommand")
 {
 ...
 }
}

Conducting the Update
When the ListView control is used in two-way binding mode, any update operation is
 conducted through the connected data source control. You define select and save methods
on the data source, configure their parameters (either declaratively or programmatically), and
delegate to the ListView control all remaining chores.

500 Part II ASP.NET Pages and Server Controls

For update and delete operations, though, you need to identify the record uniquely. This is
where the DataKeyNames property gets into the game. You use this property to define a
 collection of fields that form the primary key on the data source:

<asp:ListView ID="ListView1" runat="server"
 ...
 DataSourceID="ObjectDataSource1"
 DataKeyNames="id">
 ...
</asp:ListView>

In this case, the DataKeyNames tells the underlying data source control that the ID field on
the bound record has to be used as the key. Figure 11-10 shows a sample page in action that
edits the contents of the currently displayed record.

FIGURE 11-10  In-place editing in action with the ListView control.

Deleting an Existing Record
As you can see, Figure 11-10 also contains a Delete button side by side with the aforemen-
tioned Edit button. Here’s the full markup for ListView’s item template:

<ItemTemplate>
 <p>
 <%# Eval("CompanyName") %>

 <%# Eval("Street") %>, <%# Eval("City") %>, <%# Eval("Country") %>
 </p>

 Chapter 11 The ListView Control 501

 <asp:Button ID="btnEdit" runat="server" Text="Edit" CommandName="edit" />
 <asp:Button ID="btnDelete" runat="server" Text="Delete" CommandName="delete"
 OnClientClick="return confirm('Are you sure you want to delete this item?');" />
 <asp:Button ID="btnMyCommand" runat="server" Text="Custom" CommandName="mycommand" />
</ItemTemplate>

The Delete operation is even more crucial than an update. For this reason, you might want
to be sure that deleting the record is exactly what the user wants. For example, you can pop
up a client-side message box in which you ask the user to confirm the operation. It is a little
piece of JavaScript code that you attach to the OnClientClick property of a Button control or
to the onclick attribute of the corresponding HTML tag. It can save you a lot of trouble.

Showing a Message Box upon Completion
Wouldn’t it be nice if your application displays a message box upon the completion of an
update operation? It doesn’t change the effect of the operation, but it would make users feel
more comfortable. In a Web scenario, you can use only JavaScript for this purpose. The trick
is that you register a piece of startup script code with the postback event where you execute
the update operation. In this way, the script will be executed as soon as the page is served
back to the browser. From the user’s perspective, this means right after the completion of the
operation. Here’s what you need:

protected void ListView1_ItemUpdated(object sender, ListViewUpdatedEventArgs e)
{
 // Display a client message box at the end of the operation
 Page.ClientScript.RegisterStartupScript(
 this.GetType(),
 "update_Script",
 "alert('You successfully updated the system.');",
 true);
}

Inserting New Data Items
The ListView control allows you to define a made-to-measure interface for adding new
 records to the underlying data source. You do this through the InsertItemTemplate property.
More often than not, the insert template is nearly identical to the edit item template, except
for the fields that form the primary key of the data source. These fields are normally ren-
dered as read-only text in the edit template. Clearly they have to be editable in an insert item
scenario.

Setting Up the Insert Item Template
So let’s assume you have the following insert item template. As you can easily verify, it is the
same edit item template we used in the previous example, except that a TextBox control is
used for entering the ID of the new customer.

502 Part II ASP.NET Pages and Server Controls

<InsertItemTemplate>
 <table>
 <tr>
 <td>ID</td>
 <td><asp:TextBox runat="server" ID="txtID"
 MaxLength="5"
 Text='<%# Bind("ID") %>' /></td>
 </tr>
 <tr>
 <td>Name</td>
 <td><asp:TextBox runat="server" ID="txtName"
 Text='<%# Bind("CompanyName") %>' /></td>
 </tr>
 <tr>
 <td>Country</td>
 <td><asp:TextBox runat="server" ID="txtCountry"
 Text='<%# Bind("Country") %>' /></td>
 </tr>
 <tr>
 <td>Street</td>
 <td><asp:TextBox runat="server" ID="txtStreet"
 Text='<%# Bind("Street") %>' /></td>
 </tr>
 <tr>
 <td>City</td>
 <td><asp:TextBox runat="server" ID="txtCity"
 Text='<%# Bind("City") %>' /></td>
 </tr>
 </table>
 <asp:Button ID="btnInsert" runat="server" Text="Add" CommandName="insert" />
 <asp:Button ID="btnCancel" runat="server" Text="Cancel" CommandName="cancel" />
</InsertItemTemplate>

How would you display this template? The edit item template shows up when the user clicks
a button decorated with the Edit command name. Unfortunately, there’s no equivalent New
command name to automatically bring up the insert item template. Instead, with the ListView
the New command name is considered a custom command, handled by code you provide to
activate the insert item template, unless it’s active by default. We’ll look at the details next.

The insert item template is displayed by position. The InsertItemPosition property determines
where the template is displayed. There are three possibilities, as shown in Table 11-6.

TABLE 11-6  Feasible Positions for the Insert Item Template
Position Description
FirstItem The insert item template is displayed as the first item in the list and precedes all

items in the bound data source.

LastItem The insert item template is displayed as the last item in the list and trails all items
in the bound data source.

None The insert item template is not automatically displayed. The developer is
 responsible for showing and hiding the template programmatically. This is the
default value for the InsertItemPosition property.

 Chapter 11 The ListView Control 503

If you leave the InsertItemPosition property set to its default value, no insert template is
 displayed, but you won’t have a predefined button to bring it up. If you use any of the other
two values, the template is always visible and displayed at the beginning or the end of the
list. This might not be desirable in most cases. Let’s see how to take programmatic control
over the display of the insert template.

Taking Full Control of the Insert Template
In the layout template, you add a custom button and capture any user’s click event. You can
give the button any command name not listed in Table 11-5:

<asp:Button ID="btnNew" runat="server" Text="New Customer" CommandName="new" />

To handle the click on the button, you write an ItemCommand handler. In the event handler,
you simply change the value of the InsertItemPosition property, as shown here:

protected void ListView1_ItemCommand(object sender, ListViewCommandEventArgs e)
{
 if (e.CommandName.Equals("New", StringComparison.OrdinalIgnoreCase))
 {
 ListView me = (ListView) sender;
 me.InsertItemPosition = InsertItemPosition.FirstItem;
 }
}

Changing the value of InsertItemPosition to anything but None brings up the insert item
template, if any. In the insert template, you need to have a couple of predefined buttons with
command names of Insert (to add) and Cancel (to abort).

It should be noted, though, that the insert item template is not automatically dismissed by
the ListView control itself. As mentioned, this is because of the lack of built-in support for
the New command name. In the end, this requires that you add a couple more handlers to
 dismiss the template when the user cancels or confirms the insertion.

The ItemCanceling event fires when the user hits a button associated with the Cancel
 command name. This can happen from either the edit or insert template. The event data
 object passed to the handler has the CancelMode property, which is designed to help you
figure out what mode is active (insert or edit) and allow you to tailor your application’s
response.

protected void ListView1_ItemCanceling(object sender, ListViewCancelEventArgs e)
{
 ListView me = (ListView) sender;

 // Dismissing the insert item template
 if (e.CancelMode == ListViewCancelMode.CancelingInsert)
 me.InsertItemPosition = InsertItemPosition.None;
}

504 Part II ASP.NET Pages and Server Controls

To hide the insert item template after the new data item has been successfully appended to
the data source, you use the ItemInserted event:

protected void ListView1_ItemInserted(object sender, ListViewInsertedEventArgs e)
{
 ListView me = (ListView) sender;
 me.InsertItemPosition = InsertItemPosition.None;
}

Adding a Bit of Validation
When you’re going to add a new record to an existing data source, a bit of validation—much
more than is generally desirable—is mandatory. Being responsible for the insert template,
you can add as many validators as necessary to the markup. The ListView control’s internal
facilities then ensure that the operation is finalized only if no validator raised an error.

In particular, you might want to check whether the ID being inserted already exists in the
data source. You can use a CustomValidator control attached to the text box:

<asp:TextBox runat="server" ID="txtID"
 MaxLength="5"
 Text='<%# Bind("ID") %>' />
<asp:CustomValidator runat="server" ID="CustomValidator1"
 ErrorMessage="Invalid ID"
 ControlToValidate="txtID"
 OnServerValidate="CustomValidator1_CheckID" />

The CustomValidator control fires a server-side event in which you can run code to validate
the text in the input field. The server event is fired via a postback and has the following
prototype:

protected void CustomValidator1_CheckID(object source, ServerValidateEventArgs e)
{
 string proposedCustomerID = e.Value;
 e.IsValid = CheckIfUsed(proposedCustomerID);
}
private bool CheckIfUsed(string proposedCustomerID)
{
 var c = CustomerRepository.Load(proposedCustomerID);

 // The object is of type NoCustomer if no matching customer exists
 if (c is DAL.NoCustomer)
 return true;
 return false;
}

The Load method in the sample data access layer (DAL) used in this example supports the
Special Case pattern. In other words, the method always returns a valid Customer object
regardless of the value of the input proposedCustomerID parameter. If a customer with a

 Chapter 11 The ListView Control 505

matching ID can’t be found, the return object is an instance of the NoCustomer class. Of
course, NoCustomer is a class that derives from Customer.

How is this different from returning a plain null value or perhaps an error code? In both
cases, the caller can figure out whether a matching customer exists or not. However, return-
ing a special-case Customer object is inherently more informative and doesn’t violate the
consistency of the method—a class that inherits from Customer is always returned, whereas
an error code is a number and null is a non-value.

Selecting an Item
The SelectedItemTemplate property allows you to assign a different template to the currently
selected item in the ListView control. Note that only one displayed item at a time can be
given the special selected template. But how do you select an item?

Triggering the Selection
The selected item template is a special case of the item template. The two templates are
 similar and differ mostly in terms of visual settings—for example, a different background
color. The switch between the regular and selected item template occurs when the user clicks
on a button with the Select command name. If you intend to support the selection item
feature, you place a Select button in the item template. When this button gets clicked, the
ListView automatically applies the new template to the clicked item. Here are some sample
item and selected item templates:

<ItemTemplate>
 <p>
 <asp:linkbutton runat="server" Text='<%# Eval("CompanyName") %>'
 CommandName="Select" />

 <%# Eval("Street") %>, <%# Eval("City") %>, <%# Eval("Country") %>
 </p>
</ItemTemplate>

<SelectedItemTemplate>
 <h3>
 <%# Eval("CompanyName") %>

 <%# Eval("Street") %>, <%# Eval("City") %>, <%# Eval("Country") %>
 </h3>

 <asp:Button ID="btnEdit" runat="server" Text="Edit" CommandName="Edit" />
 <asp:Button ID="btnDelete" runat="server" Text="Delete" CommandName="Delete"
 OnClientClick="return confirm('Are you sure you want to delete this item?');" />
 <asp:Button ID="btnUnselect" runat="server" Text="Unselect" CommandName="unselect" />
</SelectedItemTemplate>

506 Part II ASP.NET Pages and Server Controls

In addition to changing some visual settings, the selected item template can contain buttons
to trigger operations on the particular item.

In Figure 11-10 shown earlier, each item features its own set of operational buttons, such as
Edit and Delete. This layout can be reworked to display buttons only on the selected item. To
do so, you just move the buttons to the SelectedItemTemplate property.

In the item template, though, you need to insert a button control to trigger the selection
process. You can use a push button or attach any significant text in the template to a link
button:

<asp:linkbutton runat="server" Text='<%# Eval("CompanyName") %>' CommandName="Select" />

Figure 11-11 shows the result.

FIGURE 11-11  A selected item in a ListView control.

Releasing the Selection
When you click the link button, the ListView switches the template and sets the SelectedIndex
property accordingly. As soon as the user clicks on a different item, the selection is moved
and the previously selected item regains the regular template. Is there a way to program-
matically reset the selection? You bet.

All that you have to do is add a new custom button and handle its click event. In the event
handler, you assign the –1 value to the SelectedIndex property. A value of –1 means that no
items are selected. Here’s the related code snippet:

protected void ListView1_ItemCommand(object sender, ListViewCommandEventArgs e)
{
 ListView me = (ListView) sender;
 if (e.CommandName.Equals("Unselect", StringComparison.OrdinalIgnoreCase))
 me.SelectedIndex = -1;
}

 Chapter 11 The ListView Control 507

Note that the index of the currently selected item and the index of the item being edited are
saved to the view state and persisted across postbacks. This means that if the user changes
the country/region selection (shown in Figure 11-11), both the edit and selection indexes are
retained, which might not be desirable. For example, imagine that you selected (or are edit-
ing) the second customer from Argentina. Next, the user changes to Brazil while the selected
(or edit) template is on. The result is that the second customer from Brazil is displayed in the
selected (or edit) mode. If this behavior works for you, there’s nothing to modify in the code.
Otherwise, you need to reset SelectedIndex and EditIndex in any postback event outside the
ListView control. Here’s an example:

protected void DropDownList1_SelectedIndexChanged(object sender, EventArgs e)
{
 // The sender argument here indicates the DropDownList or any other
 // control responsible for the postback. You reference the ListView by
 // name or via a custom global member in the code-behind class of the page
 ListView1.SelectedIndex = -1;
 ListView1.EditIndex = -1;
}

Paging the List of Items
In ASP.NET, grid controls support data paging natively. Purely iterative controls such as
Repeater and DataList, though, leave the burden of pagination entirely on the developer’s
capable shoulders. The ListView control falls somewhere in the middle of these two ex-
treme positions. The ListView control doesn’t have built-in paging capabilities, but it knows
how to work with a new control specifically designed to enable data paging on a variety of
 data-bound controls. This control is the DataPager.

The DataPager Control
The DataPager control is designed to add paging capabilities to a family of data-bound
 controls and not just the ListView. The support that the DataPager control offers to data-
bound pageable controls such as the ListView is limited to the user interface of the pager.

You configure the DataPager to obtain the pager bar you like best, and then you instruct
the DataPager control to fall back to the paged control to display the specified number of
data items starting at the specified position. In no case does the DataPager expose itself
to the data source or a data source control. All that it does is communicate to the paged
control the next set of records to select and display. Table 11-7 lists the properties of the
DataPager control.

508 Part II ASP.NET Pages and Server Controls

TABLE 11-7 Properties of the DataPager Control
Property Description
Fields Gets the collection of DataPagerField elements that form the pager bar.

Elements in this collection belong to classes such as NumericPagerField,
TemplatePagerField, and NextPreviousPagerField.

MaximumRows Gets the maximum number of rows that the page can support.

PagedControlID Gets and sets the ID of the control to page. This control must implement the
IPageableItemContainer interface.

PageSize Gets and sets the size of the page. The default value is 10.

QueryStringField The name of the query string field for the current page index. The pager uses
the query string when this property is set.

StartRowIndex Gets the index of the first item in the data source to display.

TotalRowCount Gets the total number of rows to page through.

Only a few of these properties can be set declaratively. They are Fields, PagedControlID,
PageSize, and QueryStringField. The other properties are read-only and owe their value to the
paged control and the size of the bound data source.

Using the DataPager Control
The following code snippet shows the typical code you use to embed a data pager in an
ASP.NET page that hosts a ListView control:

<asp:DataPager ID="DataPager1" runat="server"
 PagedControlID="ListView1" PageSize="4">
 <Fields>
 <asp:NextPreviousPagerField />
 </Fields>
</asp:DataPager>

The DataPager control heralds a new model for paging data-bound controls that is quite a
bit different from the model employed by GridView controls. The user interface for paging is
not part of the control, but it can be placed anywhere in the page and even driven through
the query string.

The DataPager control is linked to the data-bound control being paged and lets this control
know about the user selection. Subsequently, the paged control adjusts its row proper-
ties and passes the information back to the data pager. Figure 11-12 shows a data pager
in action.

 Chapter 11 The ListView Control 509

FIGURE 11-12  A data pager in action—the pager can be placed anywhere in the page.

Configuring the Data Pager Fields
The user interface of the data pager control is largely customizable. You do that through
the Fields property—a collection of DataPagerField objects. The property allows you to add
 multiple pagers of different styles. Table 11-8 lists the various options you have.

TABLE 11-8 Types of Data Pagers
Type Description
NextPreviousPagerField Displays a fully customizable Next/Previous user interface for the pager.

You can use images or text for Next/Previous buttons and also add a
First/Last pair of buttons.

NumericPagerField Displays a fully customizable list of numeric links, one for each page. The
number of pages is calculated on the page size and the total number of
bound rows.

TemplatePagerField Allows you to use a user-defined template for the pager.

All classes in Table 11-8 inherit from the same common class—DataPagerField. If you’re
OK with the default user interface of the pagers, you don’t need to set any of the pager’s
 properties. The following markup, therefore, is perfectly functional:

<Fields>
 <asp:NumericPagerField />
</Fields>

Pager fields, though, have a number of visual properties to set the CSS style of buttons, the
companion text, or perhaps the images to use instead of text.

510 Part II ASP.NET Pages and Server Controls

Pageable Containers
As mentioned, the data pager control doesn’t handle data itself. Rather, the control is the
manager of the paging user interface. For this reason, it needs to communicate with the
paged control. Whenever a button in the pager is clicked to move to a given page, the pager
control fires a message to the paged control and has it refresh the user interface properly.

Not all data-bound controls can be paged using a data pager. In ASP.NET, this privilege is
limited to controls that implement the IPageableItemContainer interface. Currently, the sole
control to support this interface is the ListView control. You can create your own custom
 controls to implement the interface, however. Here’s the definition of the interface:

public interface IPageableItemContainer
{
 // Events
 event EventHandler<PageEventArgs> TotalRowCountAvailable;

 // Methods
 void SetPageProperties(int startRowIndex, int maximumRows, bool databind);

 // Properties
 int MaximumRows { get; }
 int StartRowIndex { get; }
}

The PagedControlID property on the DataPager control defines the linked data-bound
 control. Whenever the pager is acted on, it invokes the SetPageProperties method on the
paged control through the contracted interface. In doing so, it lets the ListView control (or
the paged control) know about the new start row to display and the size of the page. Here’s
the pseudocode used by the ListView control to support paging:

void SetPageProperties(int startRowIndex, int maximumRows, bool databind)
{
 if ((this._startRowIndex != startRowIndex) || (this._maximumRows != maximumRows))
 {
 PagePropertiesChangingEventArgs e;
 e = new PagePropertiesChangingEventArgs(startRowIndex, maximumRows);
 if (databind)
 {
 this.OnPagePropertiesChanging(e);
 }

 this._startRowIndex = e.StartRowIndex;
 this._maximumRows = e.MaximumRows;
 if (databind)
 {
 this.OnPagePropertiesChanged(EventArgs.Empty);
 }
 }
 if (databind)
 {
 base.RequiresDataBinding = true;
 }
}

 Chapter 11 The ListView Control 511

PagePropertiesChanging and PagePropertiesChanged events are fired before and after,
 respectively, each paging operation.

The data pager control is normally placed outside the ListView’s layout. In this case, you use
the PagedControlID property of the data pager to specify the paged control. However, if the
PagedControlID property is not specified, the data pager assumes that its naming container
is the paged control (as long as it implements the IPageableItemContainer interface). What
does this mean to you? It means you can embed the data pager in the layout template of the
ListView control and avoid setting the PagedControlID property on the pager explicitly.

Sorting the List
The data bound to the ListView control can be sorted using a button in the layout template
with the command name of Sort:

<LayoutTemplate>
 <asp:Button ID="btnSort" runat="server" Text="Sort"
 CommandName="Sort"
 CommandArgument="companyname" />
</LayoutTemplate>

You specify the sort expression and the initial sort direction using the CommandArgument
property of the button. You use asc and desc to indicate the desired direction. Multiple
sorting fields can be listed as well. The sorting automatically reverses from ascending to
descending and vice versa as you click. The ListView’s SortExpression and SortDirection
 read-only properties tell you at any time about the current status of the sort.

Summary
The ListView control adds the benefits of ASP.NET view controls (such as the GridView or
DetailsView control) to classic repeater data-bound controls such as DataList. The resulting
control weds the extreme layout flexibility of a DataList or Repeater control with the power of
two-way data binding of data source controls.

The ListView control can be used to implement virtually any reporting and publishing
 scenarios you can imagine. The distinct layout template gives you total control over the
HTML being generated and the style it must have. Various item templates (regular, alternate,
edit, selected, insert) let you decide about the markup to output for each possible state of
the control.

Finally, the ListView control is a pageable control. Unlike other view controls, though, the
ListView control binds to an external pager control—the new DataPager control. The
 connection between the two controls is all in the IPageableItemContainer interface. As a
result, each data-bound control with this interface can be paged without incorporating the
logic to page.

 513

Chapter 12

Custom Controls
Ignorance, the root and the stem of every evil.

—Plato

Server controls are one of the pillars of the entire ASP.NET Web Forms framework. Server
controls are compiled classes that encapsulate user-interface and other functionality into
reusable packages. ASP.NET provides a full bag of stock controls to serve most develop-
ers’ needs. However, writing custom controls is possible and sometimes necessary. Custom
controls are no different than standard ASP.NET server controls except that they are bound
to a different tag prefix and must be registered and deployed explicitly. Aside from that,
custom controls can have their own object model, fire events, and support all the design-
time features of Microsoft Visual Studio, such as the Properties window, the visual designer,
property builders, and the Toolbox. Because of their compiled nature, custom controls can
be installed in a single copy in the global assembly cache (GAC), making them available
to all applications, or they can simply be deployed to the \Bin directory for use by a single
application.

A custom control is a class and inherits from a base control class. The logic already available
in the base class determines how much, and what, code you have to write. There are basically
two ways of creating custom controls. If you find that an existing control meets your require-
ments only partially and lacks some key features, the simplest thing you can do is extend the
control by deriving a new class from it. You can override specific properties, methods, and
events as well as add new features. If none of the existing Web server controls meet your
requirements, consider creating a custom control from scratch by deriving from one of the
base control classes—Control and WebControl. These classes provide only the basic function-
ality of ASP.NET server controls, and they require that you take care of some of the control’s
operational aspects yourself, such as rendering, styling, view state, and state management.

Note Custom controls are not to be confused with user controls (ASCX files). Web user controls
are dynamic-compile components and cannot be added to the Toolbox. In addition, user
 controls should be deployed as source code unless the application that incorporates them is
 precompiled. In this case, you can extract the dynamic assembly that contains the user control
and share it between applications. However, this technique is not supported by Microsoft and,
well, requires a lot of familiarity with the ASP.NET internals.

514 Part II ASP.NET Pages and Server Controls

Extending Existing Controls
When you realize you need a custom control to accomplish a certain task, first pause and
make sure the feature you devised can really be obtained with HTML, literals, and JavaScript
code. If you know how to do that in pure HTML, you can start planning an ASP.NET control
and then architect and engineer the feature for the best reusability and efficiency.

Choosing a Base Class
A custom server control is a Microsoft .NET Framework class that inherits—either directly or
indirectly—from Control. Control is the root class for all server controls in ASP.NET applica-
tions. It should be noted, though, that very few controls that you commonly use in ASP.NET
applications really inherit directly from Control. For the most part, ASP.NET controls inherit
from intermediate classes that encapsulate a given predefined behavior.

Inheriting from a Base Class
Each ASP.NET server control that is not marked as sealed can be further inherited and
 specialized. Table 12-1 lists all the classes in ASP.NET that represent some sort of base
 functionality. Each class in the list represents the root of a family of controls.

TABLE 12-1 Base Control Classes Available in ASP.NET
Class Description
BaseDataBoundControl Incorporates the basic mechanism and object model for data

binding. It inherits from WebControl.

BaseDataList Adds grid capabilities such as advanced rendering, templates,
and paging. It inherits from WebControl. This is considered
deprecated in ASP.NET 4.

CompositeControl Incorporates the mechanics of composite controls with
 regard to the building of the control’s tree. It inherits from
WebControl.

CompositeDataBoundControl Incorporates the mechanics of composite data-bound controls
with regard to view-state management and the building of the
control’s tree. It inherits from DataBoundControl.

DataBoundControl Adds support for data source controls, and overrides some
methods marked as abstract in the parent class. It inherits
from BaseDataBoundControl.

HierarchicalDataBoundControl Adds support for data hierarchical data source controls, and
overrides some methods marked as abstract in the parent
class. It inherits from BaseDataBoundControl.

ListControl Adds support and an object model tailor-made for list
 controls, such as CheckBoxList and DropDownList.

WebControl Adds an array of user-interface (UI) properties, such as style
settings, colors, font, and borders. It inherits from Control.

 Chapter 12 Custom Controls 515

Among the commonly used controls that inherit directly from Control, you find Repeater,
MultiView, Placeholder, and LiteralControl. All other controls in ASP.NET inherit from one of
these classes.

Extending a Base Class
The base Control class incorporates a number of features and makes them available to all
child controls. A quick list includes view-state management, control identification, naming
container capabilities, design-time support, themes, control state, and adaptive rendering. If
you choose to inherit from any of the classes in Table 12-1, be prepared to write quite a bit
of code because the control you get in the beginning is not particularly rich with concrete
functionalities.

You typically inherit from any of those classes if you’re going to write a control that provides
unique capabilities that are hard to find in other ASP.NET controls. Inheriting from any of the
classes in Table 12-1 is more like building a custom control from scratch, where the effective
starting point is determined by the selected base class.

If you opt for inheritance from a concrete control class—that is, a control that provides an
observable behavior and user interface—you should strive to add new features or over-
ride existing capabilities without altering too much the structure and the personality of the
 control itself.

A Richer HyperLink Control
Let’s start with a sample custom control that extends the standard behavior of the HyperLink
built-in control. By default, the ASP.NET HyperLink control outputs an anchor <a> tag that
points to a URL. By design, any click on an anchor tag is served directly by the browser, which
navigates to the specified page. No postback occurs to the page that originally displayed
the anchor. Put another way, if you want to track that the user clicked on a given anchor, you
need to extend the behavior of the hyperlink control.

Designing a Usage Scenario
Let’s further develop the idea of a control that drives users to a different page but gives the
page author a way to track the event. The canonical example used to illustrate the impor-
tance of this feature is the page hit counter. Monitoring the visitor activity is an important
task that each administrator of a Web site should consider to improve the quality and con-
tent of the site. A click-through is the name commonly used to indicate the user’s clicking
to see particular content, and it’s an important parameter for evaluating how the visitors
of a site receive advertising. How would you implement a counter service that counts click-
throughs in a page?

516 Part II ASP.NET Pages and Server Controls

You can associate each button control in a page (Button, HyperLink, ImageButton, LinkButton,
and AdRotator) with an extra layer of code that first tracks the click and then proceeds with
the expected behavior. Getting this behavior with controls that entail a postback is not dif-
ficult. Take the LinkButton class, for example. You can derive a new control and override the
OnClick protected member as follows:

protected virtual void OnClick(EventArgs e)
{
 // Track the event
 ...

 // Proceed with the default behavior
 base.OnClick(e);
}

What about the HyperLink control, though? The click on the hyperlink is handled directly by
the browser and doesn’t pass through any ASP.NET code of yours.

A Redirector for the HyperLink Control
The idea is that you force the HyperLink control to adopt a navigation URL that is different
from the one set by the programmer. In other words, you divert the HyperLink to a custom
page on your site where you first accomplish any custom tasks you need (such as tracking)
and then redirect to the originally requested page. The code for such a modified version of
the HyperLink control doesn’t look particularly scary:

using System;
using System.Web.UI.WebControls;

namespace Samples
{
 public class Hyperlink : System.Web.UI.WebControls.HyperLink
 {
 public string RedirectPage
 {
 get
 {
 var o = ViewState["RedirectPage"];
 if (o == null)
 return "redir.aspx";
 else
 return (String) o;
 }
 set { ViewState["RedirectPage"] = value; }
 }

 public new String NavigateUrl
 {
 get { return base.NavigateUrl; }
 set

 Chapter 12 Custom Controls 517

 {
 var url = "{0}?page={1}";
 url = String.Format(url, RedirectPage, value);
 base.NavigateUrl = url;
 }
 }
 }
}

As you can see, the new control has a brand new property—RedirectPage—and overrides
an existing property—NavigateUrl. RedirectPage indicates the URL of the intermediate page,
where the user is temporarily redirected so that any custom tasks such as click-through
 tracking can be accomplished. Here’s an example of the code file of such a page:

public partial class Redir : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 // Capture the originally requested page
 var url = String.Empty;
 var o = Request["Page"];
 if (o != null)
 {
 url = Server.UrlEncode((String) o);
 if (String.IsNullOrEmpty(url)
 return;
 }

 // Do something here, such as updating a counter
 ...

 // Redirect the user to the originally requested page
 Response.Redirect(url);
 }
}

You are assuming that the custom HyperLink control calls the redirector page, passing a Page
parameter on the query string set to the original URL. Of course, this trick is arbitrary and
you can find any better workarounds if you want.

The navigation URL for a hyperlink is set through the NavigateUrl property. You need to
 ensure that whenever a new value is assigned to the NavigateUrl property (say,
http://www.asp.net), it gets overridden by something like the following:

redir.aspx?page=http://www.asp.net

In this way, the user first reaches redir.aspx, where his action is tracked, and then he is
 directed to his final destination.

To override the setter (or the getter) of a control property, you need the property to be
marked as virtual at some point in the control’s inheritance chain. The HyperLink control has

http://www.asp.net
http://www.asp.net

518 Part II ASP.NET Pages and Server Controls

a virtual property—Text—and a couple of public, but not virtual, properties such as Target
and NavigateUrl. If the property is not marked as virtual (namely, it is overridable), you can’t
override it; however, you can replace its implementation altogether. You do this through the
new modifier in C# and the Shadows modifier in Microsoft Visual Basic .NET:

public new string NavigateUrl
{
 get { return base.NavigateUrl; }
 set
 {
 var url = "{0}?page={1}";
 url = String.Format(url, RedirectPage, value);
 base.NavigateUrl = url;
 }
}

The new modifier applied to a property instructs the compiler that the current implemen-
tation for the member replaces any other implementation available on base classes. If you
redefine the NavigateUrl property without using the new keyword, you simply receive a
warning from the compiler. The warning informs you that you are hiding an existing member,
and it just recommends the use of the new modifier if hiding the member was intentional.

Building Controls from Scratch
There are two main situations in which ASP.NET developers feel the need to create custom
controls. At times, developers need a control that simply doesn’t exist in the ASP.NET built-
in toolbox. And occasionally, developers need a control that is similar to one of the native
controls but not close enough to justify using one. In this case, developers typically derive a
new control from an existing one and add or override members as appropriate. Let’s discuss
techniques and tricks to design and code completely new ASP.NET controls that address
functionalities that ASP.NET doesn’t provide out of the box.

Base Class and Interfaces
Several programming aspects support the development of a custom control in ASP.NET. First,
there are base classes such as Control and WebControl. Each class provides a common set of
base properties that address and fit into a particular use case. In addition to base classes, in-
terfaces help you to better characterize the behavior and programming model of the control.
A few interfaces are worth mentioning. They are INamingContainer, IPostBackDataHandler,
and IPostBackEventHandler.

In Table 12-1, you see listed all base classes for controls and data-bound controls. For now,
let’s focus on Control and WebControl.

 Chapter 12 Custom Controls 519

Control vs. WebControl
The Control class defines the properties, methods, and events common to all ASP.NET server
controls. These include the methods and events that determine and govern the life cycle
of the control, plus a few properties such as ID, UniqueID, Parent, and ViewState and the
 collection of child controls named Controls.

The WebControl class derives from Control and adds extra properties and methods, mostly
regarding control styles that affect rendering. These properties include ForeColor, BackColor,
Font, Height, and Width. WebControl, in particular, is the base class for the family of Web
server controls in ASP.NET.

When developing a new ASP.NET control, there’s just one guideline to follow. If your control
renders a user interface, you should derive it from WebControl. If you’re authoring a compo-
nent that doesn’t provide specific user-interface features, you’re better off using Control as
your base class. Although these rules are effective in most cases, there might be exceptional
situations in which you would reasonably do otherwise. For example, you can derive from
Control if you want to provide a subset of the user-interface features.

When building composite controls—that is, controls designed by aggregating multiple
 controls together—you might want to use CompositeControl as the base class. You should
never use UserControl, on the other hand, as a base class for a custom control.

Related Interfaces
Depending on the functionality of your control, you might have to implement additional
 interfaces. Typically, a server control implements some of the following interfaces:

■ INamingContainer This interface, also referred to as a marker interface, doesn’t
contain methods—it simply notifies the ASP.NET runtime that the control that ex-
poses it should be treated as a naming container. Child controls contained within a
naming container control have their UniqueID property prefixed with the ID of the
container. The naming container, therefore, acts as a namespace and guarantees the
uniqueness of the control’s client IDs within the specified naming scope. (Note that
if the ClientIDMode property is set to Static, this warranty just ceases.) The use of the
INamingContainer interface is essential if you’re writing composite controls or controls
that include templates.

■ IPostBackDataHandler The interface is needed whenever your control has to examine
postback data. If the user can execute actions that affect the state of the control,
you need to look into the postback data. For example, a TextBox control stores its
 configuration in the view state but also needs to read what the user typed in through
the browser. This scenario is just where the IPostBackDataHandler interface fits in.
The method LoadPostData lets controls examine posted values. The interface is also

520 Part II ASP.NET Pages and Server Controls

 helpful if you need to raise events on the server based on changes to the data (method
RaisePostDataChanged). Again, the TextBox is the perfect sample control; if the data
changed between postbacks, the TextChanged event is also raised.

■ IPostBackEventHandler The interface serves to capture a client-side postback
event (for example, a click). Upon postback, after raising data change events, the
ASP.NET runtime looks for a server control whose UniqueID property matches the
name of a posted value (for example, the name of the clicked button). If a match
is found and the control implements IPostBackEventHandler, ASP.NET invokes the
RaisePostBackEvent method on the control. RaisePostBackEvent is the only method
defined on the IPostBackEventHandler interface. What a particular control does within
the RaisePostBackEvent method can vary quite a bit. The Button control—a simple
control that implements this interface—fires its Click event when ASP.NET invokes the
RaisePostBackEvent method.

Choosing a Rendering Style
For an ASP.NET server control, the sole purpose in life is outputting markup text. The
 control’s object model and the system infrastructure it leverages serve to determine the
 contents to output, but the whole life cycle of controls (and host pages) inevitably ends with
the rendering step. There are various ways for a server control to render out.

The Render Method
Typically, an ASP.NET control renders out through the Render method. To take total control
of the control’s rendering, you therefore override the Render method and write markup code
to the specified HTML text writer object:

protected override void Render(HtmlTextWriter writer)

The HTML text writer object is a sort of buffer where you can accumulate all the text to be
output—nearly the same as a string builder. You can compose markup using the methods of
the HtmlTextWriter object or by building plain strings. Writing to the text writer is indeed the
fastest way for controls to generate their markup, but unfortunately it doesn’t result in eas-
ily readable code. If you take this route for a reasonably complex control, your final code will
look like an intricate mess of nested if-then-else statements. Your code will be hard to read
and maintain.

There’s another aspect to consider about direct markup output. Consider the following code
snippet:

protected override void Render(HtmlTextWriter writer)
{
 writer.Write("<input type=text id=\"TextBox1\" />");
}

 Chapter 12 Custom Controls 521

The final page contains an input field of type text with an ID of TextBox1. The server environ-
ment, though, doesn’t know anything about this element and might not be able to process
server events for this element correctly. In other words, you should render the markup direct-
ly only for controls that output raw HTML that don’t match ASP.NET controls and don’t need
to raise or handle server events such as postbacks or post-data-changed events. If you’re go-
ing to write a server control that renders an HTML marquee or a table of data, writing to the
control’s text writer buffer is fine. If you’re building a control that results from the composi-
tion of other controls, you’re better off taking another approach—building the control tree
programmatically.

Building the Control Tree
When your control embeds constituent child controls, you have a composite control. In this
case, it is recommended that you build the final tree of controls programmatically by over-
riding the CreateChildControls method defined on the Control class. You do this by adding
all constituent controls to the Controls collection of the control being developed. Here’s an
example:

protected override void CreateChildControls()
{
 // Clears child controls
 Controls.Clear();

 // Build the control tree
 CreateControlHierarchy();

 // Clear the view state of child controls
 ClearChildViewState();
}

ClearChildViewState is a method on the Control class that deletes the view-state informa-
tion for all the server child controls. CreateControlHierarchy, on the other hand, is an arbi-
trary name and represents a user-defined method that builds the control’s tree. You should
feel free to replace that function with your own function or plain code. As a matter of fact,
though, most ASP.NET built-in composite controls define a protected, overridable method
with just that name. Here’s a possible implementation for CreateControlHierarchy that creates
a text box with a leading label. Note that not only is the name of CreateControlHierarchy ar-
bitrary, but its prototype also is.

protected void CreateControlHierarchy()
{
 // Add the label
 var lbl = new Label();
 lbl.Text = "Some text";
 Controls.Add(lbl);

522 Part II ASP.NET Pages and Server Controls

 // Add a blank literal control for spacing
 Controls.Add(new LiteralControl(" "));

 // Add the text box
 var txt = new TextBox();
 txt.Text = String.Empty;
 Controls.Add(txt);

 // Specifies that child controls have been created
 ChildControlsCreated = true;
}

The ultimate goal of CreateControlHierarchy is populating the Controls collection of the
current control with all child controls in the proper position in the final hierarchy. The
ChildControlsCreated Boolean property is defined on the Control class and indicates whether
all child controls have been created or not.

For a composite control, you don’t need to override the Render method, but it is recom-
mended that you implement the marker interface INamingContainer to facilitate ASP.NET’s
ability to recognize postback events caused by any child control.

Finally, a method that is worth mentioning regarding composite controls is
EnsureChildControls. This method checks whether all child controls have been created
and, if not, it re-creates them. How can the control know about that? It simply reads the
value of the ChildControlsCreated Boolean property and calls CreateChildControls if all
child controls haven’t been created. The following code snippet illustrates the behavior of
EnsureChildControls:

protected virtual void EnsureChildControls()
{
 if (!ChildControlsCreated)
 {
 try {
 CreateChildControls();
 }
 finally {
 ChildControlsCreated = true;
 }
 }
}

The SimpleGaugeBar Control
To get a grip on building new ASP.NET controls, let’s create a control with a limited state
but a significant rendering engine. The control, named SimpleGaugeBar, is a simple,

 Chapter 12 Custom Controls 523

 non-data-bound gauge bar that you can use to implement a rating system that represents
the progress made for certain tasks. Generally, it can be used to give a friendly user interface
to measurable quantities.

Defining the Object Model
A gauge control needs to have at least two properties—one to indicate the value being
 rendered, and one that provides the scale. In addition, you can also give users a chance to
control the ruler and the descriptive text for the gauge. Table 12-2 lists the properties of a
gauge control.

TABLE 12-2 Properties of the SimpleGaugeBar Control
Property Description
FormatString Formats the string that the control will render alongside the bar. The string can

contain up to two placeholders. The first placeholder is set with the value; the
 second placeholder is set with the scale. The default string has the following form:
{0} / {1}.

GridLines Indicates whether vertical delimiters should be displayed to mark notches.

Maximum Indicates the maximum value the gauge can represent. It’s set to 100 by default.

Segments Indicates the number of notches to draw on the gauge ruler. It’s set to 4 by default.

Value Indicates the value to represent. It’s set to 0 by default, and it cannot be higher
than the scale.

The setter method of the Value property adjusts any value provided that exceeds the current
Maximum. The value stored in Maximum is the highest value you can assign to Value. The
format string should be formed using two parameters in a fixed order: Value and Maximum.
In the format string, you can use any HTML formatting and even reference the parameters
in the reverse order. The following code snippet shows possible ways of setting the format
string:

GaugeBar1.FormatString = "{0} ({1})";
GaugeBar2.FormatString = "Maximum is {1}. Value is {0}";

The SimpleGaugeBar control has no methods and doesn’t fire any events.

Implementing the Object Model
Internally, the control renders the gauge using an HTML table. The Value and Maximum pair
are translated as percentages, and the ruler is drawn using table cells. Figure 12-1 shows the
control within the Microsoft Visual Studio designer.

524 Part II ASP.NET Pages and Server Controls

FIGURE 12-1 The SimpleGaugeBar control in action in the Visual Studio designer.

The notches on the ruler are obtained simply by adding as many cells to the underlying table
as there are units in the Segments property. The following listing shows the implementation
of the control properties:

public class SimpleGaugeBar : CompositeControl
{
 private int _dividerCell;

 public SimpleGaugeBar()
 {
 }

 // Gets and sets the value to represent in the gauge bar
 public float Value
 {
 get
 {
 var o = ViewState["Value"];
 if (o == null)
 return 0;
 return (float) o;
 }
 set
 {
 ViewState["Value"] = value;
 if (value > Maximum)
 ViewState["Value"] = Maximum;
 }
 }

 // Gets and sets the maximum value representable in the gauge bar
 public float Maximum
 {
 get
 {
 var o = ViewState["Maximum"];

 Chapter 12 Custom Controls 525

 if (o == null)
 return 100;
 return (float) o;
 }
 set { ViewState["Maximum"] = value; }
 }

 // Number of segments to divide the bar into
 public int Segments
 {
 get
 {
 var o = ViewState["Segments"];
 if (o == null)
 return 4;
 return (int) o;
 }
 set
 {
 ViewState["Segments"] = value;
 if(value < 1)
 ViewState["Segments"] = 1;
 }
 }

 // Gets and sets the pattern to format the value in the gauge bar
 public string FormatString
 {
 get
 {
 var o = ViewState["FormatString"];
 if (o == null)
 return "{0} / {1}";
 return (string) o;
 }
 set { ViewState["FormatString"] = value; }
 }

 // Gets and sets whether the gauge bar has grid lines
 public bool GridLines
 {
 get
 {
 var o = ViewState["GridLines"];
 if (o == null)
 return true;
 return (bool) o;
 }
 set { ViewState["GridLines"] = value; }
 }
 ...
}

526 Part II ASP.NET Pages and Server Controls

The control maintains some state by using the view-state collection. All the properties, in
fact, are persisted using ViewState. Because all the persisted properties are marked as pub-
lic, you can disable the view state altogether and still keep the control fully functional by
 explicitly setting properties upon page loading.

Setting Up the Ruler
The ruler divides the area of the control into segments, which are filled proportionally based
on the current value of the gauge. Each segment of the ruler corresponds to a cell in the un-
derlying table. All cells but one are entirely filled or entirely empty. Filled cells are rendered
using the current foreground color; empty cells are rendered using the current background
color. One cell, named the divider cell, contains a child table with exactly one row and two
cells. The first cell is rendered with the foreground color; the second cell is colored as the
control’s background. The two cells have a width, measured in percent, whose total amounts
to 100. The latter cell denotes how much is still left to do to reach the maximum. The fol-
lowing HTML code snippet shows the final HTML markup to render a value of 52 out of 100
 using a ruler with four notches or segments:

<table><tr>
 <td bgcolor=orange width=25%></td>
 <td bgcolor=orange width=25%></td>
 <td>
 <table><tr>
 <td bgcolor=orange width=2%></td>
 <td bgcolor=white width=98%></td>
 </tr></table>
 </td>
 <td bgcolor=white width=25%></td>
</tr></table>

Figure 12-2 shows gauges with different ruler settings.

FIGURE 12-2 The effect of different settings on the gauge ruler.

Setting Up the Control’s Site
As you might have guessed already from the preceding figures, other properties get into the
game in addition to those discussed in Table 12-2. Admittedly, the grayscale rendering used

 Chapter 12 Custom Controls 527

in this book doesn’t do justice to the actual capabilities of the SimpleGaugeBar control in
terms of color support. However, the control exploits a few color-related properties defined
on the base class. These properties are BackColor, ForeColor, Width, and Height.

Width and Height are used to delimit the control’s site—that is, the area within the container
the control is assigned for rendering. The control is assigned a default size that can be
changed either programmatically or through the Visual Studio Properties window.

The value of the ForeColor property is used to render the text of the label that accompa-
nies the gauge. The value of the BackColor property determines the color to be used for
the progress bar. Note that the implementation we just discussed assumes that only known
 colors can be used.

Rendering the SimpleGaugeBar Control
The user interface of a Web control is pure HTML, sometimes topped off with a bit of client
script. As mentioned, there are basically two ways in which this HTML can be generated. You
can compose the HTML code in the supplied writer, or you can build an in-memory repre-
sentation of the output using existing HTML and Web server controls and then have them
recursively render their contents to the writer. Let’s discuss these two options in more detail.

Generating the HTML for a Custom Control
From a pure performance standpoint, writing out the control’s markup to an HTML text
writer object is the preferred approach. No server control is ever instantiated, and the final
and correct markup is sent to the browser. There are a few downsides to this approach you
should consider, however. One is that you end up making several calls to the writer. And,
aside from some negligible repercussions in terms of the performance (repercussions that
are negligible when compared to control instantiation), the size of the code grows consider-
ably, making your source code on the whole much less readable and harder to maintain. Let’s
 consider a quick but significant example.

To write the content of a string in a table cell, you need the following code if you decide to
opt for the rich interface of the writer:

output.WriteFullBeginTag("table");
output.WriteFullBeginTag("tr");
output.WriteFullBeginTag("td");
output.Write(text);
output.WriteEndTag("td");
output.WriteEndTag("tr");
output.WriteEndTag("table");

528 Part II ASP.NET Pages and Server Controls

However, as long as you don’t have a full bag of attributes to render, or a really complex
structure to build, the following code is equally effective and even slightly faster:

output.Write("<table><tr><td>");
output.Write(text);
output.Write("</td></tr></table>");

In general, neither of these two approaches is always the best possible approach. A good
compromise between the two is recommended to optimize performance while producing
compact code. Taking the first approach to its natural limit, you end up with many more lines
of code than are necessary. Taking the second approach further, you resort to building the
control using strings, which is indeed not the best thing you can do, mainly from a mainte-
nance point of view.

In ASP.NET, every piece of HTML code can be managed on the server as an instance of a
class. This pattern results in extreme flexibility and ease of development. However, it doesn’t
come without problems either. The rub lies in the fact that you instantiate lots of controls,
which always affects performance. Let’s take a look at this in more detail.

Using Child Controls for Rendering
Sometimes the custom control needs to build up a complex infrastructure with nested tables
and elements. In this case, it makes sense to build an in-memory representation of the over-
all tree and then render everything to HTML using the RenderContents method of the root
control. Typically, for controls with a relatively complex hierarchy of child controls and rich
styles, you override the Render method as follows:

protected override void Render(HtmlTextWriter output)
{
 // This is a custom method that you normally use
 // to ensure that all elements are styled properly.
 // We’ll show an implementation of this method later.
 PrepareControlForRendering();

 // Render the contents of the control
 base.RenderContents(output);
}

The SimpleGaugeBar control renders a nontrivial table structure that is much more manage-
able through a control tree:

protected override void CreateChildControls()
{
 Controls.Clear();
 CreateControlHierarchy();
 ClearChildViewState();
}

protected virtual void CreateControlHierarchy()

 Chapter 12 Custom Controls 529

{
 // Build the outermost container table
 var outer = new Table();
 var outerRow = new TableRow();
 outer.Rows.Add(outerRow);

 // Ruler cell
 var rulerCell = new TableCell();
 outerRow.Cells.Add(rulerCell);
 BuildGaugeBar(rulerCell);

 // Text cell
 var textCell = new TableCell();
 if (!_textStyle.DisplayTextAtBottom)
 {
 outerRow.Cells.Add(textCell);
 BuildLabel(textCell);
 }

 // Save the control tree—add the table as a child of the gauge
 Controls.Add(outer);

 // Build the label
 if (!_textStyle.RenderInsideTable && _textStyle.DisplayTextAtBottom)
 BuildLabel(null);
}

void BuildGaugeBar(TableCell container)
{
 // Create the table with one or two rows: ruler (and label)
 var t = new Table();
 var ruler = new TableRow();
 t.Rows.Add(ruler);

 // Build the ruler row
 BuildRuler(ruler);

 // Build the label
 if (_textStyle.RenderInsideTable)
 BuildLabelIntoTable(t);

 // Save the control tree
 container.Controls.Add(t);
}

The output of the SimpleGaugeBar control consists of an outermost table that has one
row and two cells. The first cell contains the gauge bar; the second cell optionally con-
tains the text, when the companion text has to be displayed on the side of the gauge. (See
Figure 12-2.) If the text goes below the gauge, it can either be part of the table (a second
row) or just an additional Label control. You control rendering styles of the text through
a custom style property—the TextStyle property—that I’ll say more about in a moment.
Let’s first focus on the ruler.

530 Part II ASP.NET Pages and Server Controls

The ruler is a sequence of table cells. Each cell corresponds to a notch you want to see on
the final gauge. The number of notches is determined by the Segments property. The Value
property is scaled as a percentage of the Maximum value, and the resulting value is used to
determine the color of the various cells. If the value to represent is larger than the value rep-
resented by the current notch, a cell is added with the average width determined by dividing
100 by the number of notches. The same happens if the value is smaller and the divider cell
has been rendered already. (In this case, finished is true.)

void BuildRuler(TableRow ruler)
{
 // Calculate the value to represent
 var val = GetValueToRepresent();
 float valueToRepresent = 100f * val / Maximum;
 var numOfSegments = GetNumOfSegments();

 int segmentWidth = 100 / numOfSegments;
 bool finished = false;
 for (int i = 1; i <= numOfSegments; i++)
 {
 if (valueToRepresent < i * segmentWidth)
 {
 if (finished)
 {
 // Still-To-Do
 var stillToDo = new TableCell();
 ruler.Cells.Add(stillToDo);
 stillToDo.Width = Unit.Percentage(segmentWidth);
 }
 else
 {
 // Cell to divide
 _dividerCell = i - 1; // need a 0-based index
 var cell = new TableCell();
 ruler.Cells.Add(cell);
 cell.Width = Unit.Percentage(segmentWidth);
 cell.Height = Unit.Percentage(100);

 // Add a child table to the cell
 var child = new Table();
 child.Width = Unit.Percentage(100);
 child.Height = Unit.Percentage(100);
 cell.Controls.Add(child);
 child.CellPadding = 0;
 child.CellSpacing = 0;
 var childRow = new TableRow();
 child.Rows.Add(childRow);

 float fx = (100 *
 (valueToRepresent - segmentWidth *
 (i - 1)) / segmentWidth);
 if (valueToRepresent > (i - 1) * segmentWidth)
 {
 TableCell left = new TableCell();

 Chapter 12 Custom Controls 531

 childRow.Cells.Add(left);
 left.Width = Unit.Percentage(fx);
 }
 var right = new TableCell();
 childRow.Cells.Add(right);
 right.Width = Unit.Percentage(100 - fx);
 finished = true;
 }
 }
 else
 {
 // Done
 var done = new TableCell();
 ruler.Cells.Add(done);
 done.Width = Unit.Percentage(segmentWidth);
 }
 }
}

The divider cell is the cell that is split in two to represent the remaining value, as shown in
Figure 12-3.

FIGURE 12-3 The divider cell in sample SimpleGaugeBar controls.

The divider cell is the first cell where the value of the corresponding notch is larger than the
value to represent. The divider cell is rendered through an embedded table with one row
and two cells. The index of the divider cell is cached for further use.

The companion text of the gauge can be displayed to the right of the gauge or below it.
When rendered below it, the text can either be incorporated in the table or added as an
 extra control. BuildLabel can either add the text as an additional control or place it in the
rightmost cell. BuildLabelIntoTable writes the text in an additional table row below the gauge.
In this case, the text inherits most of the gauge graphical settings.

void BuildLabel(TableCell container)
{
 // Calculate the value to represent
 float buf = GetValueToRepresent();

 // Get the string to display on the label
 string msg = GetTextToRepresent();

 var lbl = new Label();
 if (container is TableCell)
 container.Controls.Add(lbl);

532 Part II ASP.NET Pages and Server Controls

 else
 Controls.Add(lbl);
 lbl.Text = String.Format(msg, buf, Maximum);
}

// Build the control tree for the label
void BuildLabelIntoTable(Table t)
{
 // Calculate the value to represent
 float valueToRepresent = GetValueToRepresent();
 int numOfSegments = GetNumOfSegments();

 // Get the string to display on the label
 var companionText = GetTextToRepresent();
 if (_textStyle.DisplayTextAtBottom)
 {
 // Add a bottom row
 var label = new TableRow();
 t.Rows.Add(label);

 var lblCell = new TableCell();
 label.Cells.Add(lblCell);

 lblCell.ColumnSpan = numOfSegments;
 lblCell.Text = String.Format(companionText, valueToRepresent, Maximum);
 }
}

Note In the code shown thus far for the SimpleGaugeBar control, there a pair of unexplained
methods: GetValueToRepresent and GetTextToRepresent. In this simple control, the methods
return, respectively, the value of the Value and FormatString properties. However, you can ex-
tend the control with data-binding capabilities. In doing so, most of the changes will consist of
 extending the GetValueToRepresent and GetTextToRepresent methods.

There’s no functional difference between the two approaches—it’s purely a matter of
 appearance and preference. But how can you control the rendering and the styles of the
companion text? You do that through a new style property.

The Gauge in Action
After it’s compiled, the SimpleGaugeBar control can be installed in the Visual Studio toolbox
and dragged and dropped onto any Web Forms page you’re developing. Here’s some sample
code being added to a page:

<x:SimpleGaugeBar id="GaugeBar1" runat="server"
 Width="500px" Height="15px"
 FormatString="{0} out of {1}"
 Segments="10"
 Value="65">
</x:SimpleGaugeBar>

 Chapter 12 Custom Controls 533

The properties of the control that feature simple types can be set using the Properties
 window; for properties of a complex type, such as classes, you need to write a type converter
and configure the property for the design-time environment of Visual Studio. The following
code shows how to set properties on the gauge control programmatically:

private void Button1_Click(Object sender, EventArgs e)
{
 GaugeBar1.Maximum = 200;
 GaugeBar1.Value = 55;
}

You should try to set the Maximum property first because, in this way, the control
 automatically validates the value. Maximum and Value are stored in the view state and
are automatically restored when the page posts back. If the host page disables the view state,
you should modify the code that relates to the control so that the needed properties are set
on each request.

Building a Data-Bound Control
So far, we’ve created the SimpleGaugeBar control as a composite control to display a notched
indicator of a given quantity. By setting the Value and Maximum properties on the control,
you can graphically represent a value on the proper scale. The SimpleGaugeBar control
is not data bound, meaning that no elements in its programming interface can be auto-
matically and declaratively bound to external data. Derived from CompositeControl, the
SimpleGaugeBar control doesn’t incorporate any of the features listed previously regarding
data-bound controls.

The goal of this section is to extend the SimpleGaugeBar control to make it support data
binding through enumerable objects and data source controls.

Key Features
A data-bound version of SimpleGaugeBar is a form of simple binding. A couple of existing
properties—Value and FormatString—can be automatically filled with external data accord-
ing to the classic data-binding pattern of ASP.NET. A data source object specified through
either DataSource or DataSourceID and bindable properties are mapped to public fields on
the data source object through mapper properties. In simple binding, the bound data source
object is an individual object that contains just one logical piece of information—no items,
no lists.

The key features of a data-bound control can be summarized as follows:

■ Additional properties to represent mappings between control properties and data
source fields

534 Part II ASP.NET Pages and Server Controls

■ An additional property to represent and persist the data source object

■ Additional view-state management to persist the data source object

■ Modified rendering to take bound data into account

Let’s dig out more.

Adding Data-Bound Properties
When you bind data to, say, a DropDownList control, you first set the data source and
then specify which fields on the data source should be used to display the text and the
value of the resulting list. The DropDownList control features a pair of DataTextField and
DataValueField string properties.

The former is set to the name of the public field on the data source that will render the text
of displayed list items. The latter is set to the name of the field on the bound data source
 object that will render the unique value associated with each displayed list item.

On a new data-bound control, you need to define similar properties to specify any required
mapping between data source fields and bindable control properties. All these properties are
usually string properties stored in the view state; the name is arbitrary, but it generally fol-
lows the pattern DataXxxField, where Xxx indicates the role of the bindable control property.

Adding a Data Item Property
By design, the bound data source object must be an object that implements any of the
 following interfaces: IEnumerable (collections), IListSource (ADO.NET objects), or IDataSource
(data source controls). Let’s suppose you bind a control to one row of a DataTable. Do you
 really need to persist the whole data row? If yes, what if the data row contains a couple of
large binary large object (BLOB) fields?

The recommended approach entails that you extract a subset of information from the
 originally bound data source object and copy that to a control-specific data item object. This
object is an instance of a custom class that typically has as many public properties as there
are bindable properties on the control. For example, the DropDownList control has two bind-
able properties: Text and Value. Subsequently, the data item object—named ListItem—has
two properties: Text and Value. (Naming is arbitrary, though.)

In a new data-bound control, you define a data item class that will be filled with any neces-
sary information contained in the bound data source. This data item object must be persisted
through the view state to guarantee that the control refreshes properly across postbacks.
For performance reasons, the data item class must be able to serialize itself to the view state
without resorting to the binary formatter. Put another way, it means that the data item class
must implement IStateManager, just like style classes do.

 Chapter 12 Custom Controls 535

Note The data item class will be a collection of single data item classes if the data binding
 involves the association of a list of elements to a control.

Overriding the PerformDataBinding Method
The final key feature for a custom data-bound control is overriding the PerformDataBinding
method. The method receives the contents of the bound data source object in the form of an
enumerable object. As a control developer, you must read any required data from the source
and cache it in the data item object.

Finally, you modify the rendering engine of the control to display bound data.

Note Unless you need a data-bound control that behaves in a particular way (for example, a list
control or a composite data-bound control), deriving your control from DataBoundControl is the
most reasonable thing to do most of the time. If you need to start from a lower level, though,
you can inherit from BaseDataBoundControl and override PerformSelect and ValidateDataSource.
Needless to say, you might want to take this route only if you need to change the way a data
source is validated, retrieved, or both.

The GaugeBar Control
Let’s apply all the steps outlined so far to a new version of the SimpleGaugeBar control, aptly
named GaugeBar. The new control will still be a composite control, but it will inherit from
DataBoundControl to gain standard data-binding capabilities.

public class GaugeBar : DataBoundControl
{
 ...
}

To be precise, ASP.NET also features a class that incorporates both composition and data
binding. The name of the class is CompositeDataBoundControl.

Mapping Data Source Fields to Control Properties
The new GaugeBar control uses the same code as SimpleGaugeBar and extends it to de-
fine a couple of bindable properties—say, Value and FormatString. This choice of bindable
 properties is arbitrary, however.

You define a pair of DataXxxField properties—one for Value and one for FormatString.
These string properties contain the name of the data source fields mapped to the Value

536 Part II ASP.NET Pages and Server Controls

and FormatString. In particular, DataValueField indicates that the field mapped to Value and
DataTextField specifies the field linked to FormatString. Once again, note that the names used
here are arbitrary.

public virtual string DataValueField
{
 get
 {
 var o = ViewState["DataValueField"] as String;
 return o ?? String.Empty;
 }
 set { ViewState["DataValueField"] = value; }
}

public virtual string DataTextField
{
 get
 {
 var o = ViewState["DataTextField"] as String;
 return o ?? String.Empty;
 }
 set { ViewState["DataTextField"] = value; }
}

As you can see, both properties use the ViewState as the storage medium and are set to the
empty string by default. Other popular data-bound properties available on the GaugeBar
class are DataSource, DataSourceID, and DataMember, all of which are inherited from parent
classes.

The GaugeBar’s Data Item Object
After the GaugeBar control is bound to some external data, you need to track and cache any
bound data. For this purpose, you need a data item object. As mentioned, a data item object
is a custom class with as many public properties as there are bindable properties in the con-
trol’s interface. The data item class for the GaugeBar control is named GaugeBarDataItem
(again, an arbitrary name) and is defined as follows:

public class GaugeBarDataItem : IStateManager
{
 private string _text;
 private float _value;
 private bool _marked;

 public GaugeBarDataItem()
 {
 }

 Chapter 12 Custom Controls 537

 public GaugeBarDataItem(float value, string text)
 {
 _text = text;
 _value = value;
 }

 public string Text
 {
 get { return _text; }
 set { _text = value; }
 }

 public float Value
 {
 get { return _value; }
 set { _value = value; }
 }

 public bool IsTrackingViewState
 {
 get { return _marked; }
 }

 public void LoadViewState(object state)
 {
 if (state != null)
 {
 Pair p = (Pair)state;
 _value = (float)p.First;
 _text = (string)p.Second;
 }
 }

 public object SaveViewState()
 {
 return new Pair(_value, _text);
 }

 public void TrackViewState()
 {
 _marked = true;
 }
}

The class has two public properties—Text and Value—persisted through local members.
More interestingly, the class also implements the IStateManager interface, which provides a
standard interface to save any valuable contents to the view state across postbacks.

The SaveViewState method returns a Pair object (a sort of simplified array of two elements)
filled with the current values of the Text and Value properties. The Pair object returned by
SaveViewState becomes the input argument of LoadViewState, which unpacks the Pair object
and initializes the Text and Value properties.

538 Part II ASP.NET Pages and Server Controls

The GaugeBar control needs to expose a read-only property of type GaugeBarDataItem. You
can use any name for this variable—I’m using DataItem here. More important than the name
of the property is its implementation. Take a look at the following code:

private GaugeBarDataItem _dataItem;
...

private GaugeBarDataItem DataItem
{
 get
 {
 if (_dataItem == null)
 {
 _dataItem = new GaugeBarDataItem();
 if (base.IsTrackingViewState)
 _dataItem.TrackViewState();
 }
 return _dataItem;
 }
}

Unlike other control properties that are persisted directly in the ViewState collection object,
the DataItem property uses a private member (_dataItem) to persist its value. A private
 member, though, is not persistent and doesn’t survive postbacks. For this reason, in the get
accessor of the property you need to check _dataItem for nullness and create a new instance
if it is null.

The code contained in the get accessor of a property runs whenever that property is invoked.
As you’ll see in a moment, the preceding code ensures that no access to DataItem results
in a null object exception and that the state of the object is restored correctly after each
postback.

Data Item and View State
Most of the control properties we’ve considered thus far use the ViewState container to
persist the values. Why should we not store DataItem or style properties in the same way? Is
there anything wrong with the following code?

// NB: for this code to work, GaugeBarDataItem must be
// a serializable type
public virtual GaugeBarDataItem DataItem
{
 get
 {
 var o = ViewState["DataItem"] as GaugeBarDataItem;
 return o ?? new GaugeBarDataItem();
 }
 set { ViewState["DataItem"] = value; }
}

 Chapter 12 Custom Controls 539

Actually, nothing is “wrong” with the code per-se—but consider for a moment view-state size
and performance. Saving a class type directly in the ViewState container results in the object
being serialized using the binary formatter. The BinaryFormatter class—the standard way to
serialize managed objects in .NET applications—is not particularly fast and is designed to
save the entire state of the object, including both public and private members, both simple
and complex. The use of the BinaryFormatter increases the response time for each request
and generates a larger view-state output. By customizing the view-state serialization, you
obtain much faster code and save exactly the information you need to save.

As a rule of thumb, you should use the ViewState container to store property values if the
type of the property is primitive—a string, numbers, Boolean values, colors, dates, bytes, and
arrays of any of these types. Reference types (for example, custom classes) should be serial-
ized by implementing IStateManager and exposing the property via a get accessor like the
one shown previously. As far as control development is concerned, this is commonly required
for styles and data item properties.

Ad Hoc View-State Management
A control that has properties that take advantage of custom view-state serialization must
override the SaveViewState and LoadViewState protected methods. These methods are
 defined on the Control class, and they indicate how to save and restore the state of the
 control to and from the view state. The default implementation of both methods takes care
of the contents of only the ViewState container object.

protected override object SaveViewState()
{
 // Get the standard state object—ViewState container
 var baseState = base.SaveViewState();

 // Get the state object for the DataItem property
 var itemState = DataItem.SaveViewState();

 // Get the state object for the TextStyle object
 var styleState = TextStyle.SaveViewState();

 // Pack everything into a unique object
 return new Triplet(baseState, itemState, styleState);
}

The SaveViewState method of the GaugeBar control needs to save three objects: the
 standard view state, the DataItem property, and the TextStyle property. You get the standard
view-state output by calling SaveViewState on the base class, and you get other state objects
by calling SaveViewState on the IStateManager implementation of DataItem and TextStyle.
The SaveViewState method on the control needs to return a single object, so you just group
all data to return in a single object—typically, an array or a combination of Pair and Triplet
objects.

540 Part II ASP.NET Pages and Server Controls

The object returned by SaveViewState is received by LoadViewState, which extracts and
 assigns data back to the original objects.

protected override void LoadViewState(object savedState)
{
 if (savedState != null)
 {
 var t = (Triplet) savedState;
 base.LoadViewState(t.First);
 DataItem.LoadViewState(t.Second);
 TextStyle.LoadViewState(t.Third);
 }
 else
 {
 base.LoadViewState(null);
 }
}

The IStateManager implementation of LoadViewState on the serialized objects determines
how each object (for example, styles and data items) restores its own data.

Note that when DataItem.LoadViewState is called, the get accessor of DataItem is invoked
and initializes the internal _dataItem member on the first call.

Getting Bound Data
In ASP.NET, a bound control obtains bound data through the PerformDataBinding method.
Overriding this method is mandatory for any data-bound control because the standard im-
plementation of the method does nothing. It is important to recall that the IEnumerable ar-
gument passed to PerformDataBinding represents the collection of bound data regardless of
the format of the originally bound data source—whether it is an ADO.NET object, collection,
or data source control.

Here’s the implementation of PerformDataBinding for the GaugeBar control:

protected override void PerformDataBinding(IEnumerable data)
{
 // In this control, in spite of the IEnumerable type being used
 // the argument "data" is a single object, not a real list to enumerate.
 // You need to get an enumerator and call MoveNext once to get the effective
 // content to bind.
 if (data == null)
 return;
 var e = data.GetEnumerator();
 e.MoveNext();

 // Set default values for bindable properties
 float displayValue = 0;
 var displayText = String.Empty;

 Chapter 12 Custom Controls 541

 // Read the value for the Value property
 if (!String.IsNullOrEmpty(DataValueField))
 displayValue = (float) DataBinder.GetPropertyValue(
 e.Current, DataValueField);

 // Read the value for the FormatString property
 if (!String.IsNullOrEmpty(DataTextField))
 displayText = (String) DataBinder.GetPropertyValue(
 e.Current, DataTextField);

 // Fill the DataItem property
 DataItem.Value = displayValue;
 DataItem.Text = displayText;
}

In this particular case, the IEnumerable object passed to PerformDataBinding contains just
one element. The IEnumerable interface, though, doesn’t distinguish between a single
 element or a list of elements. In other words, to get the data object you need to get the
 enumerator and move to the first item:

// data is of type IEnumerable
IEnumerator e = data.GetEnumerator();
e.MoveNext();

// Use e.Current to get the physical data object

The e.Current expression returns the data object bound to the control—that is, the container
from which you extract the fields mapped to bindable properties. If you know the control is
bound to, say, a DataRow object, you can retrieve the value for the Value property through
the following code:

displayValue = ((DataRow) e.Current)[DataValueField];

Using the DataBinder class adds greater flexibility to your code and makes your code
 independent from the type of the bound data source. The GetPropertyValue method on
the DataBinder class uses reflection to query the object to see whether it contains a public
 property with the specified name:

displayText = (string) DataBinder.GetPropertyValue(
 e.Current, DataTextField);

GetPropertyValue returns an object and requires a cast to the proper type.

542 Part II ASP.NET Pages and Server Controls

The remaining step is updating the rendering engine so that it accesses the DataItem object
whenever it requires bound data. The BuildLabel method shown next displays the descriptive
text around the gauge:

void BuildLabel(TableCell container)
{
 // Calculate the value to represent
 var valueToRepresent = GetValueToRepresent();

 // Get the string to display on the label
 var msg = GetTextToRepresent();

 var lbl = new Label();
 if (container is TableCell)
 container.Controls.Add(lbl);
 else
 Controls.Add(lbl);

 lbl.Text = String.Format(msg, valueToRepresent, Maximum);
}

The BuildLabel method adds a Label control to the control hierarchy under construction. The
text displayed through the label is composed using the value and the format string of the
gauge. Both Value and FormatString can be either data-bound or statically assigned. For this
reason, you should use a get function that checks the current binding, if any, and returns the
bound value or the assigned value. Note the bound value is returned in favor of an assigned
value, if both are present.

float GetValueToRepresent()
{
 float f = 0;
 if (DataItem.Value >=0)
 f = DataItem.Value;
 else
 f = Value;

 return f;
}

string GetTextToRepresent()
{
 var msg = "";
 if (!String.IsNullOrEmpty(DataItem.Text))
 msg = DataItem.Text;
 else
 msg = FormatString;
 return msg;
}

No other changes are required to enhance the SimpleGaugeBar control and make it
data-bound.

 Chapter 12 Custom Controls 543

The following code shows the Load handler of a sample page that uses the GaugeBar control
and binds it to a dynamically generated DataTable object:

public class MyDataContainer
{
 public float Numbers { get; set; }
 public String Label { get; set; }
}

protected void Page_Load(object sender, EventArgs e)
{
 // Uses a random number as the value of the GaugeBar.
 // The value is stored in a custom object.
 Random rnd = new Random();
 var container = new MyDataContainer();
 container.Numbers = rnd.Next(0,100);
 container.Label = "{0} out of {1}";

 // Binds the DataTable to the GaugeBar
 GaugeBar1.DataValueField = "Numbers";
 GaugeBar1.DataTextField = "Label";
 GaugeBar1.DataSource = container;
 GaugeBar1.DataBind();
}

The DataTable has two columns—Numbers and Label—of type float and string, respectively.
The table contains one data row. If the table contained multiple rows, only the first would be
taken into account according to the code in PerformDataBinding.

Note that you can also use the DataItem property to bind data to the GaugeBar control:

GaugeBar1.DataItem.Value = 12;
GaugeBar1.DataItem.Text = "{0} %";

Note that no call to DataBind is required to trigger the process and update the control’s user
interface.

Building a Composite Templated Control
The CompositeDataBoundControl class is the starting point for building rich, complex, and
data-bound composite controls. A composite data-bound control must do the following:

■ Act as a naming container.

■ Create its own user interface through the CreateChildControls method.

■ Implement the necessary logic to restore its hierarchy of child elements after postback.

544 Part II ASP.NET Pages and Server Controls

The good news is that you can completely ignore the third point if you derive your control
class from the CompositeDataBoundControl class. The class, in fact, implements internally any
necessary logic.

Generalities of Composite Data-Bound Controls
The main aspect you care about when building a composite data-bound control is designing
the internal hierarchy of your control. The method to override for this purpose is an over-
loaded version of CreateChildControls. In addition, you typically add styles and templates.

In a real-world composite control, the internal control tree is usually quite complex. The
 outermost container is often a multirow HTML table (or perhaps a collection of <div> tags,
each with specific semantics associated with it). However, what’s in the various cells and rows
can vary quite a bit and result in a pretty sophisticated combination of child controls and
literals.

Creating a Hierarchy of Child Controls
You should know by now that composite controls build their own interface by composing
controls in the override of the CreateChildControls method. Defined on the Control class, the
method has the following prototype:

protected override void CreateChildControls()

In the CompositeDataBoundControl class, the method is overridden and overloaded.
In particular, the overridden version accomplishes a few interesting tasks. Here’s its
pseudo-code:

protected override void CreateChildControls()
{
 Controls.Clear();
 var o = ViewState["_!ItemCount"];
 if ((o == null) && RequiresDataBinding)
 EnsureDataBound();
 else
 {
 int numOfItems = (int) o;
 object[] items = new object[numOfItems];
 CreateChildControls(items, false);
 base.ClearChildViewState();
 }
}

 Chapter 12 Custom Controls 545

The method first empties the Controls collection so that no pending child controls are left
around. Next, it retrieves a value from a particular (and internally managed) view-state
entry named _!ItemCount. The view-state entry caches the number of items that form the
 composite control. The code that actually builds the control tree is responsible for storing
this value in the view state.

Knowing the number of items that form the control hierarchy is important to optimize the
data-binding process. In ASP.NET, complex controls that show a possibly long list of data
items are implemented as composite data-bound controls. In what way is this different from
list and simple-bound controls?

List controls and simple-bound controls, such as the GaugeBar we considered earlier, cache
the data item or items in the view state. In addition, they can either receive data from the
data-binding process or programmatically through the Items collection and the DataItem
property, respectively. Composite data-bound controls (such as ListView and GridView) work
on the assumption that they receive data exclusively from data binding and, for this reason,
don’t persist bound data in any form. Consider now the following scenario.

Imagine a page that contains a rich control such as the GridView and some button controls.
One of the button controls, when clicked, executes no code that involves the GridView but
still refreshes the page. Without some special tricks in the control’s code, you can be sure
that the composite data-bound control would be empty upon postback. Why is this so? If
the postback event handler doesn’t bind data back to the composite control, the control has
no way to figure it out and refresh properly. In ASP.NET, by design, composite data-bound
controls take their data only from data binding and don’t cache any bound data. So a special
workaround is required to handle postback events.

For composite data-bound controls, the CreateChildControls method works in either of two
modes: binding or nonbinding. When CreateChildControls is working in binding mode, the
control tree is created as usual. When it’s working in nonbinding mode, the control calls
an overloaded version of CreateChildControls. The method is defined as abstract on the
CompositeDataBoundControl and must be overridden in any derived class.

The Overloaded CreateChildControls
The overloaded version of CreateChildControls that is defined on the
CompositeDataBoundControl class is shown here:

protected abstract int CreateChildControls(
 IEnumerable dataSource, bool dataBinding);

The first parameter is the collection of bound data. The second parameter indicates
whether the control is being bound to fresh data (that is, it is working in binding mode)

546 Part II ASP.NET Pages and Server Controls

or is being refreshed after a postback. The return value indicates the number of items
added to the control tree. This value will then be stored in the view state during the call to
PerformDataBinding. The following code snippet shows an excerpt from the source code of
PerformDataBinding on the CompositeDataBoundControl class:

protected internal override void PerformDataBinding(IEnumerable data)
{
 base.PerformDataBinding(data);
 Controls.Clear();
 base.ClearChildViewState();
 TrackViewState();
 int numOfItems = CreateChildControls(data, true);
 base.ChildControlsCreated = true;
 ViewState["_!ItemCount"] = numOfItems;
}

Note that PerformDataBinding calls into the new overload of CreateChildControls and
passes it true as the second argument, indicating that a binding operation is taking place.
This makes sense because executing PerformDataBinding, by definition, means you are
 performing a binding operation.

What kind of code should you place in the overloaded CreateChildControls? Basically, you
call your own control builder method (typically, CreateControlHierarchy) and return its return
value. I’ll return to this point later when discussing the sample BarChart control.

The overloaded CreateChildControls method is invoked in binding mode from within
PerformDataBinding, and it’s invoked in nonbinding mode from within the other
CreateChildControls method:

// o is the value read from ViewState
int numOfItems = (int) o;
object[] items = new object[numOfItems];
CreateChildControls(items, false);

In this case, the bound data passed to the method is an empty array of objects of a
well-known size. The goal of this array is to force the control builder method (typically,
CreateControlHierarchy) to loop the right number of times and build an outermost con-
tainer with the right configuration—for example, a table with the right number of rows and
columns.

As you’ll see in detail for the sample BarChart control, a composite data-bound control
neatly separates hierarchy from data. If the Boolean parameter of CreateChildControls is false,
no data is added to the hierarchy. How can the control show up as it did the last time? The
ASP.NET postback mechanism guarantees that child controls are restored with all their val-
ues. In other words, if a composite data-bound control displays bound data through, say, a
Label control, after a postback the composite control doesn’t restore its bound data directly.
However, it asks any child control, including the Label, to restore itself from the view state. In
doing so, the Label restores the bound data from its Text property.

 Chapter 12 Custom Controls 547

The bottom line is that the amount of extra data that flows in the view state for a composite
control is limited to the number of constituent items, and the control refreshes correctly after
a postback. (Of course, child controls put in the view state the usual amount of data.)

The Control Item
It should be clear from the previous discussion that the ASP.NET team had excellent
 arguments to dictate that composite data-bound controls get their data exclusively from the
data-binding process. This fact eliminates the need of having a kind of Items property on
composite data-bound controls that works like the Items property of list controls. This said,
feel free to add support for data item objects and collections to your composite controls if
you need to.

Most composite controls feature a collection of items, but not a collection of data items. Each
item represents a control item—that is, a logical building block of the control’s user interface.
For a GridView, it is a GridViewRow object that represents a table row. For a sample BarChart
control that displays a bar chart, the control item will be a class derived from TableRow that
contains all the information needed to handle a single bar. The number of items that com-
posite controls store in the view state is exactly the number of “control” items.

Let’s see how these concepts apply to a sample composite data-bound control such as
BarChart.

The BarChart Control
The BarChart control inherits from CompositeDataBoundControl and defines the properties
listed in Table 12-3.

TABLE 12-3 BarChart Properties
Property Description
DataTextField Name of the data field to use as the label of each bar.

DataTextFormatString Format string for the display text.

DataValueField Name of the data field to use as the value of each bar.

DataValueFormatString Format string for the value to display on top of each bar.

Items Collection of BarChart items. Each element represents a bar in the
chart. Elements in the Items collection are of type BarChartItem.

Maximum Gets and sets the maximum value that can be represented in the chart.

SubTitle Gets and sets the subtitle of the final chart.

Title Gets and sets the title of the bar chart.

The final markup for the control is a horizontal bar chart such as the one illustrated in
Figure 12-4.

548 Part II ASP.NET Pages and Server Controls

FIGURE 12-4 The BarChart control in action.

Each bar is fully represented by an element in the Items collection. In addition, the BarChart
control features a few style properties, as Table 12-4 details.

TABLE 12-4 BarChart Style Properties
Property Description
BarStyle The style of the whole row that contains the bar

LabelStyle The style of the label

SubTitleStyle The style of the subtitle in the control’s header

TitleStyle The style of the title in the control’s header

ValueStyle The style of the element displaying the value rendered

The attributes of all style properties are applied in the Render method, as in other
 data-bound controls.

The BarChart Item Object
The user interface of the BarChart control is created in the overloaded version of
CreateChildControls.

protected override int CreateChildControls(
 IEnumerable dataSource, bool dataBinding)
{
 return CreateControlHierarchy(dataSource, dataBinding);
}

 Chapter 12 Custom Controls 549

Both input arguments are passed down to an internal CreateControlHierarchy method, which
is ultimately responsible for the creation of the bar chart:

int CreateControlHierarchy(IEnumerable dataSource, bool dataBinding)
{
 // Get the data to display (either from data source or viewstate)
 if (dataSource == null)
 {
 RenderEmptyControl();
 return 0;
 }

 // Start building the hierarchy of controls
 Table t = new Table();
 Controls.Add(t);

 // Add the header row with the caption
 CreateTitle(t);

 // Add the subtitle row
 CreateSubTitle(t);

 // Add bars
 int totalItems = CreateAllItems(t, dataSource, dataBinding);
 return totalItems;
}

The control hierarchy is a table with two rows for the title and subtitle and other rows for the
bars of the chart. CreateAllItems adds bar chart items and counts their number. This number
is then returned and ends up in the view state.

int CreateAllItems(Table t, IEnumerable data, bool useDataSource)
{
 // Count how many items we add
 int itemCount = 0;

 // Clears the Items collection (creates it, if null)
 Items.Clear();

 // Scroll data items, and create table items
 foreach (object o in data)
 {
 // Create the match item object
 BarChartItemType itemType = BarChartItemType.Item;
 BarChartItem item = CreateBarChartItem(t,
 itemType, o, useDataSource);

 // Add the newly created object to the Items collection
 _items.Add(item);

 // Increase the counter
 itemCount++;
 }

 // Return how many items we have into the viewstate (for postbacks)
 return itemCount;
}

550 Part II ASP.NET Pages and Server Controls

For each bound item, the method creates a BarChartItem object and adds it to the Items
 collection. We’ll discuss the BarChartItem class in a moment.

Note that you use Items.Clear to clear the collection and _items.Add to add a new bar chart
item to the collection. The Items property is implemented as follows:

private BarChartItemCollection _items;
...
public virtual BarChartItemCollection Items
{
 get
 {
 if (_items == null)
 _items = new BarChartItemCollection();
 return _items;
 }
}

The property Items uses the _items variable as its storage medium. The first call to Items.Clear
ensures that the collection is properly initialized. The second call to the same collection can
go through the local variable to save a call to the get accessor of the Items property.

The BarChartItem class represents a bar in the chart and is defined as follows:

public class BarChartItem : TableRow
{
 private object _dataItem;
 private BarChartItemType _itemType;

 public BarChartItem(BarChartItemType itemType)
 {
 _itemType = itemType;
 }

 public object DataItem
 {
 get {return _dataItem;}
 set {_dataItem = value;}
 }

 public BarChartItemType ItemType
 {
 get {return _itemType;}
 }
}

The class inherits from TableRow (actually, a bar in the chart is a table row) and defines a cou-
ple of properties: DataItem and ItemType. The DataItem property references the data item in
the bound data source associated with the corresponding item. For example, if the BarChart
is bound to a DataTable, DataItem is bound to the DataRow that corresponds to a given bar.

 Chapter 12 Custom Controls 551

ItemType, on the other hand, indicates the type of table row—such as a title, subtitle, or item.
The item types are defined through an enumerated type:

public enum BarChartItemType
{
 Title,
 SubTitle,
 Item
}

The Items property groups a bunch of BarChartItem objects in a collection. The collection
type is BarChartItemCollection:

public class BarChartItemCollection : Collection<BarChartItem>
{
}

Because bar chart item objects don’t go to the view state, there’s no need to implement
IStateManager and add extra view-state management methods as we did previously for the
hyperlink control.

Adding Bound Data
With a composite data-bound control, you don’t need to override the PerformDataBinding
method. However, you should pay some attention to keeping neatly separated the code that
builds the structure of the control and the code that adds data.

The CreateBarChartItem method creates a new table row and enriches it with a DataItem
property. What’s the content of the row? Looking at Figure 12-3, you can see that each table
row has a cell for the label and a cell for the progress bar.

BarChartItem CreateBarChartItem(Table t, BarChartItemType itemType,
 object dataItem, bool useDataSource)
{
 // Create a new row for the outermost table
 var item = new BarChartItem(itemType);

 // Create cells for label and value
 var labelCell = CreateLabelCell(item);
 var valueCell = CreateValueCell(item);

 // Add the row to the table
 t.Rows.Add(item);

 // Handle the data object binding
 if (useDataSource)
 {
 // Get the data source object
 item.DataItem = dataItem;

552 Part II ASP.NET Pages and Server Controls

 // Data bind the team labels
 BindLabelCell(labelCell, dataItem);
 BindValueCell(valueCell, dataItem);
 }

 // Return the fully configured row item
 return item;
}

CreateLabelCell and CreateValueCell add cells to the table row. Here is their implementation:

private TableCell CreateLabelCell(BarChartItem item)
{
 // Create and add the cell
 var cell = new TableCell();
 item.Cells.Add(cell);
 return cell;
}

private TableCell CreateValueCell(BarChartItem item)
{
 // Create and add the cell
 var cell = new TableCell();
 item.Cells.Add(cell);

 // Add the internal labels
 var lblGraph = new Label();
 var lblText = new Label();

 cell.Controls.Add(lblGraph);
 cell.Controls.Add(new LiteralControl("
"));
 cell.Controls.Add(lblText);
 return cell;
}

The colored bar is represented with a label whose width is a percentage of the maximum
value possible on the chart.

As you can see in the code of CreateBarChartItem, an if statement separates the creation of
required child controls from the data binding. If the method is working in binding mode, the
DataItem property is set on each bar chart item and the following two methods are called to
add data to the child controls of the BarChart control:

private void BindLabelCell(TableCell cell, object dataItem)
{
 if (!String.IsNullOrEmpty(DataTextField))
 {
 string txt = DataBinder.GetPropertyValue(
 dataItem, DataTextField, DataTextFormatString);
 cell.Text = txt;
 }
}

 Chapter 12 Custom Controls 553

private void BindValueCell(TableCell cell, object dataItem)
{
 // Bind the label for the graph
 var lblGraph = (Label) cell.Controls[0];
 object o = null;
 if (!String.IsNullOrEmpty(DataValueField))
 o = DataBinder.GetPropertyValue(dataItem, DataValueField);
 else
 return;
 var val = Convert.ToSingle(o);
 float valueToRepresent = 100 * val / Maximum;
 lblGraph.Width = Unit.Percentage(valueToRepresent);

 // Bind the label for the text
 var lblText = (Label) cell.Controls[2];
 lblText.Text = DataBinder.GetPropertyValue(
 dataItem, DataValueField, DataValueFormatString);
}

The data-binding process works in a way that is no different from what you saw earlier for
other types of data-bound controls. The trickiest part here is the calculation of the width of
the label that, when properly styled, generates the horizontal bar.

Note As you can see, no style properties are assigned when the control hierarchy is being built.
Just as for other data-bound controls, style attributes are applied later in the control life cycle in
the Render method, immediately before generating the control’s markup.

Events of the BarChart Control
The BarChart control also features a couple of events: BarChartCreated and
BarChartDataBound. It is not coincidental that these two events mimic analogous events
on the DataGrid control. Although far simpler, the BarChart is a control designed along the
same guidelines that inspired the creation of the DataGrid control:

public event EventHandler<BarChartItemEventArgs> BarChartItemCreated;
public event EventHandler<BarChartItemEventArgs> BarChartItemDataBound;
protected virtual void OnBarChartCreated(BarChartItemEventArgs e)
{
 if (BarChartItemCreated != null)
 BarChartItemCreated(this, e);
}

protected virtual void OnBarChartItemDataBound(BarChartItemEventArgs e)
{
 if (BarChartItemDataBound != null)
 BarChartItemDataBound(this, e);
}

554 Part II ASP.NET Pages and Server Controls

The BarChartItemCreated event is fired whenever a new table row is added to represent a
bar. The BarChartItemDataBound event fires when a newly added table row is bound to its
data. The former event fires regardless of the working mode of the control. The latter fires
only when the control is created in binding mode.

The data carried out with the event is grouped in the BarChartItemEventArgs class:

public class BarChartItemEventArgs : EventArgs
{
 private BarChartItem _item;
 public BarChartItemEventArgs(BarChartItem item)
 {
 _item = item;
 }

 // Properties
 public BarChartItem Item
 {
 get { return _item; }
 }
}

Both events are fired from within the CreateBarChartItem method:

BarChartItem CreateBarChartItem(Table t, BarChartItemType itemType,
 object dataItem, bool useDataSource)
{
 // Create a new row for the outermost table
 var item = new BarChartItem(itemType);

 // Create cells for the label and value
 var labelCell = CreateLabelCell(item);
 var valueCell = CreateValueCell(item);

 var argsCreated = new BarChartItemEventArgs(item);
 OnBarChartItemCreated(argsCreated);
 ...
 if (useDataSource)
 {
 ...
 BarChartItemEventArgs argsData = new BarChartItemEventArgs(item);
 OnBarChartItemDataBound(argsData);
 }
}

 Chapter 12 Custom Controls 555

Using the BarChart Control
Let’s see how to consume these events from within a host page. The following markup en-
ables a BarChart control in an ASP.NET page:

<x:BarChart runat="server" id="BarChart1"
 Maximum="100" SubTitle="Subtitle" Title="Title"
 OnBarChartDataBound="BarChart1_BarChartDataBound" >
 ...
</x:BarChart>

Nothing in the preceding markup indicates the data source. In the Page_Load event, the
control is bound to its data—a collection of custom objects with a couple of properties. One
property indicates the amount of sales for an employee in the specified year; the other indi-
cates the name of the employee:

protected void Button1_Click(object sender, EventArgs e)
{
 var data = GetDataByYear(1997);
 BarChart1.Maximum = 150000;
 BarChart1.Title = "Northwind Sales";
 BarChart1.SubTitle = "(Year 1997)";
 BarChart1.DataSource = data;
 BarChart1.DataTextField = "Employee";
 BarChart1.DataValueField = "Sales";
 BarChart1.DataBind();
}

The bar chart shown in Figure 12-3 is obtained by running the preceding code. The sample
page handles the BarChartDataBound event through the following code:

void BarChart1_BarChartDataBound(object sender, BarChartItemEventArgs e)
{
 // Get the amount of sales for the current bar
 var sales = (Decimal) DataBinder.GetPropertyValue(
 e.Item.DataItem, "sales");

 // Add a ToolTip
 var tip = sales.ToString();
 e.Item.Attributes["title"] = tip;

 // Highlight bar where sales > 50000
 if (sales > 50000)
 e.Item.Cells[1].BackColor = Color.LightGreen;
}

The amount of sales for the current employee is retrieved and added to the row as a ToolTip.
In addition, if the sales are larger than 50,000, the cell is highlighted by using a different
background color. (See Figure 12-5.)

556 Part II ASP.NET Pages and Server Controls

FIGURE 12-5 Output of a BarChart control modified by page-level event handlers.

Note All data-bound controls feature a couple of common events: DataBinding and DataBound.
The former event fires before the data-binding process begins. The DataBound event, on the
other hand, signals that the data-binding phase has terminated.

Adding Template Support
The BarChart control accepts two strings to display as the title and subtitle of the chart.
Likewise, you can define a similar property for the footer. Title, subtitle, and footer are dis-
tinct items in the BarChart control hierarchy. What are you allowed to display in these items?
As long as the properties are implemented as plain strings, there’s not much more than static
text that can show up through the items.

A bit more flexibility can be added with format strings. A format string is a string that
 contains a predefined number of placeholders that the control machinery fills with internal
data. For example, the FormatString property of the GaugeBar defaults to {0} / {1}—namely,
a format string with two placeholders. The string is resolved as follows:

// First placeholder gets the Value to represent
// Second placeholder gets the Maximum value that can be represented
String.Format(FormatString, Value, Maximum);

You can enrich the format string with HTML tags to obtain more appealing results but, in
the long run, this approach results in unmanageable code. A much better route to deep
 customizations of the user interface of controls is to use templates.

 Chapter 12 Custom Controls 557

Templates and User Controls
In ASP.NET, you can import templates in two ways: through properties of type ITemplate
or by dynamically loading user controls. A Web user control is a custom component that
can be used wherever a server control is valid. You can import such a user-defined control
into the layout of the main control and make the interface more flexible and generic. You
put a PlaceHolder control in the location in which you want custom contents to be injected,
and then at run time you create an instance of the user control and add it to the Controls
 collection of the placeholder:

placeHolder.Controls.Add(Page.LoadControl("usercontrol.ascx"));

The right time to call this code is early in the control life cycle—that is, in an Init event
 handler. Using the LoadControl method, the code of the template is insulated in a separate
file. This can be a good thing or a bad thing, depending on the context. If the template you
want to implement is complex, keeping it off the main page is positive. Otherwise, it would
certainly add a layer of unnecessary complexity. Having the template directly available in the
source code of the page makes authoring the page much more intuitive and fast because
you don’t have to follow code into a separate file.

There’s also a sort of compromise between the two approaches. You can define an ITemplate
property in the control and leave the page author free to decide how to set it—with statically
defined markup or using the contents of an .ascx file.

Defining a Template Property
A template property represents a collection of text and controls that is hosted within a
 container. The container is also responsible for exposing properties that page authors can
use to create data-bound expressions. The following code snippet shows how to define a
template property named TitleTemplate:

[PersistenceMode(PersistenceMode.InnerProperty)]
[TemplateContainer(typeof(TitleTemplateContainer))]
public ITemplate TitleTemplate
{
 get { return _titleTemplate; }
 set { _titleTemplate = value; }
}

The storage of the template is guaranteed by the private member _titleTemplate, defined as
follows:

private ITemplate _titleTemplate = null;

A template property is characterized by a couple of attributes: PersistenceMode and
TemplateContainer.

558 Part II ASP.NET Pages and Server Controls

The PersistenceMode attribute indicates how a control property is persisted declaratively in a
host page. Table 12-5 lists possible modes of persistence.

TABLE 12-5 Persistence Modes for Control Properties
Property Description
Attribute The property persists as an encoded HTML attribute in the final

markup.

EncodedInnerDefaultProperty The property persists as the only inner text of the control. The
property value is HTML encoded. Only a string can be given this
designation.

InnerDefaultProperty The property persists in the control as inner text and is
the element’s default property. Only one property can be
 designated the default property.

InnerProperty The property persists in the control as a nested tag. This is
 commonly used for complex objects with templates and styles.

The most common setting is InnerProperty, which instructs Microsoft Visual Studio to save
the contents of the template as a nested tag named after the property:

<x:BarChart runat="server" ID="BarChart1" ... >
 <TitleTemplate>
 ...
 </TitleTemplate>
</x:BarChart>

If you choose InnerDefaultProperty, you can have only one nested tag; by opting for
InnerProperty, you can have as many nested tags as needed. This is good for rich controls
with multiple templates and styles.

The TemplateContainer attribute declares the type of the naming container that will contain
the template once it is created. As mentioned, a template is hosted by a container which,
in turn, is appended to the control’s Controls collection. The TemplateContainer attribute
 references a type that you, as a control developer, are responsible for declaring.

Defining a Template Container
A template container type is a simple Web control decorated with the INamingContainer
interface. This control can be given any public members you like. However, it will typically
expose the host control as a whole and a bunch of quick-access properties. Here’s a sample
container type for the TitleTemplate property:

public class TitleTemplateContainer : WebControl, INamingContainer
{
 private BarChart _parent;
 public TitleTemplateContainer(BarChart parent)
 {
 _parent = parent;

 Chapter 12 Custom Controls 559

 }
 public string Title
 {
 get { return _parent.Title; }
 }
 public string SubTitle
 {
 get { return _parent.SubTitle; }
 }
 public BarChart BarChart
 {
 get { return _parent; }
 }
}

Once again, be sure to note that there are no constraints or special guidelines to influence
the set of members of the class. The class needs to have a reference to the parent control—
the BarChart in this case. Normally, you create this class for a particular control (or set of
controls) and don’t reuse it beyond that. It is up to you to expose the parent control through
a direct property (BarChart in the preceding code) or filter the control’s programming inter-
face with a subset of properties (for example, Title and SubTitle). You can also do both things.

The programming interface of the template container class is important because it defines
the information that page authors have access to when creating a template for the property.
The template container is made accessible through the Container property.

Setting a Template Property
You can use any combination of controls and literals to populate a template. To access
 external information, though, you need to use data-bound expressions. Here’s an example:

<TitleTemplate>

 <%# Container.Title %>
</TitleTemplate>

The code snippet demonstrates a BarChart title that displays an image in addition to the text
set through the Title property. Here’s another example:

<TitleTemplate>
 <%# Container.Title %>
 <small>(<%# DateTime.Now.ToString() %>)</small>
</TitleTemplate>

Figure 12-6 shows a templated title item where the originally set Title property is displayed
side by side with the current time. The current time is rendered with a smaller font and
within parentheses.

560 Part II ASP.NET Pages and Server Controls

FIGURE 12-6 A BarChart control with a templated title.

Note that any style attributes set through the TitleStyle property are maintained in the
template.

The Container keyword references an instance of the template container type. You use the
Container keyword to access any control properties exposed through the template container
class. Nonstatic information requires a <%# ... %> data-bound expression, just like in the
templates of ASP.NET built-in controls.

Rendering a Template
So far you’ve seen how to define a template property in a server control. But what other
changes to the code are required to host a template? In summary, to define a template
 property you need to do the following:

■ Define a property of type ITemplate, and use a private variable as its storage medium.

■ Decorate the property with the PersistenceMode attribute.

■ Define a template container class.

■ Decorate the property with the TemplateContainer attribute.

These steps define only the public interface of the template; more is needed to embed the
template in the control’s hierarchy. In particular, you need to tweak the code that creates
the portion of the control tree where you want the template to display. For example, the

 Chapter 12 Custom Controls 561

TitleTemplate property refers to the title item; so the internal method to modify is CreateTitle.
Here’s the updated version:

private void CreateTitle(Table t)
{
 // Create the table row
 var item = new BarChartItem(BarChartItemType.Title);
 t.Rows.Add(item);

 // Add the title cell
 var cell = new TableCell();
 cell.ColumnSpan = BarChart.ColumnsCount;
 item.Cells.Add(cell);

 // Decide between plain string and template
 if (TitleTemplate != null)
 {
 _titleTemplateContainer = new TitleTemplateContainer(this);
 TitleTemplate.InstantiateIn(_titleTemplateContainer);
 cell.Controls.Add(_titleTemplateContainer);
 }
 else
 cell.Text = Title;

 // Must call DataBind to enable #-expression on templates
 item.DataBind();
}

You check whether a template for the title item is defined; if it is not, you just set the Text
property of the title cell with the contents of the Title property. Otherwise, you get an in-
stance of the template container type and use it as the input argument of the InstantiateIn
method—the only method on the ITemplate interface. When done, you add the template
container to the control hierarchy—in this case, to the Controls collection of the title cell.

A fundamental further step is required to enable the template to successfully process data-
bound expressions. You must place a call to DataBind on the title item. Data-bound expres-
sions, in fact, are evaluated only after a call to DataBind is made that involves the parent
control that hosts the expression. Without the DataBind call, templates will work correctly
but won’t display any <%# ... %> expression.

Summary
ASP.NET provides a wealth of server controls from which you can likely choose exactly the
control you are looking for. If this is not the case, and the control simply doesn’t exist, you
can create your own control from the ground up or by extending an existing control, and

562 Part II ASP.NET Pages and Server Controls

obtain incredibly powerful results. Writing a control is a matter of defining an appropriate
object model and providing an effective rendering algorithm. Aside from these two points,
other equally important aspects of control development are containment, naming, and
 integration with the engine that supplies state management.

In this chapter, we’ve built a few ASP.NET controls with different capabilities, from simple
components capable of rendering an HTML tree to controls with rich support for data
 binding and templates.

Programming Microsoft® ASP.NET 4

 563

Part III

Design of the Application
In this part:
Chapter 13: Principles of Software Design . 565
Chapter 14: Layers of an Application . 593
Chapter 15: The Model-View-Presenter Pattern . 615

 565

Chapter 13

Principles of Software Design
There is nothing like returning to a place that remains unchanged to find the ways
in which you yourself have altered.

—Nelson Mandela

Maintaining a software application is probably harder, and definitely more bothersome,
than writing it from the ground up. A large part of a developer’s career is spent performing
maintenance tasks on existing code rather than planning and writing new software. Armed
with this knowledge, I usually advise developers and architects I work with to always give top
 priority to one specific attribute of the numerous possible attributes of a software system—
that attribute is maintainability.

The biggest challenge that many software architects face today is how to design and
 implement an application that can meet all of the requirements for version 1 plus other
requirements that show up afterward. Maintainability has been one of the fundamental
 attributes of software design since the first draft of the ISO/IEC 9126 paper, back in 1991.
(The paper provides a formal description of software quality and breaks it down into a set
of characteristics and subcharacteristics, one of which is maintainability. A PDF version of the
paper can be obtained at http://www.iso.org.)

The mother of all challenges for today’s software architects is focusing on current requested
features while designing the system in a way that keeps it flexible enough to support future
changes and additions. In this regard, maintainability is king and you should favor it over
 everything else. Maintainability represents the best compromise you can get; with a high
level of maintainability in your code, you can achieve anything else—including scalability,
performance, and security.

That sounds very nice, but how do you write software that is easy to maintain?

There are a few basic principles of software design that if properly, and extensively, applied
will transform a piece of code into a manageable and flexible piece of code. Doing this
 probably won’t be enough to save your team from having to fix a few bugs once the appli-
cation has been deployed to production, but at least it will keep regression at a reasonable
level. More importantly, these principles make it less likely that you’ll have to fix a bug with a
workaround rather than with a definitive update.

Let’s start by reviewing some of the most alarming symptoms that generally signal that
 code-related suffering is on the horizon.

http://www.iso.org

566 Part III Design of the Application

The Big Ball of Mud
The expression “big ball of mud” (or BBM) refers to a software system that shows no clear
sign of thoughtful design and results in a jungle of spaghetti code, duplicated data and
 behavior, piecemeal growth, and frequent expedient repair. Coined by Brian Foote and
Joseph Yooder, the term indicates a clear anti-pattern for developers and architects. You can
read the original paper that formalized BBM at http://www.laputan.org/mud.

Reasons for the Mud
A BBM system usually results from the combined effect of a few causes: the limited skills of
the team, frequent changing of requirements, and a high rate of turnover among team mem-
bers. Often when you face a BBM the best thing you could ideally do is just rewrite the appli-
cation based on a new set of reviewed requirements. But, honestly, I’m not sure I’ve ever seen
this happen even once. Most of the time, a complete rewrite is simply not a feasible option.

If you have no way out other than facing the BBM, a reasonable but still painful approach
consists of stopping any new development and starting to arrange a bunch of significant
tests. What types of tests? Well, in a BBM scenario you can hardly expect to write plain
 isolated unit tests. You wouldn’t be immersed in a big ball of mud if you could write plain
unit tests! More likely, you write some sort of integration tests that involve different layers
(when not tiers) and that are not especially quick to run, but at least they provide you with an
automated tool to measure any regression as you proceed with refactoring the existing code.

To try to keep your head above mud, you can only patiently refactor the code and introduce
a better architecture, being very much aware that you’re operating in a fragile environment
and any approach must be as delicate as possible. Obviously, this process won’t be com-
pleted quickly. It might even take years if the project is very large. On the other hand, the
alternative is to just kill the project.

Let’s find out more about the factors that can lead to a big ball of mud.

Limited Skills
Architecting a system requires some fundamental skills, maybe a bit of talent, and definitely
hands-on experience. Knowledge of best and worst practices also helps a lot. In a word,
 education is key. However, the development team is not usually given enough power to cause
huge damage on their own. Management and customers are usually responsible as well,
maybe even more.

When management is too demanding, and when customers don’t really know what they
want, the information being conveyed to developers won’t be clear and unambiguous.
This leads to arbitrary choices, compromises, and workarounds at all levels that just make it
 impossible to come up with a defined architecture.

http://www.laputan.org/mud

 Chapter 13 Principles of Software Design 567

Requirements Churn
The term requirements churn refers to making numerous changes to the initially agreed-
upon requirements. Incorporating a new requirement into an existing system, which was
 architected without that particular requirement, can be problematic. The cost of such a
change depends on the size of the change, the dependencies in the code, and whether or
not the change affects the structure of the system.

Adding a single change, even a significant one, is not enough to jeopardize the entire
 architecture. But when individual significant changes are frequent, over time you transform
a system devised in a given way into something that probably requires a different architec-
ture. If you keep adding new requirements individually without reconsidering the system as a
whole, you create the ideal conditions for a big ball of mud.

Members Turnover
When technical documentation is lacking or insufficient, the worst thing that can happen is
that the rationale for making particular decisions is lost forever. As long as the application
is deployed, works, and doesn’t require proactive or passive maintenance (although I still
haven’t found such an application), you’re fine. But what if this is not the case?

If the rationale for design and architectural decisions is not entirely evident, how can you
expect new members of the team to take over the maintenance or additional development
for the system? At some point, in their efforts to understand the system, these new mem-
bers must be informed of the rationale for various decisions. If they can’t figure out the real
 rationale, inevitably they will make further changes to the system based on their assump-
tions. Over time, this leads to a progressive deterioration of the system that is what we’ve
been referring to as the big ball of mud.

Alarming Symptoms
The big ball of mud doesn’t get formed overnight. How can you detect that your system is
deteriorating? There a few hard-to-miss symptoms you don’t want to ignore. They are very
serious. Let’s find out what they are.

Make a Change Here, Break the Code There
Can you bend a piece of wood? And what do you risk if you insist on trying to do that?
A piece of wood is typically stiff and rigid and characterized by some resistance to
 deformation. When enough force is applied, the deformation becomes permanent.

What about rigid software?

568 Part III Design of the Application

Rigid software is characterized by some level of resistance to changes. Resistance is measured
in terms of regression. You make a change in one module, but the effects of your change
cascade down the list of dependent modules. As a result, it’s really hard to predict how large
the impact of a change—any change, even the simplest—will actually be.

If you pummel a glass or any other fragile material, you succeed only in breaking it down into
several pieces. Likewise, when you enter a change in software and cause it to misbehave in
some places, that software is definitely fragile.

Just as fragility and rigidity go hand in hand in real life, they also do so in software. When a
change in a software module breaks (many) other modules because of (hidden) dependen-
cies, you have a clear symptom of a bad design, and you need to remedy that situation as
soon as possible.

Easier to Use Than to Reuse
Imagine you have a piece of software that works in one project; you would like to reuse it in
another project. However, copying the class or linking the assembly in the new project just
doesn’t work.

Why is this so?

If the same code doesn’t work when it’s moved to another project, it’s because of
 dependencies. However, the real problem isn’t just dependencies; it’s the number and depth
of dependencies. The risk is that to reuse a piece of functionality in another project, you’ll
have to import a much larger set of functions. In such cases, no reuse is ever attempted and
code is rewritten from scratch. (Which, among other things, increases duplication.)

This also is not a good sign either for your design. This negative aspect of a design is often
referred to as immobility.

Easier to Work Around Than to Fix
When applying a change to a software module, it is not unusual that you find two or more
ways to do it. Most of the time, one way of doing things is nifty, elegant, coherent with the
design, but terribly laborious to implement because of certain constraints. The other way is,
instead, much smoother and quicker to code, but it is sort of a hack.

What should you do?

Actually, you can solve the problem either way, depending on the given deadlines and your
manager’s directives about it.

 Chapter 13 Principles of Software Design 569

In summary, it’s not an ideal situation because a workaround might be much easier to apply
than the right solution. And that’s not a great statement about your overall design either. It
simply means that too many unneeded dependencies exist between classes and that your
classes do not form a particularly cohesive mass of code. This negative aspect of a design is
often referred to as viscosity.

So what should you do to avoid these symptoms showing up in your code and creating a big
ball of mud?

Universal Software Principles
In my opinion, maintainability is the fundamental attribute of modern software. The
 importance of maintainability spans the technology spectrum and applies to the Web as well
as desktop applications.

A few universally valid design principles help significantly to produce code that is easier to
maintain and evolve. It is curious to note that they are all principles devised and formulated
a few decades ago. Apparently, for quite some time we’ve had the tools to build and manage
complex software but real applications were just lacking the complexity to bring them to the
forefront as design best practices. This is also my interpretation of the advent of the Rapid
Application Development (RAD) paradigm a decade ago, which complemented (and in some
cases superseded) object-oriented programming (OOP).

Today, the situation is different. With large companies now taking full advantage of Internet,
cloud, and mobile computing, developers and architects are swamped with an incredible
amount of complexity to deal with. That’s why RAD is no longer sufficient in many scenarios.
On the other hand, not everybody is skilled enough to use OOP. It’s about time we all redis-
cover some fundamentals of software programming—regardless of the type of application
we’re building.

Summarizing, I would boil software principles down to two principles: the High Cohesion and
Low Coupling principle and the Separation of Concerns principle.

Cohesion and Coupling
Cohesion and coupling go hand in hand even though they refer to orthogonal aspects
of your code. Cohesion leads you toward simple components made of logically related
functions—kind of atomic components. Coupling indicates the surface area between two
interfacing components: the wider the area is, the deeper the dependency is between the
components. The magic is all in finding the right balance between cohesion and coupling
while trying to maximize both.

570 Part III Design of the Application

Cohesion at a Glance
Cohesion indicates that a given software module—a class, if we assume the object-oriented
paradigm—features a set of responsibilities that are strongly related. Put another way, cohe-
sion measures the distance between the logic expressed by the various methods on a class.

If you look for a moment at the definition of cohesion in another field—chemistry—you can
get a clearer picture of software cohesion. In chemistry, cohesion is a physical property of a
substance that indicates the attraction existing between like-molecules within a body.

Cohesion measurement ranges from low to high, with the highest possible cohesion being
preferable. Highly cohesive modules favor maintenance and reusability because they tend
to have no dependencies. Low cohesion, on the other hand, makes it much harder to un-
derstand the purpose of a class, and it creates a natural habitat for rigidity and fragility in
your software. Low-cohesive modules also propagate dependencies, thus contributing to the
 immobility and viscosity of the design.

Decreasing cohesion leads to creating classes where methods have very little in common and
refer to distinct and unrelated activities. Translated into a practical guideline, the principle of
cohesion recommends creating extremely specialized classes with few methods that refer to
logically related operations. If the “logical” distance between methods needs to grow, well,
you just create a new class.

Coupling at a Glance
Coupling measures the level of dependency existing between two software classes.
An excellent description of coupling comes from the Cunningham wiki at
http://c2.com/cgi/wiki?CouplingAndCohesion. Two classes, A and B, are coupled when it
turns out that you have to make changes to B every time you make any change to A. In
other words, B is not directly and logically involved in the change being made to module A.
However, because of the underlying dependency B is forced to change; otherwise, the code
won’t compile any longer.

Coupling measurement ranges from low to high, with the lowest possible coupling being
preferable.

Low coupling doesn’t mean that your modules have to be completely isolated from one
another. They are definitely allowed to communicate, but they should do that through a set
of well-defined and stable interfaces. Each class should be able to work without intimate
knowledge of the internal implementation of another class. You don’t want to fight coupling
between components; you just want to keep it under control. A fully disconnected system is
sort of nonsense today.

Conversely, high coupling hinders testing and reusing and makes understanding the system
nontrivial. It is also one of the primary causes of a rigid and fragile design.

http://c2.com/cgi/wiki?CouplingAndCohesion

 Chapter 13 Principles of Software Design 571

Low coupling and high cohesion are strongly correlated. A system designed to achieve
low coupling and high cohesion generally meets the requirements of high readability,
 maintainability, easy testing, and good reuse.

Separation of Concerns
Functional to achieving high cohesion and low coupling is the separation of concerns (SoC)
principle, introduced by Edsger W. Dijkstra in his paper “On the role of scientific thought”
which dates back to 1974. If you’re interested, you can download the full paper from
http://www.cs.utexas.edu/users/EWD/ewd04xx/EWD447.PDF.

Identifying the Concerns
SoC is all about breaking the system into distinct and possibly non-overlapping features.
Each feature you want in the system represents a concern and an aspect of the system.
Terms like feature, concern, and aspect are generally considered synonyms. Concerns are
mapped to software modules and, to the extent that it is possible, there’s no duplication of
functionalities.

SoC suggests that you focus your attention on one particular concern at a time. It doesn’t
mean, of course, that you ignore all other concerns of the system. More simply, after you’ve
assigned a concern to a software module, you focus on building that module. From the
 perspective of that module, any other concerns are irrelevant.

Note If you go through the original text written by Dijkstra back in 1974, you note that he uses
the expression “separation of concerns” to indicate the general principle, but he switches to the
word “aspect” to indicate individual concerns that relate to a software system. For quite a few
years, the word “aspect” didn’t mean anything special to software engineers. Things changed
in the late 1990s when aspect-oriented programming (AOP) came into the industry. Ignored for
many years, AOP is being rediscovered today mostly thanks to some ad hoc frameworks such as
Spring .NET and other Inversion of Control (IoC) frameworks.

Modularity
SoC is concretely achieved through modular code and making large use of information
hiding.

Modular programming encourages the use of separate modules for each significant feature.
Modules are given their own public interface to communicate with other modules and can
contain internal chunks of information for private use.

Only members in the public interface are visible to other modules. Internal data is either not
exposed or it is encapsulated and exposed in a filtered manner. The implementation of the

http://www.cs.utexas.edu/users/EWD/ewd04xx/EWD447.PDF

572 Part III Design of the Application

interface contains the behavior of the module, whose details are not known or accessible to
other modules.

Information Hiding
Information hiding (IH) is a general design principle that refers to hiding behind a stable
interface some implementation details of a software module that are subject to change. In
this way, connected modules continue to see the same fixed interface and are unaffected by
changes.

A typical application of the information hiding principle is the implementation of properties
in Microsoft C# or Visual Basic .NET classes. The property name represents the stable inter-
face through which callers refer to an internal value. The class can obtain the value in various
ways (for example, from a private field, from a control property, from a cache, and from the
view state in ASP.NET) and can even change this implementation detail without breaking
 external code.

// Software module where information hiding is applied
public class Customer
{
 // Implementation detail being hidden
 private string _name;

 // Public and stable interface
 public string CustomerName
 {
 // Implementation detail being hidden
 get {return _name;}
 }
}

Information hiding is often referred to as encapsulation. I like to distinguish between the
principle and its practical applications. In the realm of object-oriented programming,
 encapsulation is definitely an application of IH.

In general, though, the principle of SoC manifests itself in different ways in different
 programming paradigms, and so it is also for modularity and information hiding.

Note Separation of concerns is the theoretical pillar of multitiered (or just multilayered)
 systems. When you try to apply SoC to classes, you run across just one fundamental concept
that you can then find formulated in a number of different ways. You essentially achieve sepa-
ration of concerns by isolating dependencies and abstracting them to interfaces. This is called
low coupling, interface-based programming or, perhaps in a more formal way, the Dependency
Inversion principle that I’ll cover in just a moment. Different names—each appropriate in its own
context—but just one key idea.

 Chapter 13 Principles of Software Design 573

SOLID Principles
Recently, a particular acronym is gaining a lot of popularity—SOLID. The acronym results
from the initials of five design principles formulated by Robert Martin. The S stands for Single
Responsibility; the O is for the Open/Closed principle; the L is for Liskov’s principle; the I is for
Interface Segregation; and finally, the D is for Dependency Inversion.

Taken individually, these principles are nothing new. Any experienced developer and
 architect should be at least vaguely familiar with the idea behind each principle, either
 because it is part of the developer’s personal education or because of the experience the
 developer has gained the field.

SOLID principles are just a further specialization and refinement of universal and
 object-oriented design principles. Their definition is relatively simple; yet the adoption of
these principles can be fairly complex.

Note As you’ll see in a moment, not all principles should be taken literally. Some of them are
just driving vectors that attempt to show you the right direction, but without being dogmatic.
You can download the original papers describing the SOLID principles and their canonical
 examples from http://www.objectmentor.com.

The Single Responsibility Principle
The Single Responsibility Principle (SRP) is a formal way of rephrasing the idea behind
 cohesion. The principle states that there should never be more than one reason for a class
to change. Applied to the design of the class, it means each class you add to your solution
should focus on just one primary task.

The responsibilities of a class that does just one thing are much smaller than the responsibili-
ties of a class that does multiple things. A responsibility is defined as a “reason to change”;
more specifically, it’s a reason for you—the developer—to put your hands on the class’s
source code and edit it.

The purposes of SRP are to simplify maintenance and improve readability. Keeping the code
simple at the root—by taking out additional features—is an effective way to smooth mainte-
nance chores. At the end of the day, SRP is a form of defensive programming.

http://www.objectmentor.com

574 Part III Design of the Application

SRP Canonical Example
Like any other SOLID principle, SRP has its own canonical example aimed at illustrating the
point of the principle. Here’s a piece of code that contains the gist of SRP:

public class Modem
{
 public void Dial(String number);
 public void Hangup();

 public void Send(Char c);
 public Char Receive();
}

How many sets of responsibilities do you see in the Modem class? Dial and Hangup represent
the connection management functionality, whereas the Send and Receive pair of methods
represent communication functionalities. Should these two sets of responsibilities be
 separated? As usual, it depends.

SRP Real-World Considerations
An effective implementation of SRP passes through the identification of specific
 responsibilities in the programming interface of the class. One task is identifying
 responsibilities; it is quite a different task to actually split the class into two other classes,
each taking care of a specific responsibility. In general, you should always consider splitting
responsibilities in distinct classes when the two sets of functions have little in common. If this
happens, the two resulting classes will likely change for different reasons and will likely be
called from different parts of the application. In addition, different parts of the application
will change for different reasons.

Another scenario that suggests the need to split a class into two (or more) is when the two
sets of functions you identified in the original interface are large enough to require suf-
ficiently complex logic of their own. In this case, you simply lower the level of granularity of
your design a bit. However, the size is not always, and not necessarily, a good parameter to
use to make a decision about SRP. A function can be complex and large enough to justify a
breakup; however, if it’s not likely to change over time, it might not require a distinct class.
Scenarios like this, however, represent a tough call, with no uniform guidance to help you
determine what to do.

Finally, you should pay a lot of attention not to split the original class into small pieces. The
risk of taking SRP to the limit is falling into the Overdesign anti-pattern that occurs when
a system is excessively layered and each layer ends up being a thin wrapper around an if
 statement. As mentioned, SRP is a driving vector rather than a dogma. You should always
keep it in your mind but never apply it blindly and blissfully.

 Chapter 13 Principles of Software Design 575

The Open/Closed Principle
We owe the Open/Closed Principle (OCP) to Bertrand Meyer. The principle addresses the
need of creating software entities (whether classes, modules, or functions) that can happily
survive changes.

The purpose of the principle is to provide guidance on how to write components that can
be extended without actually touching the source code. Sounds like quite an ambitious plan,
doesn’t it? Let’s get at the formulation:

A class should be open for extension but closed for modification.

Honestly, I find the formulation a bit idealistic and bordering on magic. However, the
 principle is in itself quite concrete. It essentially says that the source code of the class must
remain intact, but the compiled code must be able to work with types it doesn’t know
 directly. This can be achieved in just one way: abstracting aspects of the class that can lead to
changes over time. To abstract these aspects, you can either use interfaces and code injection
or generics.

OCP Canonical Example
Low coupling between interfacing modules is beneficial because it instructs the caller to
work with an abstraction of its counterpart rather than with a concrete implementation. In
their masterpiece Design Patterns: Elements of Reusable Object-Oriented Software (Addison-
Wesley, 1994), the Gang of Four (Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides) formulate a basic principle of object-oriented design as “Program to an interface,
not to an implementation.”

The gist of OCP is all here. Code that is based on an abstraction can work with a concrete
object it gets passed as long as this object is compatible with known abstraction. Behind the
term “abstraction,” you can find at least two concrete syntax elements: a base class or an
 interface. Here’s the canonical example of a class—the Renderer class—that fully complies
with OCP:

public abstract class Shape
{
 public abstract void Render();
}

public class Renderer
{
 public void Draw(IList<Shape> shapes)
 {
 foreach(Shape s in shapes)
 s.Render();
 }
}

576 Part III Design of the Application

The abstraction is represented by the base class Shape. The Renderer class is closed for
 modification but still open for extension because it can deal with any class that exposes the
Shape abstraction—for example, any class that derives from Shape.

Analogously, you can have a Renderer<T> class that receives its working type as a generic
argument.

OCP Real-World Considerations
OCP should not be taken literally. Like SRP, it works much better if used as a driving vector.
Frankly, no significant class can be 100 percent closed for modification. By “significant class”
here, I mean most real-world classes or, better, all classes except those you write just for
demo purposes!

If closure of a given class can’t realistically be complete, it should then be strategic. It is a
 precise architect’s responsibility to identify the most likely changes in the class body and
close the class design against them. In other words, designing a class that can support
all possible future extensions is a utopian pursuit. However, identifying just one specific
 abstraction or two and making the class work against them is, most of the time, an excellent
compromise. Aiming for fully pluggable classes is over designing; even a partial application
of OCP is beneficial and rewarding.

If you ignore OCP, at some point you might catch yourself downcasting to a specific subclass
to compile the code and avoid run-time exceptions. If this happens, it’s a clear sign that
something is wrong in the design.

Liskov’s Substitution Principle
Of the five SOLID principles, Liskov’s principle is probably the only one that should be taken
literally, because it serves you a detailed list of dos and don’ts and it isn’t limit to being a
generic guidance on design. The formulation of the principle couldn’t be simpler. To some
extent, it also seems a bit obvious:

Subclasses should always be substitutable for their base classes.

When a new class is derived from an existing one, it should always be possible to use the
derived class in any place where the parent class is accepted. Wait a moment! Isn’t this
 something you get out of the box with any object-oriented language? Well, not exactly!

What you really get from OOP is just the mere promise that derived classes can be used
wherever their base class is accepted. However, OOP still lets you write hierarchies of classes
where this basic requirement isn’t met; hence, the principle.

 Chapter 13 Principles of Software Design 577

Substitution Principle Canonical Example
Suppose you have a Rectangle class and a method that works with that. The method just
receives a parameter of type Rectangle and, of course, it takes advantage of the logical
 contract this class exposes. For example, the Rectangle class exposes a Width and Height pair
of properties that can be independently set.

Suppose that after doing this, you then need to introduce a Square object. How would you
do that? Logically speaking, you see the Square entity as a special case of the Rectangle
 entity. Therefore, the natural step is deriving Square from Rectangle and overriding Width
and Height so that their values are always in sync.

If you do this, you potentially break the original code written against the contract of the
Rectangle class. The violation of the principle here doesn’t necessarily result in a run-time
exception or a compile error. Your code might still work just fine, despite the Liskov violation.
However, your code is inherently fragile because there’s the possibility of introducing bugs
during maintenance. The violation has to be considered in the mathematical sense—you
can find a counterexample that shows you can’t use a Square where a Rectangle is expected.
Here’s a code snippet that illustrates this point:

public class Rectangle
{
 public virtual Int32 Width { get; set; }
 public virtual Int32 Height { get; set; }
}

public class Square : Rectangle
{
 public override Int32 Width
 {
 get {return base.Width; }
 set {base.Width = value; base.Height = value; }
 }
 public override Int32 Height
 {
 get {return base.Height; }
 set {base.Height = value; base.Width = value; }
 }
}

Here’s some client code that consumes the Rectangle class:

public void Process(Rectangle rect)
{
 rect.Width = 100;
 rect.Height = 2* rect.Width;
 Debug.Assert(rect.Height == 2*rect.Width);
}

578 Part III Design of the Application

This code works fine if a real Rectangle is passed, but it violates the assertion if a Square is
passed. The easiest way to fix it—the workaround that increases viscosity—is simply the
following:

public void Process(Rectangle rect)
{
 if (rect is Rectangle)
 {
 rect.Width = 100;
 rect.Height = 2* rect.Width;
 Debug.Assert(rect.Height == 2*rect.Width);
 }
 else
 {
 ...
 }
}

The real problem you have here, instead, is an incorrect definition of inheritance rules. Square
can’t be derived from Rectangle because it is not expected to be able to do at least all the
things that the base class does.

Substitution Principle Real-World Considerations
Liskov’s principle can be difficult to grasp for many developers. An easier way to explain it is
the following: each derived class should expect no more than the parent and provide no less
than the parent.

This means, for example, that you break the principle if a virtual member ends up using a
private member of the class. Likewise, you break the principle if a derived class adds more
preconditions to a virtual method.

Liskov’s principle isn’t meant to portray inheritance—a pillar of OOP—in a bad light. Quite
the reverse, it calls your attention to a safe use of virtual members. If you derive and just
add new features, you’re absolutely safe. If you don’t have virtual members, you’re abso-
lutely safe. If you have virtuals and actually override them in derived class, you should pay
 additional attention.

Note In .NET 4, you have the Code Contracts API to express preconditions, postconditions,
and invariants around your classes. A precondition is simply an IF in a method that executes at
the very beginning of the code. If you use this API to express preconditions for the methods of
a class, and happen to add preconditions to an overridden method of a class, you get a warning
(not an error) from the C# compiler.

 Chapter 13 Principles of Software Design 579

The Interface Segregation Principle
There’s an aspect of coding that I find particularly annoying—being forced to write code that
I don’t really need. You might say that you should not write any code that you don’t need.
There are situations, however, in which this is necessary. When? For sure, when the code
 ignores the Interface Segregation principle.

The principle is so simple that it seems like merely common sense. It says that client
 components should not be forced to depend upon interfaces that they do not use. More
precisely, components should not be forced to implement members of interfaces (or base
classes) that they don’t plan to use.

There’s nothing bad in a client that provides a void implementation of a particular interface
method or that just throws if invoked. Sometimes this happens simply because the client
deliberately intends to provide a partial implementation; sometimes, however, it happens
because the interface is poorly designed. Fat interfaces are a bad thing. The Single
Responsibility principle should hold true for interfaces also.

Interface Segregation Canonical Example
The classic scenario to examine to start thinking about interface segregation is the definition
of a door. If you’re asked to simply define a door, you would probably come up with an
interface with just a couple of Lock and Unlock methods and perhaps a Boolean property
IsDoorOpen. However, if you know that you also need to deal with timed doors that sound an
alarm if left open for too long, you might arrange something like this:

public interface IDoor

{

 void Lock();

 void Unlock();

 Boolean IsDoorOpen { get; }

 Int32 OpenTimeout { get; set; }

 event EventHandler DoorOpenForTooLong;

}

The apparent plus of this design is that it gives you just one interface that can serve up
both scenarios: timed and regular doors. This is an apparent benefit because it forces
you to have two extra members on any class that implements the interface: the event
DoorOpenForTooLong and the timeout property. Why on earth should you have these
 members where they aren’t needed?

580 Part III Design of the Application

Interface Segregation Real-World Considerations
Note also that code that is not strictly needed can’t be ignored after it is compiled. In other
words, any code that gets compiled does count, regardless of whether or not it was necessary
when you designed your classes. Because it’s there, it can influence the application, it must
be tested, it must be debugged, and it must be maintained. Quite paradoxically, because it’s
there it can even represent a constraint and limit further necessary improvements!

The natural solution is to use slimmer interfaces. The IDoor interface should be split into two
smaller and much more specific interfaces—say IDoor and ITimedDoor:

public interface IDoor

{

 void Lock();

 void Unlock();

 Boolean IsDoorOpen { get; }

}

public interface ITimedDoor

{

 Int32 OpenTimeout { get; set; }

 event EventHandler DoorOpenForTooLong;

}

Now if you need to create RegularDoor and TimedDoor classes, you proceed as shown here:

public class RegularDoor : IDoor
{
 ...
}
public class TimedDoor : IDoor, ITimedDoor
{
 ...
}

Unlike classes, interfaces can be easily summed up; so there’s really no reason to have fat
 interfaces any more.

The Dependency Inversion Principle
I consider Dependency Inversion to be the most important of the five SOLID principles. You
don’t need it in every class and method that you write, but if you miss it where you need it,
well, you’re in serious trouble. Take a look at Figure 13-1.

 Chapter 13 Principles of Software Design 581

Change
me

Replace
me

FIGURE 13-1 Hard to change blocks in software architecture.

I’m not sure the idea behind this figure is completely original, and I don’t even know if there’s
anybody I should thank for that. For sure, I remember having seen it somewhere, likely at
some software conference somewhere in the world. Then I simply revised the idea and made
it mine.

So you have built the architecture of your system by simply composing parts. What if, at
some point during development, you need to replace or significantly modify one of the
building blocks? As the graphics attempts to show, it might be hard to change some of the
building blocks that form the skeleton of the system. Dependency inversion is simply aimed
at making this difficult task simpler and less expensive.

The principle says that every high-level module should always depend on abstractions
of lower level modules. This is just a reformulation of the concept of interface-based
programming.

Dependency Inversion Canonical Example
The idea behind Dependency Inversion doesn’t need a complex scenario to be effectively
illustrated. Just imagine a method that reads bytes from a stream and writes them out to
some buffer:

void Copy()
{
 Byte byte;
 while(byte = ReadFromStream())
 WriteToBuffer(byte);
}

582 Part III Design of the Application

The pseudocode just shown depends on two lower level modules: the reader and writer.
According to the principle, we should then abstract the dependencies to interfaces—say,
IReader and IWriter. The method can be rewritten as follows:

void Copy()
{
 Byte byte;
 IReader reader;
 IWriter writer;

 while(byte = reader.Read())
 writer.Write(byte);
}

Who really does provide instances of the reader and writer modules? That’s the principle,
or the general law; to actually solve the issue, you need some further specification. In other
words, you need a pattern.

The first pattern used to apply the Dependency Inversion principle is Service Locator pattern,
which can be summarized as follows:

void Copy()
{
 Byte byte;
 var reader = ServiceLocator.GetService<IReader>();
 var writer = ServiceLocator.GetService<IWriter>();

 while(byte = reader.Read())
 writer.Write(byte);
}

You use a centralized component that locates and returns an instance to use whenever
the specified abstraction is requested. The service locator operates while embedded in the
code that it serves. You can say that it looks for services, but it is not a service itself. Most
of the time, you use this pattern when you have some legacy code that you need to make
easier to extend that is hard to redesign in a different way—for example, in a way that uses
 dependency injection.

A better alternative is to use Dependency Injection (or inversion of control). The resulting
code looks like this:

void Copy(IReader reader, IWriter writer)
{
 Byte byte;

 while(byte = reader.Read())
 writer.Write(byte);
}

 Chapter 13 Principles of Software Design 583

The list of dependencies is now explicit from the signature of the method and doesn’t require
you to go down the line to pinpoint calls to a service locator component. In addition, the
burden of creating instances for each spot dependency is moved elsewhere.

Dependency Inversion Real-World Considerations
Dependency inversion is about layers, and layers don’t reduce the total amount of code
(quite the reverse, I’d say). Layers, however, contribute to readability and, subsequently, to
maintainability and testability.

In light of this, the motivation for special frameworks such as Inversion of Control (IoC)
frameworks is right in front of your eyes.

You don’t want to write the factory yourself for all instances that populate the graph of
 dependencies for pieces of your application. The task is repetitive and error prone. Although
it might be a boring task for developers, it’s just plain business as usual for certain tools. IoC
frameworks are just a way for you to be more productive when it comes to implementing the
Dependency Inversion principle.

These days, we tend to oversimplify things by using the name of the most popular pattern—
Dependency Injection—to refer to the universal principle. Even more often, we just use the
name of a family of tools (IoC) to refer to the principle. What really matters is that you give
the principle its due consideration. The details of how you actually implement it are up to
you and your team.

You don’t need an IoC tool to implement good dependency injection; you can get it through
overloaded constructors (also known as the poor man’s dependency injection) or even by writ-
ing your own homemade IoC framework. In the simplest case, it’s a thin layer of code around
some .NET reflection primitives. You can ignore the Dependency Inversion principle, but you
do so at your own peril.

Note Dependency injection is also fundamental from a testability standpoint because it makes
it natural to inject dependencies in classes as you test them.

Tools for Dependency Injection
The list of tools for dependency injection is quite long in the .NET space nowadays. Most of
these tools provide the same set of core functionalities and are, to a large extent, equivalent.
Choosing one is often a matter of preference, skill level, and perhaps your comfort with the
exposed API. There are some who prefer simplicity and speed and opt for Autofac or Ninject.
Others would opt for rich functionality and go for Spring.NET or Castle Windsor. Another

584 Part III Design of the Application

group would pick up the entire Microsoft stack and then use Unity. Table 13-1 lists the most
popular options today, with the URL from where you can get further information.

Table 13-1 Some Popular IoC Frameworks
Framework URL
Autofac http://code.google.com/p/autofac

Castle Windsor http://www.castleproject.org/container/index.html

Ninject http://www.ninject.org

Spring.NET http://www.springframework.net

StructureMap http://structuremap.sourceforge.net/Default.htm

Unity http://codeplex.com/unity

All IoC frameworks are built around a container object that, bound to some configuration
information, resolves dependencies. The caller code instantiates the container and passes the
desired interface as an argument. In response, the IoC framework returns a concrete object
that implements that interface. Let’s top off the chapter by taking a quick tour of two frame-
works in the Microsoft stack that, although they have different characteristics and goals, can
both be employed to implement the Dependency Inversion principle.

Managed Extensibility Framework at a Glance
Introduced with the Microsoft .NET Framework 4, the Managed Extensibility Framework
(MEF) attempts to give a consistent answer to the loud demand for tools for building
 plugin-based applications.

A plugin-based application is an application that can rely on a number of optional
 components that are discovered and composed together at run time. Microsoft Visual
Studio is an excellent example of this application; a simpler but still valid example is Windows
Explorer, whose menus can be extended by registering shell extensions. A plugin-based
 application provides a number of extensibility points and builds its core user interface and
logic using abstractions for those extensibility points. Some run-time code then attempts to
resolve all pending dependencies in a quick and direct way.

MEF vs. IoC
MEF does some work that any IoC does. Like an IoC framework, MEF is able to spot
 dependencies and resolve them, returning a usable graph of objects to the caller applica-
tion. In raw terms of functionality, MEF is not as powerful as most IoC tools. MEF has limited
support for managing the object’s lifetime and doesn’t currently support any form of aspect
orientation. MEF also requires that classes it deals with be decorated with ad hoc attributes.

http://code.google.com/p/autofac
http://www.castleproject.org/container/index.html
http://www.ninject.org
http://www.springframework.net
http://structuremap.sourceforge.net/Default.htm
http://codeplex.com/unity

 Chapter 13 Principles of Software Design 585

You can’t just take a plain old CLR class and use it with MEF. On the other hand, MEF swallows
exceptions when some particular things go wrong during the composition process.

In summary, MEF is an IoC framework optimized for the specific task of discovering and
 loading optional and compatible components on the fly.

Should You Choose MEF or an IoC?
MEF is already in the .NET Framework 4; any IoC tools of choice is a separate set of
 assemblies and adds dependencies to the project. MEF is available only for .NET 4, whereas
most IoC frameworks are available for most .NET platforms. This said, however, I’d like to
 remark that MEF doesn’t bring new significant capabilities to the table that you couldn’t code
yourself or achieve through an IoC. MEF, however, makes writing plugin-based applications
really fast and simpler than ever before.

If MEF serves all your IoC needs, choose MEF and code your way within the .NET Framework
4. If you’re happy with the IoC you’re using today, perhaps there’s no need for you to change
it. In this regard, MEF won’t give you an ounce more than your favorite IoC.

The real issue is when you want to use MEF because of plugins but still need to mix it with an
IoC because MEF doesn’t offer the advanced services of rich IoC—for example, call intercep-
tion. In this case, either you drop MEF in favor of IoC or configure MEF to accept instances
created by the IoC of choice.

MEF in Action
An MEF application is based on components known as composable parts. Each part can
 contain some members decorated as imports. An import is a class member with the Import
attribute, and it indicates a member that will be resolved and instantiated by the MEF
 runtime. In a MEF application, you also find classes decorated as exports. An export is a class
decorated with the Export attribute. An instance of an export class can be used to perform an
import as long as the import and export match.

What does determine a valid match?

An import/export match is based on a contract. A contract here has little to do with service
or interface contracts. An MEF contract is a collection of meta information that both im-
ports and exports contain. In most cases, it is a simple string. In other cases, it contains type
 information or both unique strings and type information.

The list of exports is determined by catalogs. A catalog is a provider that returns the list of
available exports to be matched to the imports of the object being resolved. Finally, the
composition process is the process in which all imports (that is, dependencies) are resolved.

586 Part III Design of the Application

Here’s a brief code example to illustrate:

public class PasswordCreator
{
 private CompositionContainer _container;
 public ProgramBody() {
 InitializeMef();
 }

 private void InitializeMef()
 {
 var catalog = new DirectoryCatalog("Plugins");
 _container = new CompositionContainer(catalog);

 // Fill the imports of this object
 try {
 _container.ComposeParts(this);
 }
 catch (CompositionException compositionException);
 }

 [Import]
 public IPasswordFactory PasswordFactory { get; set; }

 public String CreatePassword()
 {
 if (PasswordFactory == null)
 {
 return "Dependency not resolved.";
 }

 return PasswordFactory.Create(12);
 }
}

The class PasswordCreator generates a random password using the services of an object that
implements the IPasswordFactory interface. No such a component, though, is instantiated by
the class itself. The task, in fact, is delegated to MEF.

MEF will use a directory catalog to explore all assemblies in the specified relative folder,
 looking for exports that match the contract of the IPasswordFactory import. So where’s the
contract name?

When you use the plain attribute, the contract name defaults to the name of the member. In
this case, it is typeof(IPasswordFactory). What about exports?

Consider the following example:

[Export(typeof(IPasswordFactory))]
public class DefaultPasswordFactory : IPasswordFactory
{
 public String Create(Int32 passwordLength)
 {
 // Create the password
 }

 Chapter 13 Principles of Software Design 587

 protected virtual String GeneratePasswordCore(Int32 passwordLength)
 {
 // ...
 }
}

Deployed to an assembly located in the specified plugin folder, the class
DefaultPasswordFactory exports the typeof(IPasswordFactory) factory. If the class features the
simple Export attribute, the contract then corresponds to the class name, thus missing the
previous import.

Note that if an export, in turn, misses one key import, the export is ignored to ensure the
 stability of the solution. If multiple exports qualify to resolve the same import, you get a
composition exception.

Unity at a Glance
Unity is an open-source project from the Patterns & Practices group at Microsoft, which is
attempting to provide an IoC framework for developers to build object instances in a smart
and highly configurable way. Unity works as a standalone framework, but it’s also packaged
along with Enterprise Library. To add Unity to a project, you add a reference to the
Microsoft.Practices.Unity assembly. You optionally add a reference to Microsoft.Practices.
Unity.Configuration if you configure the library using the application’s configuration file.

Let’s see how to accomplish some key IoC operations with Unity, such as registering types
both programmatically and declaratively.

Registering Types and Instances
Just like any other IoC library, Unity is centered around a container object. In Unity, the
 container type is UnityContainer, and you use it to register types and instances, as shown
here:

var container = new UnityContainer();
container
 .RegisterType<IServiceLayer,
 DefaultServiceLayer>()
 .RegisterType<ICustomerRepository,
 CustomerRepository>();
var serviceLayer = container.Resolve<IServiceLayer>();

You use the RegisterType method to establish a mapping between an abstract type and a
concrete type. If the same abstract type should be mapped to different types in different
contexts of the same application, you can use the following overload:

container
 .RegisterType<ILogger, DefaultLogger>()
 .RegisterType<ILogger, FileLogger>("Tracing");

588 Part III Design of the Application

The additional string parameter disambiguates the request and gives Unity enough
 information about which concrete type to pick up. You use RegisterInstance instead of
RegisterType to supply the container a prebuilt instance of a type. In this case, Unity will
use the provided instance instead of creating one on its own. Does it really make sense
for an application to pass to a factory the instance it will get back later? The purpose is to
preserve the benefits of an IoC also in situations in which you can’t annotate a class to be
 automatically resolved by Unity.

To see an example of this, let’s first introduce the syntax required to annotate constructors
and properties for injection. When requested to create an instance of a given type, Unity
gets information about the constructors of the type. If multiple constructors are found, Unity
picks up the one with the longest signature. If multiple options are available, an exception is
thrown. It might be the case, however, that you want a particular constructor to be used. This
requires that an attribute be attached to the selected constructor:

[InjectionConstructor]
public MyClass()
{
 ...
}

If you have no access to the source code, you might want to consider RegisterInstance.
Similarly, if injection happens through the setter of a property, you need to decorate the
property accordingly, as shown here:

private ILogger _logger;

[Dependency]
public ILogger Logger
{
 get { return _logger; }
 set { _logger = value; }
}

RegisterType and RegisterInstance are the methods you work with if you opt for configuring
the Unity framework programmatically. However, offline configuration is also supported
via an ad hoc section in the application’s configuration file. In any case, programmatic and
 declarative configuration is totally equivalent.

Resolving Dependencies
In Unity, you invoke the method Resolve on the container class to trigger the process that
returns an instance of the type at the root of the dependency chain:

container.Resolve(registeredType);

The resolver can be passed any additional information it might need to figure out the correct
type to return:

var logger = container.Resolve<ILogger>("Tracing");

 Chapter 13 Principles of Software Design 589

If you have multiple registrations for the same type, only the last one remains in the
 container’s list and will be taken into account. The resolver can walk down the chain of
 dependencies and resolve everything that needs to be resolved. However, you get an
 exception if the chain is broken at some point and the resolver can’t locate the proper
 mapping. When this happens in MEF, instead, the dependency is simply not resolved and is
skipped over. On the other hand, multiple candidates to resolve a dependency are managed
by Unity (the last wins) but cause a composition exception in MEF.

Declarative Configuration
The Unity framework comes with a custom configuration section that can be merged with
the web.config file of a Web application. Here’s the script you need to register types:

<unity>
 <container name="MyApp">
 <register ="ILogger" mapTo="DefaultLogger">
 <lifetime type="singleton"/>
 <constructor>
 <param name="sourceName" type="string" value="default"/>
 </constructor>
 </registerType>
 </container>
</unity>

Under the <register> section, you list the abstract types mapped to some concrete
 implementation. The following code shows how to map ILogger to DefaultLogger:

<register type="ILogger" mapTo="DefaultLogger">

If the type is a generic, you use the following notation:

<container>
 <register type="IDictionary[string,int]" </register>
</container>

Taking the declarative approach, you can also select the constructor to be used and set up
the lifetime of the instance.

To configure the Unity container with the information in the web.config file, you need the
 following code:

var container = new UnityContainer();

// Retrieve the <unity> section
var section = ConfigurationManager.GetSection("unity") as UnityConfigurationSection;
if (section != null)
{
 // Retrieve the specified container by name
 var containerElement = section.Containers["MyApp"];

590 Part III Design of the Application

 // Load information into the specified instance of the container
 if (containerElement != null)
 containerElement.Configure(container);
}

As it turns out, Unity allows you to have multiple containers with different settings to load
as appropriate. You can skip over all the preceding details by calling an extension method
added in Unity 2.0:

var container = new UnityContainer();
container.LoadConfiguration();

It requires that you add a reference to the Microsoft.Practices.Unity.Configuration assembly.

Lifetime Managers
Just like any other IoC framework, Unity allows you to assign a fixed lifetime to any managed
instance of mapped types. By default, Unity doesn’t apply any special policy to control the
lifetime of the object returned for a registered type. It simply creates a new instance of the
type each time you call the Resolve or ResolveAll method. However, the reference to the
 object is not stored, so a new one is required to serve a successive call.

The default behavior can be modified by using any of the predefined lifetime managers you
find in Unity. Table 13-2 lists them.

TABLE 13-2 Lifetime Managers

Class Description
ContainerControlledLifetimeManager Implements a singleton behavior for objects. The

 object is disposed of when you dispose of the
 container.

ExternallyControlledLifetimeManager Implements a singleton behavior, but the container
doesn’t hold a reference to the object that will be
disposed of when out of scope.

HierarchicalLifetimeManager New in Unity 2.0, implements a singleton behavior
for objects. However, child containers don’t share
instances with parents.

PerResolveLifetimeManager New in Unity 2.0, implements a behavior similar to
the transient lifetime manager except that instances
are reused across build-ups of the object graph.

PerThreadLifetimeManager Implements a singleton behavior for objects, but it’s
limited to the current thread.

TransientLifetimeManager Returns a new instance of the requested type for
each call. This is the default behavior.

You can also create custom managers by inheriting the LifetimeManager base class.

 Chapter 13 Principles of Software Design 591

Here’s how you set a lifetime manager in code:

container
 .RegisterType<ILogger, DefaultLogger>(
 "Tracing",
 new ContainerControlledLifetimeManager());

Here’s what you need, instead, to set a lifetime manager declaratively:

<register type="ILogger" mapTo="DefaultLogger">
 <lifetime type="singleton" />
</register>

Note, however, that the word singleton you assign to the type attribute is not a keyword or a
phrase with a special meaning. More simply, it is intended to be an alias for a type that must
be declared explicitly:

<!-- Lifetime manager aliases -->
<alias alias="singleton"
 type="Microsoft.Practices.Unity.ContainerControlledLifetimeManager,
 Microsoft.Practices.Unity" />
<alias alias="perThread"
 type="Microsoft.Practices.Unity.PerThreadLifetimeManager,
 Microsoft.Practices.Unity" />
<alias alias="external"
 type="Microsoft.Practices.Unity.ExternallyControlledLifetimeManager,
 Microsoft.Practices.Unity" />
...

<!-- User-defined aliases -->
<alias alias="IMyInterface"
 type="MyApplication.MyTypes.MyInterface, MyApplication.MyTypes" />
...

After you have the aliases all set, you can use alias names in the section where you register
types.

Summary
Just as an architect designing a house wouldn’t ignore building codes that apply to the
 context, a software architect working in an object-oriented context shouldn’t ignore prin-
ciples of software design such as the SOLID principles discussed in this chapter when de-
signing a piece of software. Proper application of these principles leads straight to writing
software that is far easier to maintain and fix. It keeps the code readable and understandable
and makes it easier to test, both during development and for refactoring and extensibility
purposes.

592 Part III Design of the Application

Most developers (and even more managers) commonly think that using software principles
is first and foremost a waste of time and that no distinction is actually possible between
“well-designed code that works” and “software that just works.” Guess what? I totally agree
with this statement. If you don’t need design, any effort is overdesign. And overdesign is an
anti-pattern.

So you save a lot of time by skipping over principles. However, if your “software that just
works” has to be fixed or extended one day, be aware that you will find yourself in a serious
mess. The costs at that point will be much higher. It all depends on the expected lifespan
of the application. Ideally, you learn principles and make them a native part of your skill set
so that you use them all the time in a natural way. Otherwise, the costs of applying prin-
ciples will always be too high to seem effective. Ad hoc tools can help a lot in making the
 development of good code more sustainable. IoC frameworks are just one of these tools.

In the next chapter, I’ll continue with the theme of application design by tackling layers (and
communication related to them) in ASP.NET applications.

 593

Chapter 14

Layers of an Application
The advantage of a bad memory is that one enjoys several times the same good
things for the first time.

—Friedrich Nietzsche

Any software of any reasonable complexity is best designed if organized in layers. Each layer
represents a logical section of the system. A layer is hosted on a physical tier (for example, a
server machine). Multiple layers can be hosted on the same tier, and each layer can optionally
be moved to a separate tier at any time and possibly with limited work.

Most of the time, you arrange a three-tiered architecture with some flavors of service
 orientation just to make each layer ready for a possible move to a different physical tier.
There are various reasons to move a layer onto its own tier: a quest for increased scalabil-
ity, the need for stricter security measure, and also increased reliability because the layers
 become decoupled in case of machine failure.

In a three-tiered scenario, you typically have a presentation layer where you first take care
of processing any user input and then arranging responses, a business logic layer (BLL) that
includes all the functional algorithms and calculations that make the system work and inter-
act with other layers, and the data access layer (DAL) where you find all the logic required to
read and write from a storage.

When it comes to layers, the principle of separation of concerns (SoC) that I introduced
in Chapter 13, “Principles of Software Design,” is more important than ever. A golden
rule of any layered system states that no communication should be allowed between
 non- i nterfacing layers. In other words, you should never directly access the DAL from within
the presentation layer. In terms of Web Forms development, this point is blissfully ignored
when you use a SqlDataSource component right from the button click event handler of a
Web page!

In this chapter, I’ll describe the intended role and content of business and data access layers
and touch on a few technologies that help you write them. I’ll do that from a Web Forms
and ASP.NET perspective, but be aware that a large part of the content has a general valid-
ity that goes beyond the Web world. I’ll cover presentation layers and related patterns in the
next chapter.

594 Part III Design of the Application

A Multitiered Architecture
Everybody agrees that a multitiered system has a number of benefits in terms of maintain-
ability, ease of implementation, extensibility, and testability. Implementation of a multitiered
system, however, is not free of issues and, perhaps more importantly, it’s not cheap.

Can you afford the costs? Do you really need it?

A three-tiered architecture is not mandatory for every Web application or for software
 applications in general. Effective design and, subsequently, layers are a strict requirement
for systems with a considerable lifespan—typically, line-of-business systems you build for
a customer and that are vital to the activity of that given customer. When it comes to Web
sites, however, a lot of them are expected to stay live for only a short time or are fairly simple
online windows for some shops or business. Think, for example, of sites arranged to promote
a community meeting or a sports event. These sites are plain content management systems
where the most important aspect is providing timely information via a back-office module.
Honestly, it’s not really key here to design them carefully with service orientation, layers, and
cross-database persistence. Themes like scalability, robustness, and security don’t apply to
just any site or application. However, the longer the lifespan is, the more likely it is that you
will also need to address carefully these concerns.

The Overall Design
Figure 14-1 provides a glimpse of a three-tiered system with all the modules that we are
 going to consider in this chapter and the next one.

As I see things, it’s essential that you, as an architect or developer, be very aware of this
model. However, awareness means that you know it, and because you know it, you also know
when it’s worthwhile for you to opt for such a complex and sophisticated design. Some of the
blocks shown in Figure 14-1 can be merged if there’s really no reason for them to have their
own life. The general view might not faithfully represent the particular view of your applica-
tion. In architecture, it always depends on the context. And adapting the general view to the
particular context is the essence of the architect’s job.

Note In my training classes, I always use a specific example to illustrate the previous point. As a
parent, you must tell your kids that they use the crosswalk whenever they need to go across the
street. When you do it yourself, in some situations, you adapt the general rule to a specific short-
cut, and if no cars are coming you just cross wherever you are. That’s because you’re an adult
and because, having evaluated pros and cons, you actually made a good decision. If the nearest
crosswalk is half a mile away and no car is in sight, why walk that extra distance?

In my classes, I always take the example a bit farther and tell nice stories about how Italians apply
the pattern to parking. But if you’re interested in hearing about that, well, it’s best if you attend
the next class!

 Chapter 14 Layers of an Application 595

Presentation Layer

User Interface

ASP.NET Win Forms WPF Mobile

Presentation Logic

Business Layer

User Interface

Object/Domain
Model

Persistence Layer (O/RM, custom data context)

Data Access Layer

Application Logic (Service Layer)

Services

Workflows

DTO Adapters

FIGURE 14-1 A general view of a three-tiered system.

Methodologies
Where do you start designing the layers of a real-world system? Ouch! That’s a really tough
point. It depends. Trying to go to the root of it, I’d say it depends on the methodology you
use to process requirements. Which methodology you apply also depends on something. It
usually depends on your skills, your attitude, and your preference, as well as what seems to
be best in the specific business scenario and context.

Any system has its own set of requirements that originate use-cases. The ultimate goal of the
application is implementing all use-cases effectively.

A classic approach entails that you figure out what data and behaviors are required by all
use-cases (or just one use-case) and build a good representation of the data involved and
the related actions. So you start from the business layer, and in particular from modeling the
entities in play and their relationships.

I start my building from the business layer, and my main reason for that is to have as soon as
possible a well-defined set of entities and relationships to persist and build a user interface
around. To get my entities and relationships, however, I need to take a deep look at UI ex-
pectations and storage constraints, if any.

596 Part III Design of the Application

The Business Layer
The business logic layer is the heart of the system and the place where the behavior of the
system is implemented. The behavior is just one aspect of the design of a system; another
key aspect is data.

Data is collected and displayed in the presentation layer, and it’s persisted and retrieved in
the data access layer. Living in the middle, the business layer is where the data is processed
according to some hard-coded behavior. (Note that in some very dynamic systems, the
 behavior can also be dynamically defined.)

Generally speaking, the BLL is made of a few parts: the application’s logic, the domain logic,
a representation for domain data, plus optional components such as local services and work-
flows. Invoked from the presentation layer, the application logic orchestrates services and
DAL to produce a response for any client requests.

The domain logic is any logic that can be associated with entities (if any) that populate the
problem’s domain. The domain logic represents the back end of the application and can
be shared by multiple applications that target the same back end. For example, an online
banking application, a trading application, and a back-office application will likely share
a common piece of logic to deal with accounts and money transfers. On top of that, each
 application might invoke the common logic through different algorithms.

Application and domain logic work side by side and exchange data represented in some way.
Finally, domain and application logic might need to invoke the services of special compo-
nents that provide business-specific workflows or calculations.

Business logic is a collection of assemblies to host. In a typical Web scenario, the BLL goes
 in-process with ASP.NET on the Web server tier. It goes in a separate server process mostly
for scalability reasons. In a smart-client scenario, the location of the BLL might vary a bit.
For example, the BLL can live entirely on the client, can be split across the client and server,
or live entirely on the server. When the BLL is deployed remotely, you need services (for
 example, WCF services) to communicate with it.

The list of components that form the BLL can be implemented using a number of design
patterns.

Design Patterns for the BLL
Design patterns for the BLL belong to two major groups: procedural and object-oriented
patterns. For many years, we’ve been using procedural patterns such as Transaction Script
(TS) and Table Module (TM). More recently, a significant increase in complexity and flexibility
demand had us shifting toward object-oriented patterns such as Active Record and
Domain Model.

 Chapter 14 Layers of an Application 597

In the .NET space, the Table Module pattern has been popularized by special Microsoft Visual
Studio technologies such as typed DataSets and table adapters. LINQ-to-SQL and Entity
Framework move toward a Domain Model pattern. A number of open-source frameworks,
on the other hand, provide an effective implementation of the Active Record pattern. Among
the others, we have Subsonic and Castle Active Record. Let’s review the basics of the various
design patterns and how concrete technologies are related to each.

The Transaction Script Pattern
The Transaction Script (TS) pattern envisions the business logic as a series of logical
 transactions triggered by the presentation. Subsequently, modeling the business logic means
mapping transactions onto the methods of one or more business components. Each business
component then talks to the data access layer either directly or through relatively dumb data
objects.

When you partition transaction scripts into business components, you often group methods
by entity. You create one method per each logical transaction, and the selection of methods
is heavily inspired by use-cases. For example, you create an OrderAPI business component to
house all transaction scripts related to the “order” entity. Likewise, you create a CustomerAPI
component to expose all methods related to action the system needs to perform on custom-
ers. In relatively simple scenarios, you come up with one business component per significant
database table. Each UI action ends up mapped to a method on a TS object. The TS pattern
encompasses all steps, including validation, processing, and data access. Figure 14-2 shows a
graphical representation of the BLL according to the Transaction Script pattern.

Presentation Layer

Presentation
Logic

Business Layer

Form

T-Script (class)

T-Script 1
T-Script 2

..

ADO.NET Data Access layer
.aspx

Pr
ov

id
er

s

DTO

DB

FIGURE 14-2 The Transaction Script pattern.

598 Part III Design of the Application

Note that in the context of TS, a transaction indicates a monolithic logical operation; it has
no relationships to database management systems (DBMS) transactions.

The TS pattern is good for simple scenarios. The logic is implemented in large chunks of
code, which can be difficult to understand, maintain, and reuse. In addition, TS favors code
duplication and requires a lot of attention and refactoring to keep this side effect under
control.

The Table Module Pattern
According to the Table Module pattern, each object represents a database table and its
 entire content. The table module class has nearly no properties and exposes a method
for each operation on the table, whether it’s a query or an update. Methods are a mix of
 application logic, domain logic, and data access code. This is the pattern behind typed
DataSets and table adapters that you find in Visual Studio 2005 and later.

The overall design of the BLL is clearly database-centric with a table-level granularity.
Compared to TS, the Table Module pattern gives you a bit more guidance on how to do
things. The success of this pattern is largely attributable to the support offered by Visual
Studio and the availability in .NET of handy recordset data structures such as DataSets.
Figure 14-3 shows the design of a system architected with the Table Module pattern.

Presentation Layer

Presentation
Logic

Business Layer

Form

CustomerTableAdapter Object

ADO.NET Data Access Layer
.aspx

Pr
ov

id
er

s

DataSets

DB

FIGURE 14-3 The Table Module pattern.

In procedural patterns, BLL and DAL are too often merged together. Most of the time, the
DAL is where you package your ADO.NET code for physical data access.

 Chapter 14 Layers of an Application 599

The Active Record Pattern
The Table Module pattern is based on objects, but it’s not an object-based pattern for
 modeling the business logic. Why? Because it doesn’t care much about the business; it
 focuses, instead, on the tables. Table Module does have objects, but they are objects
 representing tables, not objects representing the domain of the problem.

The real shift toward an object-oriented design starts when you envision the application as
a set of interrelated objects—which is a different thing than using objects to perform data
 access and calculations. An object-based model has two main levels of complexity—simple
and not-so-simple. A good measure of this complexity is the gap between the domain’s
 object model and the relational data model you intend to create to store your data.

A simple model is when your entities map closely to tables in the data model. A not-so-
simple model is when some mapping is required to load and save domain objects to a rela-
tional database. The Active Record pattern is your choice when you want an object-oriented
design and when your domain logic is simple overall.

In Active Record, each class essentially represents a record in a database table: the classes
usually have instance methods that act on the represented record and perform common
 operations such as save and delete. In addition, a class might have some static methods to
load an object from a database record and it might perform some rich queries involving all
records. Classes in an Active Record model have methods, but these methods are mostly
 doing Create, Read, Update, Delete (CRUD) operations. There’s nearly no domain logic in the
classes of an Active Record model, even though nothing prevents you from adding that.

An aspect that makes Active Record so attractive to developers is its extreme simplicity and
elegance and, just as significantly, the fact that in spite of its simplicity it works surprisingly
well for a many Web applications—even fairly large Web applications. I wouldn’t be exagger-
ating to say that the Active Record model is especially popular among Web developers and
less so among Windows developers.

Beyond the simplicity and elegance of the model, available tools contribute significantly
to make Active Record such a popular choice. Which tool should you use to implement an
Active Record model?

LINQ-to-SQL is definitely an option. Fully integrated in Visual Studio 2008 and later, LINQ-to-
SQL allows you to connect to a database and infer a model from there. As a developer, your
classes become available in a matter of seconds at the end of a simple wizard. In addition,
your classes can be recreated at any time as you make changes, if any, to the database. In
terms of persistence, LINQ-to-SQL is not really a canonical Active Record model because it
moves persistence to its internal DAL—the data context. LINQ-to-SQL incorporates a persis-
tence engine that makes it look like a simple but effective Object/Relational Mapper (O/RM)
tool with full support for advanced persistence patterns such as Identity Map and, especially,
Unit of Work.

600 Part III Design of the Application

Castle Active Record is another framework that has been around for a few years and that
offers a canonical implementation of the Active Record pattern. Finally, an emerging
 framework for Active Record modeling is SubSonic. (See http://www.subsonicproject.com.)

Unlike Castle Active Record, SubSonic can generate classes for you but does so in a way that
is more flexible than in LINQ-to-SQL: it uses T4 templates. A T4 template is a .tt text file that
Visual Studio 2008 and later can process and expand to a class. If you add a T4 template to
a Visual Studio project, it soon turns it into a working class. This mechanism offers you an
unprecedented level of flexibility because you can modify the structure of the class from the
inside and not just extend it with partial classes as in LINQ-to-SQL, and it also removes the
burden of writing that yourself as you must do with Castle Active Record.

The Domain Model Pattern
In the Domain Model pattern, objects are aimed at providing a conceptual view of the
 problem’s domain. Objects have no relationships with the database and focus on the data
owned and behavior to offer. Objects have both properties and methods and are not
 responsible for their own persistence. Objects are uniquely responsible for actions related to
their role and domain logic.

Note Two similar terms are often used interchangeably: object model and domain model. An
object model is a plain graph of objects, and no constraints exist on how the model is designed.
A domain model is a special object model in which classes are expected not to have any
 knowledge of the persistence layer and no dependencies on other classes outside the model.

A domain model is characterized by entities, value objects, factories, and aggregates. Entities
are plain .NET objects that incorporate data and expose behavior. Entities don’t care about
persistence and are technology agnostic.

In a domain model, everything should be represented as an object, including scalar values.
Value objects are simple and immutable containers of values. You typically use value objects
to replace primitives such as integers. An integer might indicate an amount of money, a
 temperature, or perhaps a quantity. In terms of modeling, by using integers instead of more
specific types you might lose some information.

In a domain model, using a factory is the preferred way of creating new instances. Compared
to the new operator, a factory offers more abstraction and increases the readability of code.
With a factory, it’s easier to understand why you are creating a given instance.

Finally, an aggregate is an entity that controls one or more child entities. The association
between an aggregate root and its child objects is stronger than a standard relation-
ship. Callers, in fact, talk to the aggregate root and will never use child objects directly.
Subsequently, controlled entities are processed and persisted only through the root

http://www.subsonicproject.com

 Chapter 14 Layers of an Application 601

 aggregate. Aggregates are generally treated as a single unit in terms of data exchange. The
major benefit of aggregates is grouping together strongly related objects so that they can be
handled as a single unit while being expressed as individual classes.

Figure 14-4 is a representation of a system that uses the Domain Model pattern.

Presentation Layer

Presentation
Logic

Business Layer

Form

Service Layer

.aspx

Providers
DTO / DM

DB

Domain Model

Repository

Persistence

Data
Access
Layer

DM

View
Model

Domain
Model

FIGURE 14-4 The Domain Model pattern.

There are two ways of going with a Domain Model pattern. The simplest way is to design
your entities and relationships with Entity Framework. After you have designed the layout
of your entities and scalar objects, you generate the code using, preferably, the POCO code
generator. What you get in the first place is an anemic domain model, where anemic indi-
cates that classes are plain data containers and offer no behavior. However, Entity Framework
lets you add methods to entities through the mechanism of partial classes. This also allows
you to create factories quite easily.

The second way is to create your own set of classes and then use an O/RM tool (for example,
Entity Framework or NHibernate), or a handmade ADO.NET layer, to persist it. This approach
offers greater expressivity because it allows you to introduce aggregates. Note that value
 objects, factories, and aggregates are concepts related to Domain Model that are introduced
by a specific design methodology—Domain-Driven Design, or DDD. Although DDD is a
proven methodology to deal with real-world complexity, it doesn’t mean that you can’t have
an effective model without following literally all DDD recommendations.

Entity Framework doesn’t help you much when it comes to DDD, but it doesn’t prevent you
from using it as well. In Entity Framework, you have no native API to create aggregates.

602 Part III Design of the Application

However, your data access layer can be designed to expose aggregate roots and let you work
with them in a way that is consistent with DDD practices.

Note When you organize the business layer around a web of interconnected objects—a domain
model—you neatly separate entities that the application logic (and sometimes the presentation
logic) works with from any layer of code that is responsible for persistence. In this context, the
DAL gains its own valuable role with full separation of concerns and responsibilities—the DAL
just gets an object model and persists it to a store.

The Application Logic
The application logic is the part of the BLL that contains endpoints, as required by use-cases.
The application logic is the layer that you invoke directly from the presentation layer. The
layer coordinates calls to the domain model, workflows, services, and the DAL to orchestrate
just the behavior required by the various use-cases.

You can’t just believe that all this logic belongs to the presentation layer. (As you’ll see better
in the next chapter, in ASP.NET Web Forms the presentation layer is mostly the code-behind
class!)

The Service Layer Pattern
To better understand the role and importance of the application logic, consider the
 following example. You are working on a use-case that describes the submission of a new
order. Therefore, you need an endpoint in the application logic that orchestrates the vari-
ous steps of this operation. These might be any of the following: validating customer and
order information, checking the availability of ordered goods, checking the credit status
of the customer, finding a shipper that agrees to deliver the goods within the specified
time, synching up with the shipper system, registering the order, and finally triggering any
 automatic refill procedures if the order reduces goods in stock below a safe threshold.

The Service Layer pattern defines an additional layer that sits in between two interfacing
 layers—typically, the presentation layer and BLL. In practical terms, implementing a service
layer requires you to create a collection of classes that include all the methods you need
to call from the presentation layer. In other words, the classes that form the “service layer”
shield the presentation layer from the details of the BLL and DAL. These classes are also the
sole part of the application to modify if use-cases happen to change.

The word “service” here isn’t necessarily meant to suggest some specific technology to build
services (for example, WCF). The service layer is just a layer of classes that provides services
to the presentation. However, service-orientation and specific service technologies make the
whole solution even worthier of your consideration and more successful.

 Chapter 14 Layers of an Application 603

When the Application Logic Is Deployed Remotely
In a typical Web Forms scenario, the application logic lives side by side with the ASP.NET
pages on the Web server machine. This means that any calls from the code-behind to classes
in the service layer are in-process calls. Likewise, classes in the service layer are plain CLR
classes and don’t require service contracts and configuration.

In a desktop scenario, or if you implement a multitiered Web architecture, the service layer is
likely living in a different process space. In this case, the service layer is implemented as a real
layer of Windows Communication Foundation (WCF) or REST services.

I recommend you start coding plain classes and upgrade to services just when you need
to. In WCF, at least, a service is a class with something around it, and that “something” is
 essentially the service contract and configuration. If you design your service layer classes to
be highly decoupled, based on an interface, and to expose data contracts, it will take you just
a few moments to add attributes and binding information and switch to WCF services for,
say, queued or transactional calls.

A service layer is almost always beneficial to nearly all applications of some complexity that
use a layered architecture. A possible exception is when you find out that your service layer
is just a pass-through layer and is limited to forward calls to a specific component in the BLL
or DAL. If you need some orchestration before you accomplish an operation, you do need a
service layer. Take a look at Figure 14-5.

Code
Behind

Service 1

Service
Layer

Service 2 Service N

Macro
Services

Code
Behind

FIGURE 14-5 Breaking apart dependency between layers.

If the orchestration logic (represented by the gears) lives on the presentation tier, you end
up placing several cross-tier calls in the context of a single user request. With a remotable

604 Part III Design of the Application

service layer, though, you go through just one roundtrip per request. This is just what SOA
papers refer to as the Chatty anti-pattern.

In Figure 14-5, you also see different blocks referring to services. The service layer is made of
a collection of methods with a coarse-grained interface that I refer to in the figure as macro
services. These services implement use-cases and do not contain any domain logic. Micro
services, conversely, are domain-logic services you control or just autonomous services that
your BLL needs to consume.

Exposing Entities to the Presentation Layer
In a service layer, you should have only methods with a direct match to actions in a use-case.
For example, you should have a FindAllOrders method only if you have a use-case that
 requires you to display all orders through the user interface. However, you should not have
such a method if the use-case requires the user to click a button to escalate all unprocessed
orders to another department. In this case, there’s no need to display to the user interface
(and subsequently to roundtrip from the service layer) the entire list of orders. Here’s a
 sample class in a service layer:

public interface IOrderService
{
 void Create(Order o);
 IList<Order> FindAll();
 Order FindByID(Int32 orderID);
}

public class OrderService : IOrderService
{
 ...
}

A fundamental point in a service layer is the types used in the signatures. What about the
Order type in the previous code snippet? Is it the same Order entity you might have in the
domain model? Is it something else?

In general, if you can afford to expose domain model objects in the service contract, by all
means do that. Your design is probably not as pure as it should be, but you save yourself a lot
of time and effort. You must be aware that by using the same entity types in the presenta-
tion layer and BLL, you get additional coupling between the presentation and business layers.
This is more than acceptable if the presentation and business layers are within the same layer.
Otherwise, sharing the domain model forces you to have the same (or compatible) runtime
platform on both sides of the network.

 Chapter 14 Layers of an Application 605

Data Transfer Objects
If you’re looking for the greatest flexibility and loose coupling, you should consider using
ad hoc data transfer objects (DTO). A data transfer object is a plain container shaped by the
needs of the view. A data transfer object contains just data and no behavior.

When you use data transfer objects, you likely need an extra layer of adapters. An adapter
is a class that builds a data transfer object from a graph of domain entities. An adapter is
 bidirectional in the sense that it also needs a method to take a data transfer object coming
from the presentation and break up its content into pieces to be mapped on entities.

The additional workload required by using data transfer objects is significant in moderately
complex projects also. In fact, you need two adapters (or translators) for each data transfer
object and likely two data transfer objects for each service layer method (one for input and
one for output.)

It’s not a matter of being lazy developers; it’s just that a full data transfer object
 implementation requires a lot of work.

Note Effective tools are a great way to make a full DTO implementation affordable and, to
some extent, sustainable. A common tool that really saves you a ton of work is AutoMapper. (See
http://automapper.codeplex.com.) AutoMapper is an object-to-object mapper that employs a
convention-based algorithm. All it does is copy values from one object (for example, a domain
entity) to another (for example, a DTO) using a configurable algorithm to resolve mapping
 between members. At this point, AutoMapper can be easily considered a best practice in modern
development.

The Data Access Layer
No matter how many abstraction layers you build in your system, at some point you need
to open a connection to some database. That’s where and when the data access layer (DAL)
fits in. The DAL is a library of code that provides access to data stored in a persistent con-
tainer, such as a database. In a layered system, you delegate this layer any task that relates to
 reading from, and writing to, the persistent storage of choice.

Implementation of a DAL
Until recently, the DAL was just fused to the BLL and limited to a superset of the ADO.NET
library created for the purpose of making writing data access code easier. In other words, for
many years of the .NET era, the DAL has been simply a layer of helper methods to write data
access quickly.

http://automapper.codeplex.com

606 Part III Design of the Application

The shift toward a more conceptual view of the problem’s domain, and subsequently the
advent of the Domain Model pattern, brought new interest in the role of the DAL. Now that
you have a domain model exposed as the real database in the application’s eyes, you really
need a distinct and well-defined layer that bridges the gap between the domain model and
storage.

Although the role of the DAL is still the same as it was 20 years ago, the technologies are
 different, as is the approach to it taken by architects and developers. It’s interesting to briefly
review the inner nature of the DAL in light of the pattern used for the BLL.

DAL and the Table Module Pattern
Having a BLL organized in table module classes leads you to having a database-centric
 vision of the system. Every operation you orchestrate in the application logic is immediately
 resolved in terms of database operations. It’s natural, at this point, to create an in-memory
representation of data that closely reflects the structure of the underlying tables.

With the Table Module pattern, you have table classes and methods to indicate query or
 update operations. Any data being exchanged is expressed through ADO.NET container
types such as DataSet and DataTable. Any data access logic is implemented through ADO.
NET commands or batch updates.

The DAL still has the role of persisting data to databases, but data is stored in database-like
structures (for example, DataSet), and a system framework (for example, ADO.NET) offers
great support for working with DataSet types. As a result, BLL and DAL are merged together
and are rather indistinguishable. The DAL, when physically distinct from BLL and living in its
own assembly, is nothing more than a library of helper methods.

DAL and the Active Record Pattern
An Active Record BLL makes domain data available in the form of objects with a close
 resemblance to records of database tables. You no longer deal with super-array types such as
DataSet, but instead have an object model to map to table records.

The DAL, therefore, has a clearer role here. It exists to bridge the gap between entities in
the object model and database tables. The mapping work required from the DAL is rela-
tively simple because there’s not much abstraction to cope with. Mapping between object
 properties and table columns is neat and well defined; the storage is a relational database.

The benefit of using Active Record instead of Table Module is mostly in the fact that an
Active Record object model can be created to be a real strongly typed counterpart of a table.
In this regard, it fits better than a generic container such as DataSets and can be extended
at will. The drawback is in the extra work required to create the model, but fortunately many
tools exist to infer the model directly from tables.

 Chapter 14 Layers of an Application 607

DAL and the Domain Model Pattern
According to the Domain Model pattern, you create from the ground up an entity model
with any appropriate relationships. More importantly, you do so while being completely
 ignorant about persistence. First, you create the object model that best represents the busi-
ness domain; second, you think of how to persist it. As odd as it might sound, in a Domain
Model scenario the database is purely part of the infrastructure. (See Figure 14-6.)

Workflows

Object model created
from persisted data

Business Layer

Service Layer

Services
Object
Model

DB

Object model
to persist

Data Access Layer

FIGURE 14-6 The DAL is just part of the infrastructure.

A DAL has four main responsibilities toward its consumers. In the first place, a DAL persists
data to the physical storage and supplies CRUD services to the outside world. Second, the
DAL is responsible for servicing any queries for data it receives. Finally, a DAL must be able to
provide transactional semantics and handle concurrency properly. Conceptually, the DAL is a
sort of black box exposing four contracted services, as shown in Figure 14-7.

Who does really write the DAL? Is it you? And why should you write a DAL yourself? Is it per-
haps that you have a strict nonfunctional requirement that explicitly prohibits the use of an
ad hoc tool such as an O/RM? Or is it rather that you think you would craft your DAL better
than any commercial O/RM tools?

608 Part III Design of the Application

Concurrency

Data Access Layer

Query

DB

Business Layer

Transactions
Management

CRUD Services

FIGURE 14-7 A conceptual view of the DAL’s interior.

In a domain-based world, a well-built DAL is nearly the same as a well-built O/RM tool. So
unless you have strict nonfunctional requirements that prohibit it, you should use an O/RM.
Entity Framework is the official O/RM tool you find in the Microsoft stack of technologies.
NHibernate is an even more popular tool that has been around for quite a few years now and
that is close to its maturity.

Interfacing the DAL
In some simple scenarios, it might be acceptable for the DAL to be invoked from the
 presentation layer. This happens when you actually have only two tiers: the presentation layer
and the storage. Beyond this, the DAL is a constituent part of the back end and is invoked
from the application logic.

The next issues to resolve are the following: Should you allow any service layer classes
to know the nitty-gritty details of the DAL implementation? Should you wrap the DAL
 implementation in an interfacing module that provides a fixed interface regardless of the
 underlying details? As usual, it depends.

Support for Multiple Databases
In the past, every architect would have answered the previous questions with a sounding yes.
Today, it is likely the same answer, but for different reasons. For years, the primary reason for
wrapping the DAL in the outermost container has been to achieve database independence.

 Chapter 14 Layers of an Application 609

Wrapping the DAL in a pluggable component greatly simplifies the task of installing the same
application in different servers or using it for customers with a different database system.

Today, the advent of O/RM tools has dwarfed this specific aspect of the DAL. It’s the O/
RM itself that provides database independence today. At the same time, other compelling
 reasons show up that make interfacing the DAL still a great idea.

The Repository Pattern
A common way to hide the implementation details and dependencies of the DAL is using the
Repository pattern. There are a couple of general ways you can implement the pattern. One
consists of defining a CRUD-like generic interface with a bunch of Add, Delete, Update, and
Get methods. Here’s an example:

public interface IRepository<T> : ICollection<T>, IQueryable<T>
{
 public void Add(T item)
 { ... }
 public bool Contains(T item)
 { ... }
 public bool Remove(T item)
 { ... }
 public void Update(T item)
 { ... }
 public IQueryable<T> Include(Expression<Func<T, object>> subSelector)
 { ... }
}

The type T indicates the type of entity, such as Customer, Order, or Product. Next, you create
an entity-specific repository object where you add ad hoc query methods that are suited for
the entity. Here’s an example:

public interface IProductRepository : IRepository<Product>
{
 IQueryable<Product> GetProductsOnSale();
}

Classes in the service layer deal with repositories and ignore everything that’s hidden in their
implementation. Figure 14-8 shows the summarizing graphic.

Another approach to building a repository consists of simply creating entity-specific
 repository classes and giving each one the interface you like best.

Today, testability is an excellent reason to interface the DAL. As shown in Figure 14-8, it
 allows you to plug in a fake DAL just for the purpose of testing service layer classes. Another
scenario, however, is gaining ground on popularity: upgrading the existing DAL based on an
on-premises database for the cloud.

610 Part III Design of the Application

Service Layer

CustomerServices

OrderServices

ProductServices

DAL

Repository
interfaces

Fake DAL O/RM

<< uses >>

FIGURE 14-8 The Repository pattern applied to the DAL.

Using an Object/Relational Mapper
So it seems that a common practice for implementing a DAL is using an O/RM. Using an
O/RM is not trivial, but tools and designers in the Microsoft and Visual Studio world make
it considerably simpler. More to the point, with Entity Framework or LINQ-to-SQL you can
hardly do it wrong. (Even though you can sometimes do it in a suboptimal way.)

Which O/RM should you use? In this brief gallery, I present two of the most popular choices
(Entity Framework and NHibernate) and one for which there’s considerable debate about
whether it belongs to the group (LINQ-to-SQL). I’m skipping over a review of all commercial
O/RMs.

LINQ-to-SQL
I like LINQ-to-SQL, period. When Microsoft released Entity Framework 1 in the fall of 2008,
it promptly signaled the end of LINQ-to-SQL development—at least, active development,
which involved adding new features. In the .NET Framework 4, LINQ-to-SQL is fully support-
ed and it has even been slightly improved by the fixing of a few bugs and less-than-optimal
features. Still, LINQ-to-SQL is a sort of dead-end; however, if it works for you today, it’ll likely
work for you in the future.

I like to call LINQ-to-SQL “the poor man’s O/RM.” It’s a lightweight, extensible, data access
option with some known limitations; however, it’s a well-defined and well-balanced set of
features. LINQ-to-SQL pushes the “It’s easy, it’s fast, and it works” standard that is just what
many developers are looking for.

LINQ-to-SQL works by inferring the entity model from a given database, and it supports only
Microsoft SQL Server. LINQ-to-SQL doesn’t let you add much abstraction (for example, scalar
types), but it does offer a POCO model that you can extend with partial classes and custom-
ize with partial methods.

 Chapter 14 Layers of an Application 611

Technically, LINQ-to-SQL implements many of the design patterns that characterize a true
O/RM, such as Unit of Work (transactionality), Query object (query), and Identity Map. If you re-
fer to the responsibilities of the DAL shown in Figure 14-7, you find nothing that LINQ-to-SQL
can’t do. That’s why I’m listing it here. It’s the simplest of the O/RMs, but it’s not simplistic.

Entity Framework
If you know LINQ-to-SQL, then Entity Framework might look like its big brother. Entity
Framework is more expressive, comes with a richer designer for model and mappings, and
supports multiple databases. If you get to Entity Framework from another O/RM tool, you
might find it a bit different.

The only purpose of an O/RM tool is to persist an object model to some database. Entity
Framework certainly does this, but it also helps you in the creation of the model. Most O/RM
tools out there can persist any object model you can map to a database. Entity Framework
builds on the Entity Relationship Model to let you create an abstract model of entities and
relationships that it can then transform into plain C# partial classes.

When Entity Framework generates the source files for a model, it creates distinct files for
each entity plus a class for the data context. From a design perspective, it’s key that these
files go in distinct assemblies. Logically speaking, in fact, entities form the domain model
whereas the data context object belongs to the DAL. It’s perhaps a little difference, but it’s
immensely important from a design perspective.

Entity Framework can generate source files in three different ways. The default approach
 entails you getting entity classes with a dependency on the framework. All entity classes
 inherit from a built-in class defined in Entity Framework and incorporate some default
 behavior related to persistence. Another approach gets you plain old CLR classes with
no dependencies on anything. This approach is POCO. Finally, Entity Framework can also
 generate entity classes that have the additional capability of tracking their changes.

Finally, Entity Framework supports Code-Only mode, which basically consists of the behavior
that most of the other O/RM tools offer—you create your domain model as a plain library
and then instruct Entity Framework on how to persist it. Code-Only is just the fluent API you
use to define mappings to a database.

Note As long as you intend to remain within the Microsoft stack, which O/RM should you
use? LINQ-to-SQL or Entity Framework? The simple answer is Entity Framework because Entity
Framework is the flagship product that will receive care and attention in the foreseeable future.
What if you feel comfortable with LINQ-to-SQL and find it kind of costly to upgrade to Entity
Framework?

In general, if your application has enough life ahead of it (no less than two years), after which
a full redesign is acceptable, you can go with LINQ-to-SQL today and plan to upgrade later.
However, keep in mind LINQ-to-SQL is not the light edition of Entity Framework; it has a slightly
different programming API, and no migration path exists yet.

612 Part III Design of the Application

NHibernate
NHibernate is perhaps the most popular O/RM available today. It’s open-source software
with a strong and active community to back it up. NHibernate requires you to provide a
 library of classes and a bunch of mapping XML files. Based on that, it offers a rich API to write
your logic for persistence.

With the release of Entity Framework 4, the technical gap is shrinking more and more and
mostly has been reduced to fine-tuning the framework’s behavior. The two main differences
are the LINQ provider for expressing queries on entities, which is definitely superior in Entity
Framework, and the absence in Entity Framework of second-level caching.

In addition, NHibernate looks like a more mature framework, closer to perfection in a way.
Put another way, with the exception of adding a LINQ provider to it, I don’t really see how
NHibernate can be significantly improved. As it is, NHibernate offers a number of extensi-
bility points (lacking in Entity Framework) and more expressivity when it comes to dealing
with paged collections and batch reads and writes. Companion tools (for example, profilers,
caches, and sharding) are numerous for NHibernate and (currently) hard to write for Entity
Framework because of the aforementioned lack of extensibility points.

Note Sharding is a database design technique that consists of horizontal partitioning. In
 essence, the row set of a logical table is physically stored in multiple tables. Each partition is
known as a shard and may be located on a distinct database server. The goal of sharding is
 gaining scalability by reducing table and index size and making search faster.

Note So here’s a point-blank question: Entity Framework or NHibernate? Skipping the usual
(and reasonable) point that it depends on the context, skills, and requirements, I’d say that with
Entity Framework you don’t get the same programming power of NHibernate. However, if you
don’t need that power, over all, you can work nicely and safer with Entity Framework, in the sense
that you hardly ever screw things up.

O/RM Tools and SQL Code
An O/RM tools persists entities by generating and executing SQL commands. Is the SQL
code generated by O/RMs reliable? In general, trusting an O/RM is not a bad idea, but con-
stantly verifying the quality of the job they do is an even better idea. With any O/RM, a savvy
 developer will usually define the fetch plan and use the SQL profiler tool of choice to see
what is coming out. Obviously, if the SQL code is patently bad, you intervene and in some
way (changing the fetch plan or inserting stored procedures) you fix it.

In general, using stored procedures should be considered a last resort, but there might be
cases in which they come to the rescue. An example is when quite complex queries can’t be

 Chapter 14 Layers of an Application 613

expressed efficiently through classic cursor-based syntax and requires, instead, a SET-based
approach to boost the performance. In this case, a stored procedure can be the best option.

Beyond Classic Databases
A plausible scenario that could lead you to unplugging your DAL is that you replace the
 current storage with something else, from yet another relational DBMS system. If you sim-
ply switch from SQL Server to, say, Oracle, most of the O/RM tools can absorb the change
quite nicely. At worst, you pay some money to a third-party company to get a driver. A
more delicate situation, though, is when you replace the storage layer of the application
with something different, such as a cloud database or, say, a model managed by Microsoft
Dynamics CRM, or perhaps a NoSQL solution such as MongoDB, RavenDB, or CouchDB.

Going to the Cloud
As far as cloud databases are concerned, you can use a variety of solutions. For example, you
can move to SQL Azure, which offers a transparent API and can be easily plugged into your
system via Entity Framework.

Alternatively, you can choose a cloud solution such as Amazon SimpleDB, Amazon RDS, or
perhaps S3. In all these cases, your access to data happens through Web services. And Web
services require you to rewrite your DAL to invoke the proper Web service instead of opening
an O/RM session.

More in general, perhaps with the sole (current) exception of SQL Azure and Entity
Framework, going to the cloud requires you to unplug the current DAL and roll a new one.
It’s definitely a compelling reason to keep the DAL loosely coupled to the rest of the system.

Microsoft Dynamics CRM 2011
A layered system doesn’t necessarily have to rely on a classic relational storage whose
 physical model is the topic of endless discussion and whose optimization is left to exter-
nal gurus. In some business scenarios, Microsoft Dynamics CRM represents an even better
 option for building line-of-business applications that fall under the umbrella of a Customer
Relationship Management (CRM) system.

Within Dynamics CRM 2011, you express the data model using a mix of built-in and custom
entities. You can think of a CRM entity as a database record where attributes of an entity
map roughly to columns on a database table. Dynamics CRM 2011 exposes data to develop-
ers using a bunch of WCF and REST endpoints. This makes it possible for developers of Web
applications to capture data, process that as necessary, and arrange a custom user interface.

In other words, the Dynamics CRM model might become the BLL and DAL that the service
layer talks to. It’s yet another scenario that makes loosely coupling of back-end layers exactly
the way to go when building layered solutions.

614 Part III Design of the Application

Schema-less Storage
A storage option that is gaining momentum is schema-less storage that is often summarized
as a NoSQL solution. A classic relational database is a collection of relations where a rela-
tion is defined as a set of tuples sharing the same attributes—the schema. NoSQL stores just
 refuse relations.

NoSQL stores still refer to a form of structured storage in which each stored document may
have its own schema, which is not necessarily shared with other documents in the same
store. A document is exposed as a collection of name/value pairs; it is stored in some way (for
 example, as individual files) and accessed through a REST interface.

A NoSQL database is characterized by the lack of a schema, the lack of a structured query
language, and an often distributed and redundant architecture. NoSQL databases belong to
three main families: document stores, key/value stores, and object databases.

A document store saves documents as JSON objects and defines views/indexes. Objects can
be arbitrarily complex and have a deep structure. To this category belong popular tools such
as CouchDB, Raven, and MongoDB.

A key/value store saves tuples of data in a main table. Each row has a set of named columns,
and values can be arbitrarily complex. Google’s BigTable, Cassandra, and Memcached are
 examples of key/value NoSQL stores.

Finally, an object database stores serialized objects instead of primitive data and offers query
capabilities. A popular choice is Db4O.

Summary
Most applications today are articulated in layers. Every time you add a layer to an application,
you add a bit more code and, subsequently, extra CPU cycles. And you worsen the overall
performance of the application. Is this all true?

Technically speaking, it couldn’t be truer. However, a few extra CPU cycles are not necessarily
what really matters. Software architecture, more than programming, is a matter of tradeoffs.
Layers add benefits to any software of some complexity. Layers add separation of concerns
and favor code injection and the right level of coupling.

In this chapter, I went through two of the three layers you find in a classic multitiered system:
the business layer and the data access layer. The next chapter is reserved for the presentation
layer and for the most appropriate pattern for Web Forms applications—the Model-View-
Presenter pattern.

 615

Chapter 15

The Model-View-Presenter Pattern
I have never let my schooling interfere with my education.

—Mark Twain

Generally speaking, creating the user interface of an ASP.NET Web Forms application is kind
of easy. Even though I’m not sure the effort it takes to create a compelling and graphically
appealing user interface should be referred to as “easy,” arranging the desired functionality is
usually not a big deal thanks to the full bag of server controls you can get. If there’s a reason
behind the success of ASP.NET, it’s likely the ease of development—a clear offspring of the
Rapid Application Development (RAD) paradigm.

For many years, it was so easy (and quite effective) to drop a control on the Microsoft Visual
Studio Web page designer, double-click, and fill in the method stub created for you in the
page’s code-behind class. Therefore, a plain, old T-SQL query attached to the handler of, say,
a Click event did the job of retrieving data and populating a grid after a user’s click. Like it or
not, it was quick and effective—the beauty of RAD.

As the complexity of the application grows, RADness loses most of its appeal and stops being
an ideal companion for the presentation layer. This is the biggest change in the software in-
dustry that we’ve gone through in the past few years. The need for a more structured way of
writing software doesn’t mean, of course, we don’t need Visual Studio anymore. However, we
probably need to consider Visual Studio designers for what they actually are—facilities for
the UI rather than an aid for software design. (Visual Studio 2010 Ultimate does have a num-
ber of interesting facilities for design and modeling, but these tools cross-cut the platform
you’re using for building the presentation.)

In Chapter 14, “Layers of an Application,” we reviewed layered applications and considered
a number of patterns for the business and data access layers. In this chapter, we consider
patterns for layering the presentation layer of applications with a particular eye to ASP.NET
applications.

Patterns for the Presentation Layer
Your design of the presentation layer of any system should be driven by one fundamental
principle: keep the presentation layer separated from anything else, including business and
data access layers. Over the years, a few design patterns have been identified to help you
with the presentation layer. We recognize three main families of patterns: Model-View-
Controller (MVC), Model-View-Presenter (MVP), and Presentation Model (PM). The last one is
more popularly known in the .NET space as Model-View-ViewModel (MVVM).

616 Part III Design of the Application

Not all of them can be applied to ASP.NET Web Forms with the same effectiveness. Actually,
the design pattern that best applies to ASP.NET Web Forms applications is MVP, which will be
the main topic of this chapter.

Before I go any further on that topic, you should note that these patterns span 30 years of
computer design and programming. And many, many things have changed in the past 30
years. So, for example, what we call MVC today doesn’t exactly match the definition of MVC
you find in the original paper that dates back about 30 years ago. To some extent, the same
can be said for MVP. Two flavors of MVP exist—Passive View and Supervising Controller—
and, in many applications, you actually use a personal mix of both. Likewise, even though
PM and MVVM share the same architectural idea, MVVM is associated today with specific
technologies such as Microsoft Silverlight, Windows Presentation Foundation (WPF), and
Windows Phone.

This is to say that patterns like MVP and MVC give you quite a good idea of the approach
behind a pattern, but details might change once the pattern is applied to a framework and
a bunch of technologies. If you have a framework that gives you testability and separation
of concerns (and whatever else you ask for), by all means use it and don’t get bothered by
 possible patterns it does or does not implement.

Note The impact of frameworks and technologies on the presentation layer is a huge point
to consider. Originally, the MVP pattern had been proposed as a way to improve MVC. So does
this mean that ASP.NET MVC is a thing of the past? Of course, not. There are probably ways to
further improve the design of ASP.NET MVC applications, but the ASP.NET MVC framework is
highly usable and guides you toward writing well-designed code without the cost of arranging
 everything yourself.

The MVC Pattern
In the earliest software, the whole application was made of monolithic blocks that
 encompassed everything—the user interface, logic, and data. The user interacted with the
view and generated some input. The view captured the input, processed it internally, and
 updated itself or moved to another view. The MVC pattern was introduced in the late 1970s
as a way to break such monoliths (called autonomous views) into distinct pieces.

Generalities of the MVC Pattern
According to the MVC pattern, the application is split into three distinct pieces: the model,
the view, and the controller. The model refers to the data being worked on in the view. The
model is represented with an active object that is updated by the controller and notifies the
view of its state changes. The view refers to the generation of any graphical elements dis-
played to the user, and it captures and handles any user gestures. The controller responds to

 Chapter 15 The Model-View-Presenter Pattern 617

solicitations and executes actions against the application’s back end. Such actions produce
fresh data that alter the model. The controller is also responsible for selecting the next view.
Figure 15-1 provides a graphical representation of the MVC schema.

Presentation

View

Controller
M

od
el

View

Controller

M
od

el

...

Data transfer objects or entity objects or scalar values
to be copied to/from the view-specific model

Service Layer

Data Access LayerEn
tit

y
M

od
el

Business

Storage

FIGURE 15-1 The Model-View-Controller pattern.

The major benefit of MVC is the application of the separation of concerns (SoC) principle.
It mostly consists of taking as much code as possible out of the front end to build structured
layers. As mentioned earlier, in the beginning, MVC was just a way to break up monolithic
programs in which the code basically consists of a loop around some input and each
 command is resolved through a logical transaction. (See the Transaction Script pattern in
Chapter 14.)

Let’s see what it takes to use the MVC pattern to build Web Forms applications.

Role of the Model
According to the definition, the model in MVC is the representation of the data as the view is
expected to consume it. The model is where the view copies any data posted by requests and
where it gets any data to be incorporated in the response. You should have a different model
(say, a class) for each view. The model should have properties for each significant piece of
data the view handles.

The problem here is that in Web Forms the model is often bypassed because views are made
of server controls and server controls expose input data and receive response data.

618 Part III Design of the Application

Role of the View
In Web Forms, the view coincides with a page. The page is made of server controls, and
 server controls provide input elements for the user to interact with. The view is responsible
for producing the collection of visual elements displayed to users—the ASPX markup—as
well as for processing user gestures—the code-behind class. In an MVC scenario, there
should be some sort of event-based dependency between the view and model. When the
model is updated, the view should be notified, grab up-to-date information, and refresh.

The code in the view should be as simple as possible, ideally limited to just dispatching calls
to another layer—the controller.

Role of the Controller
The controller is the place where the action that the user requested is actually performed.
The action might require the controller to select a new view which, in Web Forms, would be
a redirect. More likely, the action will lead the controller to interact with the middle tier to
 obtain a response. The response obtained will then be massaged in some way and placed in
the model for the view to consume.

The controller has no dependencies on the view; the controller only knows the model and
how to reach the middle tier.

Web Forms and the MVC Pattern
Heavily based on view state, code-behind, and server controls, the Web Forms programming
model follows its own pattern—the Page Controller pattern. The core idea is that any request
is mapped to a page and an internal component controls the request, including input pro-
cessing, action, and output generation. If you stick to Web Forms, you can’t eliminate the
Page Controller pattern.

If you want more SoC, you can build layers for models and controllers on a per-view
 basis. This means that each Web Forms page should have its own model class and its own
 controller class. The model will be updated with any posted data and any significant data
that is read out of the view state. In the postback, the code-behind event handler will simply
invoke a controller method. Finally, the controller will update the model, and these changes
should walk their way to the view.

The weak point of MVC is the communication between view and model. The original MVC
paper suggests you set up event-based communication between the two. Years of experience
suggest a different model should be used. Enter the MVP pattern.

 Chapter 15 The Model-View-Presenter Pattern 619

The MVP Pattern
MVP is a derivative of MVC aimed at providing a cleaner separation between the view, the
model, and the controller. The most relevant change from MVC is that view and model are
physically separated and have no intimate knowledge of each other. The controller (renamed
as presenter) is a mediator between the user and the application. Solicited by the view, it
performs any work associated with the request and passes data back to the view. In MVP, the
controller class is essentially responsible for presenting data to the view, which explains the
new name of “presenter.”

Generalities of the MVP Pattern
As mentioned, in MVP the view and the model are neatly separated, and the view exposes a
contract through which the presenter can read input values and provide results of the action.
Summarizing the situation further, we can say that MVP is a refinement of MVC based on
three facts:

■ The view doesn’t know the model.

■ The presenter ignores any UI technology behind the view.

■ Abstracted to an interface, the view is easy to mock up, which makes testing the
 controller far easier.

Figure 15-2 provides an overall view of the MVP pattern.

View

New view?

Presenter

Yes No

Forwards
user actions

Model

Presenter

Model

View

Redirect to
a new MVP

triad

Middle
Tier

Return
values

Invoke
method

FIGURE 15-2 The MVP pattern.

The presenter is at the center of the universe and incorporates the presentation logic behind
the view. The presenter in MVP is logically bound to the view, which is another reason for
emphasizing the presentation role of the component. Figure 15-3 attempts to compare MVC
and MVP graphically.

620 Part III Design of the Application

Presenter
Model

Forwards user gestures

Middle
Tier

View

Controller Middle
Tier

View
Forwards user gestures

Model
Read/write Read/write

MVP

MVC

FIGURE 15-3 Comparing MVC and MVP.

Note In addition to the change of name (controller vs. presenter), there’s a more subtle but
 relevant point. In MVC, the controller is a centralized class that handles multiple calls from
 multiple views. In MVP, the presenter is bound to a single view or to a hierarchy of views with
the same characteristics. In MVP, the presenter is a controller for a specific segment of the
 presentation logic. Hence, the name “presenter.”

Role of the Model
The best possible definition of the model doesn’t change in MVP. The model is the
 representation of the data being worked on in the view. As shown in Figure 15-2, the view
exposes a contracted interface, which represents the core functionality of the view to the
presenter’s eyes. In other words, the presenter should be able to work with any object that
implements that contracted interface.

In theory, it could be an ASP.NET page as well as a Windows Forms window. The model in
MVP, therefore, is the interface that the view object implements. Being an interface, it can
include properties, but it can also include methods and events. In a Web Forms scenario,
events are not required, and most of the time it will contain just properties.

Role of the View
The view is the Web Forms page that you build. This view is typically an instance of a class
that inherits from Page or UserControl and implements the model. The view also holds a
 reference to an instance of the presenter. Between views and presenters, you typically have a
one-to-one cardinality, even though you can still reduce the number of presenter classes by
creating some sort of hierarchy and reusing a bit of code.

 Chapter 15 The Model-View-Presenter Pattern 621

Role of the Presenter
The presenter is just an additional layer you build on top of code-behind classes. It is a
class that can be easily designed to have no hidden dependencies. The presenter requires a
 reference on the view, but thanks to the contracted interface of the view the reference can
be injected. The presenter will use the view object to grab input values and prepare a call
to the middle tier. After the response has been received, the presenter will pass data back
to the view, always through the members of the interface. As mentioned, the interface that
 abstracts the view is logically equivalent to the model in MVC.

Web Forms and the MVP Pattern
As you’ll see in the rest of the chapter, MVP lends itself very well to being implemented in
Web Forms. The pattern can be easily outlined as a step-by-step procedure and doesn’t
require you to twist the Web Forms programming model. As a developer, you only need to
add a bit of abstraction to your Web Forms pages to gain the benefits of the MVP pattern—
testability and maintainability.

Having said that, I also feel obliged to mention that MVP is not a pattern for everyone and
for just any application. MVP provides guidance on how to manage heaps of views and, quite
obviously, comes at a cost—the cost of increased complexity in the application code. As you
can imagine, these costs are easier to absorb in large applications than in simple ones. MVP,
therefore, is not just for any application.

In MVP, the view is defined through an interface, and this interface is the only point of
 contact between the system and the view. As an architect, after you’ve abstracted a view
with an interface, you can give developers the green light to start developing presentation
logic without waiting for designers to produce the graphics. After developers have inter-
faces, they can start coding and interfaces can be extracted from user stories, if not from full
specifications.

MVP is an important presentation pattern that can be a bit expensive to implement in
r elatively simple applications. On the other hand, MVP shines in enterprise-class applica-
tions, where you really need to reuse as much presentation logic as possible, across multiple
 platforms and in Software-as-a-Service (SaaS) scenarios. And many of these applications have
an ASP.NET Web Forms front end.

The MVVM Pattern
A recently introduced pattern, Model-View-ViewModel is built around the same concepts
presented years ago for the Presentation Model (PM) pattern. The PM pattern is described
here: http://martinfowler.com/eaaDev/PresentationModel.html.

How does PM differ from MVP?

http://martinfowler.com/eaaDev/PresentationModel.html

622 Part III Design of the Application

PM is a variation of MVP that is particularly suited to supporting a rich and complex user
interface. On the Windows platforms, PM works well with user interfaces built with Windows
Presentation Foundation (WPF) and Silverlight. Microsoft developed a WPF-specific version
of PM and named it Model-View-ViewModel (MVVM).

Generalities of the MVVM Pattern
MVVM, like MVP, is based on three actors—the view, the model, and the presenter—with
the presenter now renamed as view-model. The difference with MVP is that the view doesn’t
expose any interface, but a data model for the view is incorporated in the presenter. The view
elements are directly bound to properties on the model. In summary, in MVVM the view is
passive and doesn’t implement any interface. The interface is transformed into a model class
and incorporated in the presenter. The resulting object gets the name “view-model.” See
Figure 15-4.

View

New view?

ModelPresenter

Yes No

Forwards
user actions

Data binding

Presenter

View

Redirect to a
new PM/MVVM

triad

Middle
Tier

Return
values

Invoke
method

Model

FIGURE 15-4 The MVVM Pattern.

The innovative point of MVVM is that the presenter doesn’t operate on the view. The
 presenter, instead, exposes an object model tailor-made for the view and takes care of
 populating it with fresh data. The view, in turn, gains access to the presenter’s object model
in some way. In the .NET space, data binding is a common way in which this is achieved.

Web Forms and MVVM
MVVM is not a pattern I recommend for Web Forms. More precisely, the inherent plusses of
MVVM don’t show up in Web Forms (or ASP.NET MVC) with the same effectiveness as they
do in WPF or Silverlight. Still, MVVM can give you some benefits, such as layering, SoC, and
testability. However, it won’t be anything more than what you would get with MVP.

Why is MVVM particularly effective in WPF or Silverlight?

 Chapter 15 The Model-View-Presenter Pattern 623

The answer is shown in Figure 15-4. Used in a platform that provides superb support for
(two-way) data binding, the MVVM shines and really gives you the aforementioned benefits
with a fraction of the effort it would take to do the same in MVP. Used in Web Forms, where
you have only one-time binding, it loses most of its appeal.

Figure 15-5 shows the graph of a XAML-based view designed in accordance with MVVM.

BLL

SampleViewModel.cs

Sample.xaml

ViewModel
instance

UI
elements

Data binding

Method binding

FIGURE 15-5 Schema of the MVVM pattern in a XAML-based view.

The XAML file can be a WPF, Silverlight, or even Windows Phone 7 view. It is made of markup
elements bound to properties of the view-model object. The view-model object can be at-
tached to the view in a number of equally effective ways, including programmatic access to
the DataContext property of the view and a custom tag in the markup that references an
external object. The view-model class exposes methods to retrieve and update data through
the middle tier.

View events (for example, a user’s clicking) are bound to commands, and commands are
ultimately mapped to methods on the view-model object. This can be done in a number
of ways. You can, for example, use the code-behind class of the XAML view and just in-
voke methods on the view-model object, or perhaps you can use the XAML commanding
interface to forward user events to command objects that, in turn, invoke the view-model
and then the middle tier. Architecturally speaking, I don’t see relevant differences. It mostly
 depends on attitude and tooling. For example, if you use Microsoft Blend to create the XAML
view, you’ll likely end up with codeless code-behind classes. If you stick to Visual Studio as
your IDE, you will probably write classic event handlers in the code-behind class.

Implementing Model View Presenter
As it turns out, MVP is probably the most beneficial way of adding layering and testability
to Web Forms applications. Let’s see how to implement the MVP pattern in a sample
application.

624 Part III Design of the Application

Abstracting the View
In an MVP scenario, the first step to complete is defining the contract for each required
view. Each page in the ASP.NET application will have its own interface to talk to the rest of
the presentation layer. The interface identifies the data model that the page requires and
 supports. Two logically equivalent views will subsequently have the same interface. A view
that extends an existing view will probably have its interface inherited from an existing one.

Note What I’ll be saying for a global view such as a page applies verbatim to subviews such as
user controls or, perhaps, frames.

From Use-Cases to the View
You always start development efforts from a use-case or perhaps a user story. In any case,
you have a more or less defined idea of what the client expects your module to do and look
like. You typically use wireframes to sketch out the final user interface of a given part of the
application—commonly an individual view. After an agreement has been reached as to the
information to show and templates to use (whether they are lists, tabs, collapsible panels, or
data formats), you have just abstracted the view to a model. Figure 15-6 shows a possible
mockup created with one of the most popular tools in this area—Balsamiq Mockups (see
http://www.balsamiq.com).

FIGURE 15-6 A mockup showing a view for some default.aspx page.

http://www.balsamiq.com

 Chapter 15 The Model-View-Presenter Pattern 625

With this idea in mind, getting an interface (or a base class) is usually not so hard. Here’s an
example:

public interface IDefaultView
{
 IList<StockInfo> Quotes { get; set; }
 String Message { get; set; }
 String Symbols { get; set; }
}

You need to be able to read and write the content of the text box that contains the list of
current symbols. Additionally, you need to read and write the content of a message, such
as an error message or the time of the last update. You also need a collection of objects
 representing the stock information you want to display.

With the view contract defined in detail (for example, agreement is required on IDs),
 designers and developers can start working in parallel. The nicest thing is that it really works
like this in practice—it’s not a theory or an empty platitude trying to sell a certain point of
view.

Implementing the Interface
The view you are creating must implement the interface. In Web Forms, a view is a Web
page. So here’s the skeleton of default.aspx:

public partial class Default : Page, IDefaultView
{
 ...
}

The main responsibility of the view is hiding the details of the user interface elements. The
interface exposes just a string property representing the stock symbols to retrieve, but the
use-case suggests the user is expected to type names in an input field. Subsequently, the
implementation of the Symbols property wraps the text box, as shown here:

public partial class Default : Page, IDefaultView
{
 ...

 #region IDefaultView Members
 public IList<StockInfo> Quotes
 {
 get { return GridView1.DataSource as IList<StockInfo>; }
 set {
 GridView1.DataSource = value;
 GridView1.DataBind();
 }
 }

626 Part III Design of the Application

 public string Message
 {
 get { return lblMessage.Text; }
 set { lblMessage.Text = value; }
 }

 public string Symbols
 {
 get { return txtSymbols.Text; }
 set { txtSymbols.Text = value; }
 }
 #endregion
}

Where does StockInfo come from? That could either be one of the entities that populate
the business layer or a specific data transfer object that is returned by the service layer. (See
Chapter 14.) In this case, for simplicity, you can assume that you share the domain model
with the presentation layer; so StockInfo comes from an Entities assembly referenced by both
the service layer and the presentation.

public class StockInfo
{
 public String Company { get; set; }
 public String CurrentQuote { get; set; }
 public String Change { get; set; }
 public String Date { get; set; }
 public String Time { get; set; }
}

The next step is adding a presenter component to the view. The presenter is a plain .NET
class that must be instructed to work against any objects that implement the view interface.

Creating the Presenter
Just like the controller in ASP.NET MVC, the presenter is a simple class in which all
 dependencies are (or at least, should be) injected explicitly. The class holds no significant
state. The presenter lifetime is usually bound to the view.

Getting a Presenter’s Instance
A common way of implementing MVP entails that the page (for example, the view) gets a
new instance of the presenter for each request. You typically create the presenter instance in
Page_Load, as shown here:

public partial class Default : Page, IDefaultView
{
 private DefaultPresenter _presenter = null;
 protected void Page_Load(Object sender, EventArgs e)

 Chapter 15 The Model-View-Presenter Pattern 627

 {
 _presenter = new DefaultPresenter(this);
 }

 // Implementation of the IDefaultView interface
 ...
}

An issue you might face is arranging a convenient naming convention to give each presenter
class a name that is both unique and meaningful. The name of the page with a trailing string
such as Presenter is a good approach; anyway, feel free to adapt it to your needs.

Using the Presenter
In summary, a Web Forms page designed around the MVP pattern is a class that implements
a given view interface and holds an instance of a presenter class. What’s the purpose of the
presenter instance?

The presenter is expected to expose a method for each possible action invoked by the user.
Put another way, the presenter will have a unique, unambiguous, parameterless method
for each event handler you need to have in the code-behind class. You still bind handlers
to events fired by server controls; however, these handlers will simply forward the call to a
method on the presenter instance. Here’s an example:

public partial class Default : Page, IDefaultView
{
 private DefaultPresenter _presenter = null;
 protected void Page_Load(Object sender, EventArgs e)
 {
 _presenter = new DefaultPresenter(this);
 }

 protected void btnRefresh_Click(Object sender, EventArgs e)
 {
 _presenter.Refresh();
 }

 protected void btnRedirect_Click(Object sender, EventArgs e)
 {
 _presenter.Redirect();
 }

 // Implementation of the IDefaultView interface
 ...
}

From an architectural standpoint, something in the preceding code clashes with common
sense: the code-behind class is merely a pass-through layer, so either the code-behind
class or the presenter might be perceived as unnecessary layers. The fact is, you can’t easily
 remove code-behind in ASP.NET Web Forms—not without paying some costs in terms of the

628 Part III Design of the Application

decreased productivity of teams. Code-behind classes have been around and have worked
for a decade; you can’t just modify the framework to get rid of them. On the other hand, the
presenter is just an extra layer you add deliberately with the precise intention of increasing
maintainability and testability.

Although it’s not objectively perfect, the code shown earlier is probably the best possible
compromise to bring the benefits of MVP to ASP.NET Web Forms.

How Does the Presenter Retrieve Data?
Let’s stop for a while and think about the type of code one would write in the Refresh
method of the presenter. Given the use-case (and given the view mockup in Figure 15-6),
the method is expected to connect to the application’s service layer and, from there, orches-
trate a call to some service that actually provides quote information. The Refresh method
needs to know the list of stocks for which you intend to run the query. Where does it get that
information?

The list of symbols is typed by the user in a text box; the presenter needs to access the text
box but, ideally, you want this to happen without exposing the view inner details to the
presenter. (Doing so would bind the presenter to a particular view.) Here’s the code of the -
presenter, including its Refresh method:

public class DefaultPresenter
{
 private readonly IDefaultView _view;
 private readonly IQuoteServices _quoteServices;

 public DefaultPresenter(IDefaultView view) : this(view, new QuoteServices())
 {
 }
 public DefaultPresenter(IDefaultView view, IQuoteServices quoteService)
 {
 _view = view;
 _quoteServices = quoteService;
 }

 public void Refresh()
 {
 // Get input from the view
 var symbols = _view.Symbols;

 // Execute the action
 var stocks = _quoteServices.GetQuotes(symbols);

 // Update the view
 _view.Quotes = stocks;
 _view.Message = String.Format("Data downloaded at: {0}", DateTime.Now);
 }
}

 Chapter 15 The Model-View-Presenter Pattern 629

At a minimum, the presenter is injected with the view object (for example, a reference to the
ASP.NET page) through the constructor. The presenter, however, is instructed to work only
against the members of the view interface. This means that the same presenter could be re-
used on different client platforms. As long as you have a Web and Windows application that
operates according to the same actions, the chances for you to reuse the same presenter are
definitely high. (This fact might not be true if you take advantage of some platform-specific
features and operate the view through a different set of actions.)

The presenter retrieves any input data it needs from the injected view. For example, it grabs
any content in the txtSymbols text box via the Symbols property on the view interface.
Likewise, it displays any response, such as the last update time, via the Message property.
How the Message and Symbols properties actually operate on the view is transparent to the
presenter. This transparency is the guarantee that the presenter is absolutely independent
from the view.

Connecting the Presenter to the Service Layer
The presenter is clearly part of the presentation layer. In a layered solution, the presentation
layer is where you bridge the middle tier. The nearest endpoint in the middle tier land is the
service layer, as discussed in Chapter 14. The service layer is a collection of classes (sometimes
just WCF services) that orchestrate all the actions required by the application logic to serve
a given request. The service layer should accept and retrieve data in a format that suits the
presentation; if necessary, the service layer will translate from middle tier entities to presen-
tation-only data transfer objects. If you’re lucky, you can even use the same entities on both
the presentation and business layers.

Note In this regard, your luck mostly depends on the complexity of the use-case and the
 complexity of the problem’s domain. In many cases, you can’t just find a match between middle
tier models and view models. When this happens, using two distinct object models is the only
way to go.

The presenter needs a reference to one or multiple objects in the service layer assembly. This
means that, in the first place, the presentation layer needs to reference the service layer as-
sembly. More importantly, you must inject in the presenter a reference to the specific service
it will be using.

In the previous listing, I used the poor man’s dependency injection approach. It consists of
an overloaded constructor that defaults to a concrete class in production. However, by using
a different constructor, you can support a fake layer for the purpose of unit testing. You can
use any Inversion of Control (IoC) tool of choice here if you like that best.

Hence, the presenter places a single call to the service layer to grab all it needs in the con-
text of that use-case. The service layer returns data that the presenter will then incorporate

630 Part III Design of the Application

in the view. The communication between the presenter and the service layer can be both
 synchronous and asynchronous, depending on your needs.

Note The service layer typically (but not necessarily) lives in its own assembly on the same
server that hosts the Web application. With this configuration, there’s no need for you to imple-
ment the service layer as real WCF services. It becomes a necessity, instead, as soon as you need
to use queued or transactional calls or just to deploy the middle tier on a different machine for
scalability reasons.

Presenter in Action
Wrapping up, the user is displayed a page with server controls for input as usual. The user
 interacts with the page and causes a postback. On the server, the request is processed as
usual and results in a page call.

During the page loading, the presenter is instantiated and receives a reference to the current
page object. The postback event originates a call to a method in the presenter. The method
typically uses the view object to retrieve input data and places a call to the service layer.

An operation develops on the server and a response is served back to the service layer
and, from there, is served to the presenter. Finally, the presenter updates the view.
(See Figure 15-7.)

FIGURE 15-7 MVP is used under the hood, but you can’t see it from the UI.

 Chapter 15 The Model-View-Presenter Pattern 631

Sharing the Presenter with a Windows Application
Admittedly, the feature I’m going to discuss is pretty cool and makes for a compelling demo.
There’s no magic behind it, and I consider it to be a lucky scenario—real, but special. Under
certain conditions, the presenter can be shared with the same application written for other
platforms, such as Windows Forms and WPF. (See Figure 15-8.)

All that you need is a Windows form that implements the same view interface. At that point,
the presenter has all it needs—a view object. What about the service layer? If you can’t reuse
the same service layer you had for the Web application, the dependency injection design you
adopted for the presenter class makes it easy to change to a more specific one:

public partial class DefaultForm : Form, IDefaultView
{
 private DefaultPresenter _presenter;
 public DefaultView()
 {
 InitializeComponent();

 // Initialize the presenter (for Windows)
 _presenter = new DefaultPresenter(this, new WinFormsQuoteServices());
 }
 ...
}

FIGURE 15-8 Distinct applications share the same presenter.

Figure 15-7 and Figure 15-8 show two different versions of the same application—one for
the Web and one for the desktop. As long as the presentation logic remains the same, and
the dependency on the service layer can be managed, you can (and are encouraged to) reuse
the same presenter class. Be aware, however, that this might not always be the case.

632 Part III Design of the Application

Note If one of the potential clients is based on Silverlight, you should also consider that some
of the features your code relies on might not be supported in Silverlight. In addition, Silverlight 4
has binary compatibility with .NET code, but the same isn’t true for earlier versions. Also, you are
still unable to reference a .NET assembly from a Silverlight project; the opposite, though, works
as long as there are no code incompatibilities.

Navigation
The presenter is also responsible for implementing navigation within the application. In
 particular, the presenter is responsible for enabling (or disabling) any subviews contained in
the primary view and for selecting and reaching the next view.

The Application Controller Pattern
To handle navigation within views, MVP goes hand in hand with another pattern—Applica-
tion Controller. The pattern defines a central console that holds all the logic to determine the
next view and handle the screen navigation and the flow of an application. (See Figure 15-9.)

Navigation
Workflow

 Application Controller front-end

 Presenter Presenter Presenter

 View View View

FIGURE 15-9 The application controller.

When it comes to implementation, you can proceed by creating a static class (say, you call it
Navigator) that acts as the application’s front end for navigation. Here, the Navigator class is
a plain container for the real navigation logic. You inject the application-specific navigation
workflow through an additional component.

The extra layer represented by the navigation workflow shields the presenter from knowing
the details of the platform specific navigation. For example, navigation within a Web Forms
application is based on Response.Redirect, whereas navigation relies on form-based display in
Windows Forms.

 Chapter 15 The Model-View-Presenter Pattern 633

Defining the Navigation Workflow
Here’s a possible implementation of the interface that represents the navigation workflow.
The interface includes a method to navigate directly to a given view and another to navigate
from the current view to the next:

public interface INavigationWorkflow
{
 void Goto(String view);
 void NextViewFrom(String currentView);
}

The Navigator class wraps an object that implements this interface and exposes a façade to
the presenter:

public static class Navigator
{
 private static INavigationWorkflow _navigationWorkflow;
 private static Object _navigationArgument;

 public static void Attach(INavigationWorkflow workflow)
 {
 if (workflow != null)
 _navigationWorkflow = workflow;
 }

 public static Object Argument
 {
 get { return _navigationArgument; }
 }

 public static void Goto(String view)
 {
 if (_navigationWorkflow != null)
 _navigationWorkflow.Goto(view);
 }

 public static void Goto(String view, Object argument)
 {
 if (_navigationWorkflow != null)
 {
 _navigationArgument = argument;
 Navigator.Goto(view);
 }
 }

 public static void NextViewFrom(String currentView)
 {
 if (_navigationWorkflow != null)
 _navigationWorkflow.NextViewFrom(currentView);
 }

634 Part III Design of the Application

 public static void NextViewFrom(String currentView, Object argument)
 {
 if (_navigationWorkflow != null)
 {
 _navigationArgument = argument;
 Navigator.NextViewFrom(currentView, argument);
 }
 }
}

The Navigator class is a little more than just a wrapper for the interface. The class features an
Argument property through which the presenter can specify data to be passed to the view.
How navigation is implemented and how data is passed depends on the actual implementa-
tion of the navigation workflow.

Navigating Within a Web Forms Site
In Web Forms, navigation between pages can be achieved through a redirect. The workflow
interface allows you to assign a name to a view (possibly, but not necessarily, the name of the
page), which is then resolved with a redirect to a given URL. Here’s an example:

public class SiteNavigationWorkflow : INavigationWorkflow
{
 public void Goto(String view)
 {
 switch (view)
 {
 case "home":
 HttpContext.Current.Response.Redirect("/default.aspx");
 break;
 case "test":
 HttpContext.Current.Response.Redirect(
 HttpUtility.UrlEncode(String.Format("/test.aspx?x='{0}'",
 Navigator.Argument)));
 break;
 }
 }

 public void NextViewFrom(String currentView)
 {
 switch (currentView)
 {
 case "home":
 // Calculate next view using logic
 break;
 }
 }
}

 Chapter 15 The Model-View-Presenter Pattern 635

As an example, let’s have a look at a possible implementation of the same interface for a
Windows Forms application:

public class AppNavigationWorkflow : INavigationWorkflow
{
 private Form _fooForm;
 private readonly Form _defaultView;

 public AppNavigationWorkflow(Form main)
 {
 _defaultView = main;
 }

 public void Goto(string view)
 {
 switch (view)
 {
 case "home":
 if (_fooForm != null && !_fooForm.IsDisposed)
 {
 _fooForm.Close();
 _fooForm = null;
 }
 break;
 case "foo":
 if (_fooForm == null || _fooForm.IsDisposed)
 {
 _fooForm = new FooForm();
 _fooForm.Owner = _defaultView;
 }
 _fooForm.ShowDialog();
 break;
 }
 }

 public void NextViewFrom(string currentView)
 {
 switch (currentView)
 {
 case "home":
 // Calculate next view using logic
 break;
 }
 }
}

As you can see, in Windows you might have a radically different approach to navigation,
which basically consists of displaying and hiding dialog boxes and windows. Still, from the
presenter’s standpoint, all you need to do is invoke the same Goto method:

// From presenter's code
public void Redirect()
{
 Navigator.Goto("test", "test value");
}

636 Part III Design of the Application

In ASP.NET, it produces the view shown in Figure 15-10.

FIGURE 15-10 Navigating to a specific page.

Finally, let’s see how you can attach a platform-specific workflow to the presentation layer.
The binding takes place at the application startup—for example, in global.asax:

void Application_Start(Object sender, EventArgs e)
{
 var simpleWorkflow = new SiteNavigationWorkflow();
 Navigator.Attach(simpleWorkflow);
}

The use of the term “workflow” here is not coincidental. The method Goto in
INavigationWorkflow allows you to reach a specific URL; the method NextViewFrom, which
can be implemented just by using a workflow based on the current view, determines what
comes next.

Testability in Web Forms with MVP
For many years, developers in the .NET space didn’t pay much attention to emerging
 patterns and practices. The deep application of the RAD paradigm led to a focus on tools
and techniques to do it faster, rather than doing it right the first time. Debugging always
prevailed over unit testing as the major technique to help check whether your development
efforts were on track.

Web Forms has a number of merits, but it certainly doesn’t stand out for the aid it provides
with regard to testability. However, using the MVP pattern makes the most relevant part
of your Web Forms code—for example, the presenter—far easier to test, and especially
unit-test.

 Chapter 15 The Model-View-Presenter Pattern 637

Writing Testable Code
If you look at the functionality, there’s nearly no difference at all between testable-code-that-
works and untestable-code-that-works. So where’s the benefit of testing? Essentially, it lies in
what might happen after you deploy your code to production. The customer might come
back and ask you to make changes or implement new features. Or, worse yet, an unexpected
bug might show up. In all these cases, you need to put your hands on the code to update it.
Your goal is updating what has to be updated without breaking anything else. How do you
prove that you didn’t break any existing features?

A well-written set of unit tests can give you the measure of how good your software is now
compared to the stage before. If your software still passes all the tests after the updates, well,
there’s a great chance that untouched features are still effective.

Aspects of Testable Code
The beauty of tests is in the speed at which you can check whether your changes caused
 regression. At its core, a test is a program that invokes a software module that passes edge
values to prove whether or not a particular behavior is working correctly. Note that not all
code is inherently testable.

You have to keep three fundamental aspects in mind when writing a test: visibility, control,
and simplicity.

Visibility indicates the degree at which the code under test allows you to observe changes
in the state of the code. If changes are not observable, how can you determine whether the
code works or fails?

Control indicates the degree at which the behavior of code under test can be influenced
by external input. To be effective, a test must pass in selected input values. If input is hard-
coded, running an effective test is much harder.

Finally, simplicity is an aspect of code that is never out of place. The simpler the code is, the
simpler it is to test and the more reliable any results will be.

Unit Testing
Unit testing verifies that individual units of code are working properly according to their
software contract. A unit is the smallest part of an application that is testable—typically, a
method.

Unit testing consists of writing and running a small program (referred to as a test harness)
that instantiates classes and invokes methods in an automatic way. In the end, running a
 battery of tests is much like compiling. You click a button, you run the test harness and, at
the end of it, you know what went wrong, if anything.

638 Part III Design of the Application

In its simplest form, a test harness is a manually written program that reads test-case input
values and the corresponding expected results from some external files. Then the test har-
ness calls methods using input values and compares results with expected values. Obviously,
writing such a test harness entirely from scratch is, at a minimum, time consuming and error
prone. But, more importantly, it is restrictive in terms of the testing capabilities you can take
advantage of.

A very effective way to conduct unit testing is to use an automated test framework. An
 automated test framework is a developer tool that normally includes a runtime engine and
a framework of classes for simplifying the creation of test programs. One of these frame-
works—MSUnit—is integrated in Visual Studio. All you have to do is create a new project of
type Test. (Note that other tools, both open-source and commercial, are available for unit
testing, some of which are also integrated with Visual Studio.)

Test-Driven Development
You can write tests at any time—before or after the method you intend to test. This is mostly
a matter of preference and methodology. It can become a religious matter sometimes, but
frankly nobody can claim that one approach or the other is absolutely and objectively better.

Test-driven development (TDD) is a methodology that naturally gets you to think about the
expected interface and behavior of methods well before you actually start writing the code.
TDD is an approach that might appear radical at first and that certainly takes time to fully di-
gest. However, its goal is quite simple in the end: help to quickly write clean code that works.

In the traditional approach to coding, you develop a method according to the idea you have
of the features the method must support. You start with a relatively simple body, and then
you increase its capabilities until you reach the original goal. Along the way, you use the
debugger to see how things are going and whether data is being moved around correctly.
When you’ve determined that all is OK, if you’re a scrupulous developer you consider writing
a bunch of unit tests to verify the behavior of the method from a few other angles to make it
easier to catch regression failures later.

If you proceed this way, you eventually decide that tests are way too boring and hard to write
and don’t really give you any concrete benefits. It’s your code, after all, and it works. A test
won’t make the code richer and more appealing to users. So you just stop writing tests!

When the complexity of the code rises above a certain threshold, the debugger alone is no
longer sufficient for testing and needs to be backed by some good unit tests. You can write
unit tests before you code (as TDD suggests) or after you’re done. It doesn’t really matter
when you do it, as long as you come up with an exhaustive set of tests. TDD is considered
an effective methodology to achieve just this result. Some small changes in the Visual Studio
2010 refactoring tools and the Test project template also make it worth a try for Web Forms
developers.

 Chapter 15 The Model-View-Presenter Pattern 639

Testing a Presenter Class
To test-run the increased testability of Web Forms with MVP let’s go through a test project
aimed at ensuring an application correctly gets price quotes for a list of stock symbols.

Creating a Unit Test
Suppose you have the test project ready and you’ve added a unit test to it. A unit test is a
class that looks like the one shown here:

[TestClass]
public class DefaultPresenterTests
{
 [TestMethod]
 public void TestIfQuotesAreBeingReturnedForEverySymbol()
 {
 }
}

Note Choosing the right name for a test method is as important as writing good code.
The test name must be representative of the scenario you’re testing and include a quick
explanation of the scenario. A detailed guide from an expert in the field can be found here:
http://www.osherove.com/blog/2005/4/3/naming-standards-for-unit-tests.htm.

The test is expected to test the Refresh method of the presenter class we considered earlier.
Figure 15-11 illustrates the first roadblock we encounter.

FIGURE 15-11 Attempting to create a unit test.

The idea is to get an instance of the presenter and invoke each method, passing some ad hoc
input value (the aspect control) and observing results (the aspect visibility). As IntelliSense
shows up in the figure, however, you need to provide some objects in order to instantiate the
presenter.

http://www.osherove.com/blog/2005/4/3/naming-standards-for-unit-tests.htm

640 Part III Design of the Application

The presenter has two dependencies—on the view and on the quote service. Your goal is
to test the logic in the presenter class; you don’t want to test the view here and the service.
These will possibly be the subject of other tests. On the other hand, you still need to provide
a view and a service. Thankfully, you used a bit of dependency injection pattern in the design
of the presenter class; therefore, you can now obtain a test double object and pass that in.

A test double is an object that looks like another one without providing the same behavior. A
test double is typically coded in either of two ways—as a fake or a mock. A fake is an object
with a hard-coded behavior and no state; a mock is an object with a dynamically defined
behavior. You typically code the fake yourself as a custom class in the project and use ad hoc
frameworks for mocks. Moq is one of these frameworks.

Important Overall, there are four main types of test doubles: dummy objects, fakes, stubs, and
mocks. A general consensus about what each test double object does exists for dummy objects
and mocks only. A dummy object has no behavior and exists just to fill in a parameter list. A mock
object is what I described above.

What about fakes and stubs, then? You might read subtly different definitions for each term and
even find out that various authors use the term fake to indicate what another author classifies as
a stub, and vice versa. My pragmatic approach is that it would be much simpler if we limit our-
selves to two types of doubles: mocks and another, simpler, type of double you name the way
you like. In this context, I prefer the term fake. As far as this chapter is concerned, feel free to
 replace fake with stub if that makes your reading easier in any way.

Here are some sample test doubles for the view and quote service:

public class FakeDefaultView : IDefaultView
{
 private readonly String _symbols;
 public FakeDefaultView(String fakeSymbols)
 {
 _symbols = fakeSymbols;
 }
 public IList<StockInfo> Quotes { get; set; }
 public String Message { get; set; }
 public String Symbols
 {
 get { return _symbols; }
 set {}
 }
}

public class FakeQuoteService : IQuoteServices
{
 public IList<StockInfo> GetQuotes(String symbols)
 {
 var stocks = symbols.Split(',');
 return stocks.Select(s => new StockInfo()
 {
 Change = "0%",
 Company = s,

 Chapter 15 The Model-View-Presenter Pattern 641

 CurrentQuote = "1.1",
 Date = DateTime.Today.ToString(),
 Time = DateTime.Now.ToString()
 }).ToList();
 }
}

Finally, here’s the unit test:

[TestMethod]
public void TestIfQuotesAreBeingReturnedForEverySymbol()
{
 // Arrange
 const String testData = "XXX,YYY,ZZZ";
 var inputSymbols = testData.Split(',').ToList();
 var view = new FakeDefaultView(testData);
 var presenter = new DefaultPresenter(view, new FakeQuoteService());

 // Act
 presenter.Refresh();

 // Assert
 Assert.AreEqual(view.Quotes.Count, inputSymbols.Count);
 foreach(var quote in view.Quotes)
 {
 Assert.IsTrue(inputSymbols.Contains(quote.Company));
 }
}

Ideally, a unit test is articulated in three main blocks: prepare the ground for executing the
method under test, execute the method, and then check results against assertions.

Testing Presenters in Isolation
A relevant benefit that MVP provides is isolating the presenter code from the rest of the
world. To be precise, MVP gives you guidance on how to isolate the presenter from the
view, but it says nothing specific about the rest of the system. This means that keeping the
 presenter isolated from the middle tier is your responsibility.

When you test a method, you want to focus only on the code within that method. All that
you want to know is whether that code provides the expected results in the tested scenarios.
To get this, you need to get rid of all dependencies the method might have. If the method,
say, invokes another class, you assume that the invoked class will always return correct re-
sults. In this way, you eliminate at the root the risk that the method fails under test because
a failure occurred down the call stack. If you test method A and it fails, the reason has to be
found exclusively in the source code of method A and not in any of its dependencies.

Achieving isolation is far easier if you apply dependency injection to the design of classes. For
presenters, this means being injected with the view object and also any service layer compo-
nent the presenter needs to work with. When this happens, testing methods on the presenter
is really a piece of cake. (See Figure 15-12.)

642 Part III Design of the Application

FIGURE 15-12 Running unit tests.

Summary
For an ASP.NET application, you have two main options when it comes to choosing an ap-
plication model. You can go with the traditional ASP.NET Web application model, which is
based on the Page Controller pattern, or you can move toward ASP.NET MVC.

The traditional ASP.NET application model can be improved with a deeper separation of
concerns by using a manual implementation of the MVP pattern. The MVP pattern isolates
the view from the presenter and abstracts the view to an interface. In this way, the presenter
can be coded against the view interface and becomes a reusable and testable piece of code.
To finish with a flourish, you might also want to take out of the presenter any code that rep-
resents a dependency on the service layer. If you do, writing unit tests for the presenter be-
comes really easy and effective.

Even with these changes in place, however, ASP.NET Web Forms remains a hard-to-test
framework. What if you need to deal with Cache or Session in your presenter? None of these
objects will be available in the test project unless you spin the entire ASP.NET runtime. In
other words, testing in isolation is very difficult. Options? Well, the best you can do is wrap
access to Session, Cache, and other intrinsic ASP.NET objects in custom classes exposing a
fixed interface. At the cost of an additional fairly thin layer, you gain the benefit of isolating
presenters from ASP.NET runtime objects. And ASP.NET intrinsic objects are the subject of
the next few chapters.

Programming Microsoft® ASP.NET 4

 643

Part IV

Infrastructure of the Application
In this part:
Chapter 16: The HTTP Request Context . 645
Chapter 17: ASP.NET State Management . 675
Chapter 18: ASP.NET Caching . 721
Chapter 19: ASP.NET Security . 779

 645

Chapter 16

The HTTP Request Context
All great things are simple, and many can be expressed in single words.

—Winston Churchill

Each ASP.NET request goes hand in hand with a companion object for its entire lifetime—an
instance of the HttpContext class. The HttpContext object wraps up all the HTTP-specific
 information available about the request. It is then used by the various HTTP modules and
used to group references to intrinsic worker objects such as Request, Response, and Server.

In this chapter, we’ll first review the startup process of the ASP.NET application and then
move on to examine the various objects that form the context of the HTTP request.

Initialization of the Application
Each ASP.NET request is carried out by an ASP.NET application object. An ASP.NET
 application consists of an instance of the HttpApplication class that you briefly met in
Chapter 2, “ASP.NET and IIS.” HttpApplication is a global.asax-derived object that handles all
HTTP requests directed to a particular virtual folder.

An ASP.NET running application is wholly represented by its virtual folder and, optionally,
by the global.asax file. The virtual folder name is a sort of key that the HTTP runtime uses
to selectively identify which of the running applications should take care of the incom-
ing request. The global.asax file, if present, contains settings and code for responding to
application-level events raised by ASP.NET or by registered HTTP modules that affect the
application.

The particular HttpApplication selected is responsible for managing the entire lifetime of
the request it is assigned to. That instance of HttpApplication can be reused only after the
 request has been completed. If no HttpApplication object is available, either because the
 application has not been started yet or all valid objects are busy, a new HttpApplication is
created and pooled.

Properties of the HttpApplication Class
Although the HttpApplication provides a public constructor, user applications never need
to create instances of the HttpApplication class directly. The ASP.NET runtime infrastructure
always does the job for you. As mentioned, instances of the class are pooled and, as such,
can process many requests in their lifetime, but always one at a time. Should concurrent

646 Part IV Infrastructure of the Application

 requests arrive for the same application, additional instances are created. Table 16-1 lists the
 properties defined for the class.

TABLE 16-1 HttpApplication Properties
Property Description
Application Instance of the HttpApplicationState class. It represents the global and shared

state of the application. It is functionally equivalent to the ASP intrinsic
Application object.

Context Instance of the HttpContext class. It encapsulates in a single object all HTTP-
specific information about the current request. Intrinsic objects (for example,
Application and Request) are also exposed as properties.

Modules Gets the collection of modules that affect the current application.

Request Instance of the HttpRequest class. It represents the current HTTP request. It is
functionally equivalent to the ASP intrinsic Request object.

Response Instance of the HttpResponse class. It sends HTTP response data to the client. It is
functionally equivalent to the ASP intrinsic Response object.

Server Instance of the HttpServerUtility class. It provides helper methods for processing
Web requests. It is functionally equivalent to the ASP intrinsic Server object.

Session Instance of the HttpSessionState class. It manages user-specific data. It is
 functionally equivalent to the ASP intrinsic Session object.

User An IPrincipal object that represents the user making the request.

The HttpApplication is managed by the ASP.NET infrastructure, so how can you take
 advantage of the fairly rich, public programming interface of the class? The answer is that
properties and, even more, overridable methods and class events can be accessed and
 programmatically manipulated in the global.asax file. (I’ll return to global.asax in a moment.)

Application Modules
The property Modules returns a collection of application-wide components providing ad hoc
services. An HTTP module component is a class that implements the IHttpModule interface.
Modules can be considered the managed counterpart of ISAPI filters; they are kind of re-
quest interceptors with the built-in capability of modifying the overall context of the request
being processed. The Microsoft .NET Framework defines a number of standard modules,
as listed in Table 16-2. Custom modules can be defined too. I cover this particular aspect of
HTTP programming in Chapter 18, “ASP.NET Caching.”

TABLE 16-2 ASP.NET Modules
Module Description
AnonymousIdentification Assigns anonymous users a fake identity.

FileAuthorization Verifies that the remote user has Microsoft Windows NT
 permissions to access the requested resource.

FormsAuthentication Enables applications to use forms authentication.

 Chapter 16 The HTTP Request Context 647

Module Description
OutputCache Provides page output caching services.

PassportAuthentication Provides a wrapper around Passport authentication services.

Profile Provides user profile services.

RoleManager Provides session-state services for the application.

ScriptModule Used to implement page methods in AJAX pages.

SessionState Provides session-state services for the application.

UrlAuthorization Provides URL-based authorization services to access specified
 resources.

UrlRouting Provides support for URL routing

WindowsAuthentication Enables ASP.NET applications to use Windows and Internet
Information Services (IIS)-based authentication.

The list of default modules is defined in the machine.config file. By creating a proper
web.config file, you can also create an application-specific list of modules. (Configuration is
covered in Chapter 3, “ASP.NET Configuration.”)

Methods of the HttpApplication Class
The methods of the HttpApplication class can be divided into two groups: operational
 methods and event handler managers. The HttpApplication operational methods are
 described in Table 16-3.

TABLE 16-3 HttpApplication Operational Methods
Method Description
CompleteRequest Sets an internal flag that causes ASP.NET to skip all successive

steps in the pipeline and directly execute EndRequest. It’s mostly
useful to HTTP modules.

Dispose Overridable method, cleans up the instance variables of all
 registered modules after the request has been served. At this
time, Request, Response, Session, and Application are no longer
available.

GetOutputCacheProviderName Overridable method, returns the currently configured provider
for handling output page caching. (I’ll say more about output
page caching in Chapter 18.)

GetVaryByCustomString Overridable method, provides a way to set output caching based
on a custom string for all pages in the application. (I’ll say more
about output page caching in Chapter 18.)

Init Overridable method that executes custom initialization code
 after all modules have been linked to the application to serve the
request. You can use it to create and configure any object that
you want to use throughout the request processing. At this time,
Request, Response, Session, and Application are not yet available.

648 Part IV Infrastructure of the Application

Note that the Init and Dispose methods are quite different from well-known event handlers
such as Application_Start and Application_End.

Init executes for every request directed to the Web application, whereas Application_Start
fires only once in the Web application’s lifetime. Init indicates that a new instance of the
HttpApplication class has been initialized to serve an incoming request; Application_Start
 denotes that the first instance of the HttpApplication class has been created to start up the
Web application and serve its very first request. Likewise, Dispose signals the next termination
of the request processing but not necessarily the end of the application. Application_End is
raised only once, when the application is being shut down.

Note The lifetime of any resources created in the Init method is limited to the execution of the
current request. Any resource you allocate in Init should be disposed of in Dispose, at the latest. If
you need persistent data, resort to other objects that form the application or session state.

In addition to the operational methods in Table 16-3, a few other HttpApplication methods
are available to register asynchronous handlers for application-level events. These methods
are of little interest to user applications and are used only by HTTP modules to hook up the
events generated during the request’s chain of execution.

Events of the HttpApplication Class
Table 16-4 describes the event model of the HttpApplication class—that is, the set of events
that HTTP modules, as well as user applications, can listen to and handle.

TABLE 16-4 HttpApplication Events
Event Description
AcquireRequestState,
PostAcquireRequestState

Occurs when the handler that will actually serve the request
 acquires the state information associated with the request.

AuthenticateRequest,
PostAuthenticateRequest

Occurs when a security module has established the identity of the
user.

AuthorizeRequest,
PostAuthorizeRequest

Occurs when a security module has verified user authorization.

BeginRequest Occurs as soon as the HTTP pipeline begins to process the
 request.

Disposed Occurs when the HttpApplication object is disposed of as a result
of a call to Dispose.

EndRequest Occurs as the last event in the HTTP pipeline chain of execution.

Error Occurs when an unhandled exception is thrown.

LogRequest, PostLogRequest Occurs when the system logs the results of the request.

PostMapRequestHandler Occurs when the HTTP handler to serve the request has been
found.

 Chapter 16 The HTTP Request Context 649

Event Description
PostRequestHandlerExecute Occurs when the HTTP handler of choice finishes execution. The

response text has been generated at this point.

PreRequestHandlerExecute Occurs just before the HTTP handler of choice begins to work.

PreSendRequestContent Occurs just before the ASP.NET runtime sends the response text
to the client.

PreSendRequestHeaders Occurs just before the ASP.NET runtime sends HTTP headers to
the client.

ReleaseRequestState,
PostReleaseRequestState

Occurs when the handler releases the state information associ-
ated with the current request.

ResolveRequestCache,
PostResolveRequestCache

Occurs when the ASP.NET runtime resolves the request through
the output cache.

UpdateRequestCache,
PostUpdateRequestCache

Occurs when the ASP.NET runtime stores the response of the cur-
rent request in the output cache to be used to serve subsequent
requests.

To handle any of these events asynchronously, an application will use the corresponding
method whose name follows a common pattern: AddOnXXXAsync, where XXX stands for the
event name. To hook up some of these events in a synchronous manner, an application will
define in the global.asax event handler procedures with the following signature:

public void Application_XXX(Object sender, EventArgs e)
{
 // Do something here
}

Of course, the XXX placeholder must be replaced with the name of the event from
Table 16-4. All the events in the preceding table provide no event-specific data. You can
also use the following simpler syntax without losing additional information and programming
power:

public void Application_XXX()
{
 // Do something here
}

In addition to the events listed in Table 16-4, in global.asax an application can also handle
Application_Start and Application_End. When ASP.NET is about to fire BeginRequest for the
very first time in the application lifetime, it makes Application_Start precede it. EndRequest
will happen at the end of every request to an application. Application_End occurs outside the
context of a request, when the application is ending.

As you saw in Chapter 2, application events are fired in the following sequence:

 1. BeginRequest The ASP.NET HTTP pipeline begins to work on the request. This event
reaches the application after Application_Start.

650 Part IV Infrastructure of the Application

 2. AuthenticateRequest The request is being authenticated. All the internal ASP.NET
authentication modules subscribe to this event and attempt to produce an identity.
If no authentication module produced an authenticated user, an internal default
 authentication module is invoked to produce an identity for the unauthenticated user.
This is done for the sake of consistency so that code doesn’t need to worry about null
identities.

 3. PostAuthenticateRequest The request has been authenticated. All the information
available is stored in the HttpContext’s User property.

 4. AuthorizeRequest The request authorization is about to occur. This event is commonly
handled by application code to do custom authorization based on business logic or
other application requirements.

 5. PostAuthorizeRequest The request has been authorized.

 6. ResolveRequestCache The ASP.NET runtime verifies whether returning a previously
cached page can resolve the request. If a valid cached representation is found, the
 request is served from the cache and the request is short-circuited, calling only any
registered EndRequest handlers.

 7. PostResolveRequestCache The request can’t be served from the cache, and the
 procedure continues. An HTTP handler corresponding to the requested URL is created
at this point. If the requested resource is an .aspx page, an instance of a page class is
created.

 8. MapRequestHandler The event is fired to determine the request handler.

 9. PostMapRequestHandler The event fires when the HTTP handler corresponding to the
requested URL has been successfully created.

 10. AcquireRequestState The module that hooks up this event is willing to retrieve any
state information for the request. A number of factors are relevant here: the handler
must support session state in some form, and there must be a valid session ID.

 11. PostAcquireRequestState The state information (such as Application, Session) has been
acquired.

 12. PreRequestHandlerExecute This event is fired immediately prior to executing the
handler for a given request. The handler does its job and generates the output for the
client.

 13. ExecuteRequestHandler The handler does its job and processes the request.

 14. PostRequestHandlerExecute This event is raised when the handler has generated the
response text.

 15. ReleaseRequestState This event is raised when the handler releases its state
 information and prepares to shut down. This event is used by the session state module
to update the dirty session state if necessary.

 Chapter 16 The HTTP Request Context 651

 16. PostReleaseRequestState The state, as modified by the page execution, has been
persisted. Any relevant response filtering is done at this point. (I’ll say more about this
topic later.)

 17. UpdateRequestCache The ASP.NET runtime determines whether the generated output,
now also properly filtered by registered modules, should be cached to be reused with
upcoming identical requests.

 18. PostUpdateRequestCache The page has been saved to the output cache if it was
 configured to do so.

 19. LogRequest The event indicates that the runtime is ready to log the results of the
 request. Logging is guaranteed to execute even if errors occur.

 20. PostLogRequest The request has been logged.

 21. EndRequest This event fires as the final step of the HTTP pipeline. Control passes
back to the HttpRuntime object, which is responsible for the actual forwarding of the
 response to the client. At this point, the text has not been sent yet.

If an unhandled error occurs at any point during the processing, it is treated using the
code (if any) associated with the Error event. As mentioned, events can be handled in HTTP
 modules as well as in global.asax.

Note The Error event provides a centralized console for capturing any unhandled
exception in order to recover gracefully or just to capture the state of the application
and log it. By writing an HTTP module that just intercepts the Error event, you have a
simple but terribly effective and reusable mechanism for error handling and logging.
At the end of the day, this is the core of the engine of popular tools for ASP.NET error
handling, logging, and reporting—ELMAH.

The global.asax File
The global.asax file is used by Web applications to handle some application-level events
raised by the ASP.NET runtime or by registered HTTP modules. The global.asax file is
 optional. If it is missing, the ASP.NET runtime environment simply assumes you have no
application or module event handlers defined. To be functional, the global.asax file must
be located in the root directory of the application. Only one global.asax file per applica-
tion is accepted. Any global.asax files placed in subdirectories are simply ignored. Note that
Microsoft Visual Studio doesn’t list global.asax in the items you can add to the project if there
already is one.

652 Part IV Infrastructure of the Application

Compiling global.asax
When the application is started, global.asax, if present, is parsed into a source class and
 compiled. The resultant assembly is created in the temporary directory just as any other
 dynamically generated assembly would be. The following listing shows the skeleton of the
C# code that ASP.NET generates for any global.asax file:

namespace ASP
{
 public class global_asax : System.Web.HttpApplication
 {
 //
 // The source code of the "global.asax" file is flushed
 // here verbatim. For this reason, the following code
 // in global.asax would generate a compile error.
 // int i;
 // i = 2; // can’t have statements outside methods
 //
 }
}

The class is named ASP.global_asax and is derived from the HttpApplication base class. In
most cases, you deploy global.asax as a separate text file; however, you can also write it as
a class and compile it either in a separate assembly or within your project’s assembly. The
class source code must follow the outline shown earlier and, above all, must derive from
HttpApplication. The assembly with the compiled version of global.asax must be deployed in
the application’s Bin subdirectory.

Note, though, that even if you isolate the logic of the global.asax file in a precompiled
 assembly, you still need to have a (codeless) global.asax file that refers to the assembly, as
shown in the following code:

<%@ Application Inherits="MyApp.Global" %>

You’ll learn more about the syntax of global.asax in the next section, “Syntax of global.asax.”
With a precompiled global application file, you certainly don’t risk exposing your source
code over the Web to malicious attacks. However, even if you leave it as source code, you’re
 somewhat safe.

The global.asax file, in fact, is configured so that any direct URL request for it is automatically
rejected by Internet Information Services (IIS). In this way, external users cannot download
or view the code it contains. The trick that enables this behavior is the following line of code,
excerpted from machine.config:

<add verb="*" path="*.asax" type="System.Web.HttpForbiddenHandler" />

 Chapter 16 The HTTP Request Context 653

ASP.NET registers with IIS to handle .asax resources, but then it processes those direct
 requests through the HttpForbiddenHandler HTTP handler. As a result, when a browser re-
quests an .asax resource, an error message is displayed on the page, as shown in Figure 16-1.

FIGURE 16-1 Direct access to forbidden resources, such as *.asax files, results in a server error.

When the global.asax file of a running application is modified, the ASP.NET runtime detects
the change and prepares to shut down and restart the application. It waits until all pending
requests are completed and then fires the Application_End event. When the next request
from a browser arrives, ASP.NET reparses and recompiles the global.asax file, and again raises
the Application_Start event.

Syntax of global.asax
A few elements determine the syntax of the global.asax file. They are application directives,
code declaration blocks, server-side <object> tags, and static properties. These elements can
be used in any order and number to compose a global.asax file.

Application Directives
The global.asax file supports three directives: @Application, @Import, and @Assembly. The
@Import and @Assembly directives work as shown in Chapter 3. The @Import directive
 imports a namespace into an application; the @Assembly directive links an assembly to the
application at compile time.

654 Part IV Infrastructure of the Application

The @Application directive supports a few attributes: Description, Language, and Inherits.
Description can contain any text you want to use to describe the behavior of the application.
This text has only a documentation purpose and is blissfully ignored by the ASP.NET parser.
Language indicates the language being used in the file. The Inherits attribute indicates a
code-behind class for the application to inherit. It can be the name of any class derived from
the HttpApplication class. The assembly that contains the class must be located in the Bin
subdirectory of the application.

Code Declaration Blocks
A global.asax file can contain code wrapped by a <script> tag. Just as for pages, the <script>
tag must have the runat attribute set to server. The language attribute indicates the language
used throughout:

<script language="C#" runat="server">
 ...
</script>

If the language attribute is not specified, ASP.NET defaults to the language set in the
 configuration, which is Microsoft Visual Basic .NET. The source code can also be loaded
from an external file, whose virtual path is set in the Src attribute. The location of the file is
 resolved using Server.MapPath—that is, starting under the physical root directory of the Web
application.

<script language="C#" runat="server" src="somecode.aspx.cs" />

In this case, any other code in the declaration <script> block is ignored. Notice that ASP.NET
enforces syntax rules on the <script> tag. The runat attribute is mandatory, and if the block
has no content, the Src must be specified.

Server-Side <object> Tags
The server-side <object> tag lets you create new objects using a declarative syntax. The
 <object> tag can take three forms, as shown in the following lines of code, depending on the
specified reference type:

<object id="..." runat="server" scope="..." class="..." />
<object id="..." runat="server" scope="..." progid="..." />
<object id="..." runat="server" scope="..." classid="..." />

In the first case, the object is identified by the name of the class and assembly that contains
it. In the last two cases, the object to create is a COM object identified by the program
identifier (progid) and the 128-bit CLSID, respectively. As one can easily guess, the classid,
progid, and class attributes are mutually exclusive. If you use more than one within a single

 Chapter 16 The HTTP Request Context 655

 server-side <object> tag, a compile error is generated. Objects declared in this way are load-
ed when the application is started.

The scope attribute indicates the scope at which the object is declared. The allowable values
are defined in Table 16-5. Unless otherwise specified, the server-side object is valid only
 within the boundaries of the HTTP pipeline that processes the current request. Other settings
that increase the object’s lifetime are application and session.

TABLE 16-5 Feasible Scopes for Server-Side <object> Tags

Scope Description
pipeline Default setting, indicates the object is available only within the context of the

 current HTTP request

application Indicates the object is added to the StaticObjects collection of the Application object
and is shared among all pages in the application

session Indicates the object is added to the StaticObjects collection of the Session object and
is shared among all pages in the current session

Static Properties
If you define static properties in the global.asax file, they will be accessible for reading and
writing by all pages in the application:

<script language="C#" runat="server">
 public static int Counter = 0;
</script>

The Counter property defined in the preceding code works like an item stored in
Application—namely, it is globally visible across pages and sessions. Consider that concurrent
access to Counter is not serialized; on the other hand, you have a strong-typed, direct global
item whose access speed is much faster than retrieving the same piece of information from a
generic collection such as Application.

To access the property from a page, you must use the ASP.global_asax qualifier, shown here:

Response.Write(ASP.global_asax.Counter.ToString());

If you don’t particularly like the ASP.global_asax prefix, you can alias it as long as you use C#.
Add the following code to a C#-based page (or code-behind class) for which you need to
 access the globals:

using Globals = ASP.global_asax;

The preceding statement creates an alias for the ASP.global_asax class (or whatever name
your global.asax class has). The alias—Globals in this sample code—can be used throughout
your code wherever ASP.global_asax is accepted. In ASP.NET 4, however, you can also rely on
the dynamic type.

656 Part IV Infrastructure of the Application

The HttpContext Class
During the various steps of the request’s chain of execution, an object gets passed along
from class to class—this object is the HttpContext object. HttpContext encapsulates all the
information available about an individual HTTP request that ASP.NET is going to handle. The
HttpContext class is instantiated by the HttpRuntime object while the request processing
mechanism is being set up. Next, the object is flowed throughout the various stages of the
request’s lifetime.

Important Before I get into the details of HttpContext and other ASP.NET intrinsic objects,
I should note that in ASP.NET 4 all these objects inherit from a base class. For example,
HttpContext derives from HttpContextBase and HttpResponse extends the capabilities of
HttpResponseBase. The reason is to make it easier to write unit tests to check the behavior of
code-behind classes. By using base classes, you can more easily create mocks of intrinsic objects
and inject them into the classes. In Chapter 15, “The Model-View-Presenter Pattern,” you saw an
approach to testability that will benefit from base classes for intrinsic objects. Note that the
ASP.NET Cache is not included in the list of objects with a base class.

Properties of the HttpContext Class
Table 16-6 enumerates all the properties exposed by the HttpContext class. The class
 represents a single entry point for a number of intrinsic objects such as classic ASP intrinsics
and ASP.NET-specific Cache and User objects.

TABLE 16-6 HttpContext Properties
Property Description
AllErrors Gets an array of Exception objects, each of which represents an error that

occurred while processing the request.

Application Gets an instance of the HttpApplicationState class, which contains the
global and shared states of the application.

ApplicationInstance Gets or sets the HttpApplication object for the current request. The actual
type is the global.asax code-behind class. It makes a cast to access public
properties and methods you might have defined in global.asax.

Cache Gets the ASP.NET Cache object for the current request.

Current Gets the HttpContext object for the current request.

CurrentHandler Gets the handler for the request that is currently being executed by the
application. It is a read-only property that returns the value stored in
Handler.

CurrentNotification Indicates which event in the request pipeline is currently processing the
request. It works only if the application is running in integrated pipeline
mode.

 Chapter 16 The HTTP Request Context 657

Property Description
Error Gets the first exception (if any) that has been raised while processing the

current request.

Handler Gets or sets the HTTP handler for the current request.

IsCustomErrorEnabled Indicates whether custom error handling is enabled for the current
 request.

IsDebuggingEnabled Indicates whether the current request is in debug mode.

IsPostNotification Indicates whether the current request has been processed and whether
we’re in the middle of a PostXxx stage. It works only if the application is
running in integrated pipeline mode.

Items Gets a name/value collection (hash table) that can be used to share
 custom data and objects between HTTP modules and HTTP handlers
 during the request lifetime.

PreviousHandler Gets the last handler before the current request was executed.

Profile Gets the object that represents the profile of the current user.

Request Gets an instance of the HttpRequest class, which represents the current
HTTP request.

Response Gets an instance of the HttpResponse class, which sends HTTP response
data to the client.

Server Gets an instance of the HttpServerUtility class, which provides helper
methods for processing Web requests.

Session Gets an instance of the HttpSessionState class, which manages session-
specific data.

SkipAuthorization Gets or sets a Boolean value that specifies whether the URL-based
 authorization module will skip the authorization check for the cur-
rent request. This is false by default. It is mostly used by authentication
 modules that need to redirect to a page that allows anonymous access.

Timestamp Gets a DateTime object that represents the initial timestamp of the
 current request.

Trace Gets the TraceContext object for the current response.

User Gets or sets the IPrincipal object that represents the identity of the user
making the request.

The Current property is a frequently used static member that returns the HttpContext object
for the request being processed.

The Items property is a dictionary object—a hash table, to be exact—that can be used to
share information between the modules and handlers involved with the particular request. By
using this property, each custom HTTP module or handler can add its own information to the
HttpContext object serving the request. The information stored in Items is ultimately made
available to the page. The lifetime of this information is limited to the request.

658 Part IV Infrastructure of the Application

Methods of the HttpContext Class
Table 16-7 lists the methods specific to the HttpContext class.

TABLE 16-7 HttpContext Methods
Method Description
AddError Adds an exception object to the AllErrors collection.

ClearError Clears all errors for the current request.

GetAppConfig Returns requested configuration information for the current
 application. The information is collected from machine.config and
the application’s main web.config files. It is marked as obsolete in
ASP.NET 4.0.

GetConfig Returns requested configuration information for the current request.
The information is collected at the level of the requested URL, taking
into account any child web.config files defined in subdirectories. It is
marked as obsolete in ASP.NET 4.0.

GetGlobalResourceObject Loads a global resource.

GetLocalResourceObject Loads a local, page-specific resource.

GetSection Returns requested configuration information for the current request.

RemapHandler Allows you to programmatically set the handler to serve the request. It
must be invoked before the runtime reaches the MapRequestHandler
stage. If the Handler property of HttpContext is not null at that stage,
the runtime defaults to it.

RewritePath Mostly for internal use; overwrites URL and the query string of the
 current Request object.

SetSessionStateBehavior Allows you to programmatically set the expected behavior for the
session state—either read-only, read-write, or no session. It must be
called before the AcquireRequestState event fires.

Over time, the GetSection method has replaced GetConfig, which has been marked as
 obsolete and should not be used. If you have old code using GetConfig, just change the
name of the method. The prototype is the same. Also, GetAppConfig is marked as obsolete
in ASP.NET 4. It has been replaced by GetWebApplicationSection, a static member of the new
WebConfigurationManager class. Also, in this case, no changes are required to be made to
the prototype. Let’s spend a few more words to dig out some interesting characteristics of
other methods of the HttpContext class.

URL Rewriting
The RewritePath method lets you change the URL of the current request on the fly, thus
 performing a sort of internal redirect. As a result, the displayed page is the one you set
through RewritePath; the page shown in the address bar remains the originally requested
one. The change of the final URL takes place on the server and, more importantly, within the
context of the same call. RewritePath should be used carefully and mainly from within the

 Chapter 16 The HTTP Request Context 659

global.asax file. If you use RewritePath in the context of a postback event, you can experience
some view-state problems.

protected void Application_BeginRequest(Object sender, EventArgs e)
{
 var context = HttpContext.Current;
 var o = context.Request["id"];
 if (o != null)
 {
 var id = (Int32) o;
 var url = GetPageUrlFromId(id);
 context.RewritePath(url);
 }
}
protected String GetPageUrlFromId(Int32 id)
{
 // Return a full URL based on the input ID value.
 ...
}

The preceding code rewrites a URL such as page.aspx?id=1234 to a specific page whose real
URL is read out of a database or a configuration file.

Note In general, IIS-level URL rewriting (which was discussed in Chapter 2) is a better
 alternative. The newer and more general ASP.NET Routing is perhaps better suited for a more
complex use case, but it can achieve the same result pretty easily.

Loading Resources Programmatically
In Chapter 7, “Working with the Page,” we discussed expressions allowed in ASP.NET pages
to bind control properties to embedded global or local resources. The $Resources and
meta:resourcekey expressions for global and local resources, respectively, work only at design
time. What if you need to generate text programmatically that embeds resource expressions,
instead? Both the Page and HttpContext classes support a pair of programmatic methods to
retrieve the content of resources embedded in the application.

GetGlobalResourceObject retrieves a global resource—that is, a resource defined in an .resx
file located in the App_GlobalResources special folder. GetLocalResourceObject does the same
for an .resx file located in the App_LocalResources special folder of a given page.

msg1.Text = (String) HttpContext.GetGlobalResourceObject(
 "Test", "MyString");
msg2.Text = (String) HttpContext.GetLocalResourceObject(
 "/MyApp/Samples/ResPage.aspx", "PageResource1.Title");

The first parameter you pass to GetGlobalResourceObject indicates the name of the .resx
resource file without an extension; the second parameter is the name of the resource to

660 Part IV Infrastructure of the Application

retrieve. As for GetLocalResourceObject, the first argument indicates the virtual path of the
page; the second is the name of the resource.

The Server Object
In the all-encompassing container represented by the HttpContext object, a few popular
objects also find their place. Among them are Server, Request, and Response. They are old
acquaintances for ASP developers and, indeed, they are feature-rich elements of the ASP.NET
programming toolkit. The set of properties and methods still makes these objects a funda-
mental resource for developers. Let’s learn more about them, starting with the Server object.

The functionality of the ASP intrinsic Server object in ASP.NET is implemented by the
HttpServerUtility class. An instance of the type is created when ASP.NET begins to process the
request and is then stored as part of the request context. The bunch of helper methods that
HttpServerUtility provides are publicly exposed to modules and handlers—including global.
asax, pages, and Web services—through the Server property of the HttpContext object. In
addition, to maintain ASP.NET coding as close as possible to the ASP programming style,
several other commonly used ASP.NET objects also expose their own Server property. In this
way, developers can use in the code, say, Server.MapPath without incurring compile errors.

Properties of the HttpServerUtility Class
This class provides two properties, named MachineName and ScriptTimeout. The
MachineName property returns the machine name, whereas ScriptTimeout gets and sets the
time in seconds that a request is allowed to be processed. This property accepts integers and
defaults to 90 seconds; however, it is set to a virtually infinite value if the page runs with the
attribute debug=true, as shown here:

this.Server.ScriptTimeout = 30000000;

The ScriptTimeout property is explicitly and automatically set in the constructor of the
 dynamically created class that represents the page.

Methods of the HttpServerUtility Class
Table 16-8 lists all methods exposed by the HttpServerUtility class. As you can see, they
 constitute a group of helper methods that come in handy at various stages of page
 execution. The class provides a couple of methods to create instances of COM components
and a few others to deal with errors. Another group of methods relates to the decoding and
encoding of content and URLs.

 Chapter 16 The HTTP Request Context 661

TABLE 16-8 Methods of the Server Object
Method Description
ClearError Clears the last exception that was thrown for the request.

CreateObject Creates an instance of the specified COM object.

CreateObjectFromClsid Creates an instance of the COM object identified by the specified CLSID.
The class identifier is expressed as a string.

Execute Passes control to the specified page for execution. The child page
 executes like a subroutine. The output can be retained in a writer object
or automatically flushed in the parent response buffer.

GetLastError Returns the last exception that was thrown.

HtmlDecode Decodes a string that has been encoded to eliminate invalid HTML
 characters. For example, it translates < into <.

HtmlEncode Encodes a string to be displayed in a browser. For example, it encodes <
into <.

MapPath Returns the physical path that corresponds to the specified virtual path on
the Web server.

Transfer Works as a kind of server-side redirect. It terminates the execution of the
current page and passes control to the specified page. Unlike Execute,
control is not passed back to the caller page.

UrlDecode Decodes a string encoded for HTTP transmission to the server in a URL.
The decoded string can be returned as a string or output to a writer.

UrlEncode Encodes a string for HTTP transmission to a client in a URL. The encoded
string can be returned as a string or output to a writer.

UrlPathEncode Encodes only the path portion of a URL string, and returns the encoded
string. This method leaves the query string content intact.

UrlTokenDecode Converts a URL string token, which encodes binary data as base 64 digits,
to its equivalent byte array representation.

UrlTokenEncode Encodes a byte array into its equivalent string representation using base
64 digits, which is usable for transmission on the URL.

HTML and URL encoding are ways of encoding characters to ensure that the transmitted
text is not misunderstood by the receiving browser. HTML encoding, in particular, replaces
<, >, &, and quotes with equivalent HTML entities such as <, >, &, and ". It
also encodes blanks, punctuation characters, and in general, all characters not allowed in an
HTML stream. On the other hand, URL encoding is aimed at fixing the text transmitted in URL
strings. In URL encoding, the same critical characters are replaced with different character
entities than in HTML encoding.

Embedding Another Page’s Results
The Execute method allows you to consider an external page as a subroutine. When the
execution flow reaches the Server.Execute call, control is passed to the specified page. The
execution of the current page is suspended, and the external page is spawned. The response

662 Part IV Infrastructure of the Application

text generated by the child execution is captured and processed according to the particular
overload of Execute that has been used. Table 16-9 lists the overloads of the Execute method.

TABLE 16-9 Overloads of the Execute Method
Overload Description
Execute(string); You pass the URL of the page, and the response text is

automatically embedded in the main page.

Execute(string, TextWriter); The response text is accumulated in the specified text
writer.

Execute(string, bool); The same description as for previous item, except that
you can choose whether to preserve the QueryString
and Form collections. True is the default setting.

Execute(IHttpHandler, TextWriter, bool); You indicate the HTTP handler to transfer the current
request to. The response is captured by the text writer.

Execute(string, TextWriter, bool); The response text is captured by the specified text writer,
and the QueryString and Form collections are either
 preserved or not preserved, as specified.

Note that if a TextWriter object is specified, the response text of the child execution is
 accumulated into the writer object so that the main page output can be used later at will.
Here’s some sample code:

void Page_Load(Object sender, EventArgs e)
{
 var builder = new StringBuilder();
 builder.Append("Response generated before
 Execute is called<hr/>");

 // Capture child content
 var writer = new StringWriter();
 Server.Execute("child.aspx", writer);
 builder.Append(writer.ToString());

 builder.Append("<hr/>Response generated after
 the call to Execute.");

 Label1.Text = builder.ToString();
}

It’s interesting to look at the internal implementation of the Execute method. Both the main
and child pages are run by the same HttpApplication object as if they were the same request.
What happens within the folds of Execute is a sort of context switch. First, the method ob-
tains an HTTP handler from the application factory to serve the new request. The original
handler of the main request is cached and replaced with the new handler. The spawned
page inherits the context of the parent; when this step is finished, any modification made to
Session or Application is immediately visible to the main page.

 Chapter 16 The HTTP Request Context 663

The handler switching makes the whole operation extremely fast, as there’s no need to
 create a new object to serve the request. When the child page returns, the original handler is
 restored. The execution of the main page continues from the point at which it was stopped,
but it uses the context inherited from the child page.

Caution ASP.NET directly calls the handler indicated by the Execute method without reapplying
any authentication and authorization logic. If your security policy requires clients to have proper
authorization to access the resource, the application should force reauthorization. You can
force reauthorization by using the Response.Redirect method instead of Execute. When Redirect
is called, the browser places a new request in the system, which will be authenticated and
 authorized as usual by IIS and ASP.NET. As an alternative, you can verify whether the user has
permission to call the page by defining roles and checking the user’s role before the application
calls the Execute method.

Server-Side Redirection
The Transfer method differs from the Execute method in that it terminates the current page
after executing the specified page. The new page runs as if it was the originally requested
one. The Transfer method has the following overloads:

public void Transfer(String);
public void Transfer(String, Boolean);
public void Transfer(IHttpHandler, Boolean);

The string parameter indicates the destination URL. The Boolean parameter indicates what
to do with regard to the QueryString and Form collections. If the parameter is true, the col-
lections are preserved; otherwise, they are cleared and made unavailable to the destination
page (which is the recommended approach). You can also directly indicate the HTTP handler
to invoke, with the same security issues that were mentioned for Execute.

All the code that might be following the call to Transfer in the main page is never executed.
In the end, Transfer is just a page redirect method. However, it is particularly efficient for
two reasons. First, no roundtrip to the client is requested, as is the case, for example, with
Response.Redirect. Second, the same HttpApplication that was serving the caller request is
reused, thus limiting the impact on the ASP.NET infrastructure.

The HttpResponse Object
In ASP.NET, the HTTP response information is encapsulated in the HttpResponse class. An
instance of the class is created when the HTTP pipeline is set up to serve the request. The
instance is then linked to the HttpContext object associated with the request and exposed
via the Response property. The HttpResponse class defines methods and properties to
 manipulate the text that will be sent to the browser. Although user-defined ASP.NET code

664 Part IV Infrastructure of the Application

never needs to use the HttpResponse constructor, looking at it is still useful to get the gist of
the class:

public HttpResponse(TextWriter writer);

As you can see, the constructor takes a writer object, which will then be used to accumulate
the response text. All calls made to Response.Write (and similar output methods) are resolved
in terms of internal calls to the specified writer object.

Properties of the HttpResponse Class
All properties of the class are grouped and described in Table 16-10. You set a few of these
properties to configure key fields on the HTTP response packet, such as content type,
 character set, page expiration, and status code.

TABLE 16-10 HttpResponse Properties
Property Description
Buffer Indicates whether the response text should be buffered and sent only

at the end of the request. This property is deprecated and provided
only for backward compatibility with classic ASP. ASP.NET applications
should instead use BufferOutput.

BufferOutput Gets or sets a Boolean value that indicates whether response buffering
is enabled. The default is true.

Cache Gets the caching policy set for the page. The caching policy is an
HttpCachePolicy object that can be used to set the cache-specific HTTP
headers for the current response.

CacheControl Sets the Cache-Control HTTP header. Acceptable values are Public,
Private, or No-Cache. The property is deprecated in favor of Cache.

Charset Gets or sets a string for the HTTP character set of the output stream. If
set to null, it suppresses the Content-Type header.

ContentEncoding Gets or sets an object of type Encoding for the character encoding of
the output stream.

ContentType Gets or sets the string that represents the Multipurpose Internet Mail
Extensions (MIME) type of the output stream. The default value is
text/html.

Cookies Gets a collection (HttpCookieCollection) object that contains instances
of the HttpCookie class generated on the server. All the cookies in the
collection will be transmitted to the client through the set-cookie HTTP
header.

Expires Gets or sets the number of minutes before a page cached on a browser
expires. Provided for compatibility with ASP, the property is deprecated
in favor of Cache.

ExpiresAbsolute Gets or sets the absolute date and time at which the page expires in
the browser cache. Provided for compatibility with ASP, the property is
deprecated in favor of Cache.

 Chapter 16 The HTTP Request Context 665

Property Description
Filter Gets or sets a filter Stream object through which all HTTP output is

 directed.

HeaderEncoding Gets or sets an Encoding object that represents the encoding for the
current header output stream.

Headers Gets the collection of response headers. The property is supported only
in integrated pipeline mode.

IsClientConnected Indicates whether the client is still connected.

IsRequestBeingRedirected Indicates whether the request is being redirected.

Output Gets the writer object used to send text out.

OutputStream Gets the Stream object used to output binary data to the response
stream.

RedirectLocation Gets or a sets a string for the value of the Location header.

Status Sets the string returned to the client describing the status of the
 response. Provided for compatibility with ASP, the property is
 deprecated in favor of StatusDescription.

StatusCode Gets or sets an integer value for the HTTP status code of the output
returned to the client. The default value is 200.

SubStatusCode Indicates the sub status code of the response. The property is supported
only in integrated pipeline mode.

StatusDescription Gets or sets the HTTP status string, which is a description of the overall
status of the response returned to the client. The default value is OK.

SuppressContent Gets or sets a Boolean value that indicates whether HTTP content
should be sent to the client. This is set to false by default; if it is set to
true, only headers are sent.

TrySkipIisCustomErrors Boolean property, indicates whether or not custom errors set at the IIS
level should by ignored by ASP.NET. The default value when running in
Integrated mode is false. The property is effective only for applications
hosted in IIS 7 or later.

Let’s find out more about cache and expiration properties.

Setting the Response Cache Policy
The response object has three properties dedicated to controlling the ability of the page
 being sent to the browser to be cached. The Expires and ExpiresAbsolute properties define
relative and absolute times, respectively, at which the page cached on the client expires and
is no longer used by the browser to serve a user request. In fact, if the user navigates to a
currently cached page, the cached version is displayed and no roundtrip occurs to the server.
A third property somehow related to page caching is CacheControl. The property sets a par-
ticular HTTP header—the Cache-Control header. The Cache-Control header controls how a
document is to be cached across the network. These properties represent the old-fashioned
programming style and exist mostly for compatibility with classic ASP applications.

666 Part IV Infrastructure of the Application

In ASP.NET, all caching capabilities are grouped in the HttpCachePolicy class. With regard to
page caching, the class has a double role. It provides methods for both setting cache-specific
HTTP headers and controlling the ASP.NET page output cache. In this chapter, we’re mostly
interested in the HTTP headers, and we’ll keep page output caching warm for Chapter 18.

To set the visibility of a page in a client cache, use the SetCacheability method of the
HttpCachePolicy class. To set an expiration time, use the SetExpires method, which takes
for input an absolute DateTime object. Finally, to set a lifetime for the cached page, pass to
SetExpires the current time plus the desired interval.

Note In the case of conflicting cache policies, ASP.NET maintains the most restrictive settings.
For example, if a page contains two controls that set the Cache-Control header to public and
private, the most restrictive policy will be used. In this case, Cache-Control: Private is what will be
sent to the client.

Setting an Output Filter
In ASP.NET, a new component makes its debut—the response filter. A response filter is a
Stream-derived object associated with the HttpResponse object. It monitors and filters any
output being generated by the page. If you set the Filter property with the instance of a
class derived from Stream, all output being written to the underlying HTTP writer first passes
through your output filter.

The custom filter, if any, is invoked during the HttpResponse’s Flush method before the actual
text is flushed to the client. An output filter is useful for applying the final touches to the
markup, and it is sometimes used to compact or fix the markup generated by controls.

Building a response filter is a matter of creating a new stream class and overriding some of
the methods. The class should have a constructor that accepts a Stream object. In light of
this, a response filter class is more a wrapper stream class than a purely inherited stream
class. If you simply try to set Response.Filter with a new instance of, say, MemoryStream or
FileStream, an exception is thrown.

The following listing shows how to create a stream class that works as a response filter.
For simplicity, the class inherits from MemoryStream. You might want to make it inherit
from Stream, but in this case you need to override (because they are abstract) a number
of methods, such as CanRead, CanWrite, CanSeek, and Read. The class converts lowercase
 characters to uppercase ones.

public class MyFilterStream : MemoryStream
{
 private Stream m_Stream;

 public MyFilterStream(Stream filterStream)
 {
 m_Stream = filterStream;
 }

 Chapter 16 The HTTP Request Context 667

 // The Write method actually does the filtering
 public override void Write(byte[] buffer, int offset, int count)
 {
 // Grab the output as a string
 string buf = UTF8Encoding.UTF8.GetString(buffer, offset, count);

 // Apply some changes
 // Change lowercase chars to uppercase
 buf = buf.ToUpper();

 // Write the resulting string back to the response stream
 byte[] data = UTF8Encoding.UTF8.GetBytes(buf.ToString());
 m_Stream.Write(data, 0, data.Length);
 }
}

Use the following code to associate this output filter with the Response.Filter property. Here’s
a sample page:

void Page_Load(object sender, EventArgs e)
{
 Response.Filter = new MyFilterStream(Response.Filter);
}

Response filters provide an interesting opportunity for developers to build more powerful
applications, but I caution you to be careful when considering this option. As the sample
demonstrates, changing the case of the entire output is not a smart move. If done without
care, the change ends up affecting the view state and the internal script code, both of which
consist of case-sensitive text, seriously compromising the functionality of the page. Second,
filters must be activated on a per-page basis. If you need to filter all the pages in a Web site,
you’re better off writing an HTTP module.

Methods of the HttpResponse Class
Table 16-11 lists all the methods defined on the HttpResponse class.

TABLE 16-11 HttpResponse Methods

Method Description
AddCacheDependency Adds an array of cache dependencies to make the cached page output

invalid if any dependency gets broken. In the array, you can have any class
that inherits from CacheDependency.

AddCacheItemDependencies Adds an array of strings representing names of items in the ASP.NET Cache.
When any of the specified items vary, the cached page output becomes
invalid.

AddCacheItemDependency Description is the same as for the previous item, except that
AddCacheItemDependency adds a single cache item name.

668 Part IV Infrastructure of the Application

Method Description
AddFileDependencies Adds a group of file names to the collection of file names on which the

current page is dependent. When any of the files are modified, the cached
output of the current page is deemed invalid.

AddFileDependency Adds a single file name to the collection of file names on which the current
page is dependent. If the file is modified, the cached output of the current
page becomes invalid.

AddHeader Adds an HTTP header to the output stream. It is provided for compatibility
with previous versions of ASP. In ASP.NET, you should use AppendHeader.

AppendCookie Adds an HTTP cookie to the cookie collection.

AppendHeader Adds an HTTP header to the output stream.

AppendToLog Adds custom log information to the IIS log file.

ApplyAppPathModifier Adds a session ID to the specified virtual path, and returns the result. It
is mostly used with cookieless sessions to construct absolute HREFs for
 hyperlinks.

BinaryWrite Writes binary characters to the HTTP output stream. It is subject to failures
with very large files. (See the references to this method later in the chapter.)

Clear Clears all content output from the buffer stream.

ClearContent Calls into Clear.

ClearHeaders Clears all headers from the buffer stream.

Close Closes the socket connection with the client.

DisableKernelCache Disables kernel caching for the current response. If kernel caching is not
supported, the method has no effect.

End Sends all buffered text to the client, stops execution, and raises the end
event for the request.

Flush Sends all currently buffered output to the client.

Pics Appends a PICS-Label HTTP header to the output. PICS stands for Platform
for Internet Content Selection and is a World Wide Web Consortium (W3C)
standard for rating pages. Any string is acceptable as long as it doesn’t
 exceed 255 characters.

Redirect Redirects a client to a new URL. It needs a roundtrip. The browser receives
an HTTP 302 status code, meaning that the resource has been temporarily
moved.

RedirectPermanent Redirects a client to a new URL. It needs a roundtrip. The browser receives
an HTTP 301 status code, meaning that the resource has been permanently
moved to a new location.

RedirectToRoute Redirects a client to a URL specified as a route. The method works if Web
Forms routing is used to specify routes.

RemoveOutputCacheItem A static method that takes a file system path and removes from the cache
all cached items associated with the specified path.

SetCookie Updates an existing cookie in the cookie collection.

TransmitFile Just like BinaryWrite and WriteFile, it writes the specified file directly to the
output stream. You can safely use TransmitFile regardless of the size of the
file that you want to transmit.

 Chapter 16 The HTTP Request Context 669

Method Description
Write Writes content to the underlying output stream. The method can write a

string, a single character, or an array of characters, as well as an object. In
this case, though, what gets written is the output of the object’s ToString
method.

WriteFile Writes the specified file (or a portion of it) directly to the output stream.
The file can be identified with its path or a Win32 handle (an IntPtr object).
It is subject to failures with very large files. (See the references to this
 method later in the chapter.)

WriteSubstitution Allows fragments of a page to be substituted and sent to the output cache.
(We’ll cover this method in more detail in Chapter 18.)

Output Caching Features
The HttpResponse class has several methods to make the page response it represents
dependent on files or cache item changes. The methods AddFileDependency and
AddCacheItemDependency (and their versions that handle multiple dependencies) make the
page response invalid when the specified file or files or cached item or items are modified.

This is a simple form of programmatic page output caching, not as powerful as the API that
we’ll examine in Chapter 18, but still worth a look. The API discussed in Chapter 18 is superior
because it allows you to control how the page response is cached, assigning also the cached
output a duration and perhaps a location.

The method AddCacheDependency completes the offering, as it gives you the possibility to
make the page response dependent on any dependency object available to your applica-
tion, including custom dependency objects. See Chapter 18 for more details on custom
 dependency objects.

Large File Transmission
As you can see, there are three methods for writing potentially large chunks of data down
to the output stream: BinaryWrite, WriteFile, and TransmitFile. Of the three methods,
TransmitFile is the most stable and reliable, although you won’t notice any significant
 difference for most files.

Both the WriteFile and BinaryWrite methods seem perfect for streaming binary data down to
the client. However, both can put the Web server memory under pressure if called to work on
very large files. Why? It’s because both methods load the entire data block (the contents of
the file or the byte array) into the Web server’s memory. For large files, this can cause severe
problems that can culminate in the recycling of the ASP.NET process. The TransmitFile meth-
od is designed to elegantly work around the problem. It sends output directly from a file
to the ASP.NET ISAPI extension and then down to the client, without passing a humongous
string to the ISAPI extension.

670 Part IV Infrastructure of the Application

Note Although TransmitFile makes large file downloads more stable than ever and fixes the
problem of recycling, it is far from being a full solution to the problem of tracking and resuming
large file downloads. For example, if a download fails, for whatever reason, TransmitFile can start
it again only from the beginning. The article found at the following Web site discusses a better
approach to the problem: http://www.devx.com/dotnet/Article/22533.

The HttpRequest Object
The HttpRequest object groups all the information contained in the HTTP packet that
 represents the incoming Web request. The contents of the various HTTP headers, the
query string, or the form’s input fields, path, and URL information are organized in a series
of collections and other ad hoc objects for easy and effective programmatic access. The
HttpRequest object is populated as soon as ASP.NET begins working on a Web request, and
it’s made available through the Request property of HttpContext.

HttpRequest exposes a fair number of properties and is one of the objects that has been
more significantly enriched in the transition from ASP to ASP.NET.

Properties of the HttpRequest Class
The class properties can be categorized into three groups based on the type of information
they contain: the type of the request, client data, and connection.

Information About the Request
Table 16-12 lists the properties that define the type of request being issued.

TABLE 16-12 Properties Describing the Request Type
Property Description
AcceptTypes Gets an array of strings denoting the list of MIME types supported by

the client for the specified request.

AnonymousID Indicates the ID of the anonymous user, if any. The identity refers to
the string generated by the AnonymousIdentification module and has
 nothing to do with the identity of the IIS anonymous user.

Browser Gets an HttpBrowserCapabilities object that contains information about
the capabilities of the client’s browser.

ContentEncoding Gets or sets an Encoding object that represents the client’s character set.
If specified, this property overrides the ASP.NET default encoding.

ContentLength Gets the length in bytes of the content sent by the client.

ContentType Gets or sets the MIME content type of the incoming request.

CurrentExecutionFilePath Gets the current virtual path of the request even when the client
is redirected to another page via Execute or Transfer. The FilePath
 property, on the other hand, always returns the path to the originally
requested page.

http://www.devx.com/dotnet/Article/22533

 Chapter 16 The HTTP Request Context 671

Property Description
FilePath Gets the virtual path of the current request. The path doesn’t change in

cases of server-side page redirection.

HttpMethod Gets a string that denotes the HTTP method used for the request. Values
are GET, POST, or HEAD.

RequestType Gets or sets a string that denotes the HTTP command used to issue the
request. It can be GET or POST.

TotalBytes Gets the total number of bytes in the input stream. This property differs
from ContentLength in that it also includes headers.

UserAgent Gets a string that identifies the browser. This property gets the raw
 content of the user agent header.

The anonymous ID is usually transmitted through a cookie (whose default name is
.ASPXANONYMOUS) and serves the purpose of giving an identity to nonauthenticated users,
mainly for user profile functions. The anonymous ID is a GUID and is transmitted as clear text.
It doesn’t play any relevant role with authentication and security; it is merely a way to track
nonregistered users as they move around the site. (See Chapter 7 for profiles and Chapter 19,
“ASP.NET Security,” for user authentication.)

Initially, CurrentExecutionFilePath and FilePath share the same content—the requested URL.
However, in cases of server-side redirects, the value of CurrentExecutionFilePath is automati-
cally updated. You should check CurrentExecutionFilePath for up-to-date information about
the target URL.

The HttpBrowserCapabilities object groups in a single place values that identify a fair number
of browser capabilities, including support for ActiveX controls, scripting languages, frames,
cookies, and more. When the request arrives, the user agent information is used to identify
the requesting browser and an instance of the HttpBrowserCapabilities class is created and
populated with browser-specific information. The information is in no way dynamically set by
the browser; instead, it is retrieved from an offline server-side repository.

Information from the Client
Table 16-13 lists the HttpRequest properties that expose the client data that ASP.NET pages
might want to use for server-side processing. The following table includes, for example,
cookies, forms, and query string collections.

TABLE 16-13 Properties Describing the Client Data
Property Description
ClientCertificate Gets an HttpClientCertificate object with information on the client’s security cer-

tificate settings, if any. The certificate object wraps up information such as number,
validity, and issuer of the certificate.

Cookies Gets a collection representing all cookies sent by the client. A cookie is identified
by the HttpCookie object.

672 Part IV Infrastructure of the Application

Property Description
Files Gets a collection of client-uploaded files. The property requires the HTTP Content-

Type header to be set to multipart/form-data.

Filter Gets or sets a Stream-based object through which all HTTP input passes when re-
ceived. The filtered input is anything read via InputStream.

Form Gets a name-value collection filled with the values of the input fields in the form
posted. The collection is populated when the Content-Type header is either
application/x-www-form-urlencoded or multipart/form-data.

Headers Gets a name-value collection filled with all the header values in the request.

InputStream Gets a Stream object representing the contents of the incoming HTTP content
body.

Params Gets a name-value collection that is a union of four other similar collections:
QueryString, Form, ServerVariables, and Cookies.

QueryString Gets a name-value collection containing all the query string variables sent by the
client.

ServerVariables Gets a name-value collection filled with a collection of Web server–defined vari-
ables.

UserHostAddress Gets the Internet Protocol (IP) address of the remote client.

UserHostName Gets the Domain Name System (DNS) name of the remote client.

UserLanguages Gets an array of strings denoting the list of the languages accepted by the client for
the specified request. The languages are read from the Accept-Language header.

The Params collection combines four different but homogeneous collections—QueryString,
Form, ServerVariables, and Cookies—and it replicates the information contained in each
of them. The collections are added in the following order: QueryString, Form, Cookies, and
 finally ServerVariables.

Information About the Connection
Table 16-14 lists the properties that relate to the open connection.

TABLE 16-14 Properties Describing the Connection
Property Description
ApplicationPath Gets the virtual path of the current application.

IsAuthenticated Indicates whether or not the user has been authenticated.

IsLocal Indicates if it is a local request.

IsSecureConnection Indicates whether the connection is taking place over a Secure Sockets
Layer (SSL) using HTTPS.

LogonUserIdentity Gets an object representing the Windows identity of the current user as
logged at the IIS gate.

Path Gets the virtual path of the current request.

PathInfo Gets additional path information for the requested resource, if any. The
property returns any text that follows the URL.

PhysicalApplicationPath Gets the file system path of the current application’s root directory.

 Chapter 16 The HTTP Request Context 673

Property Description
PhysicalPath Gets the physical file system path corresponding to the requested URL.

RawUrl Gets the raw URL of the current request.

Url Gets the Uri object that represents the URL of the current request.

UrlReferrer Gets the Uri object that represents the URL from which the current
 request originated.

The Uri class provides an object representation of a Uniform Resource Identifier (URI)—a
unique name for a resource available on the Internet. The Uri class provides easy access to
the parts of the URI as well as properties and methods for checking host, loopback, ports,
and DNS.

The server variables set in the ServerVariables collection are decided by the run-time
 environment that processes the request. The information packed in the collection is, for
the most part, excerpted from the HTTP worker request object; another part contains Web
 server–specific information. The ServerVariables collection is just a friendly name/value
 model to expose that information.

Methods of the HttpRequest Class
Table 16-15 lists all methods exposed by the HttpRequest class.

TABLE 16-15 HttpRequest Methods

Method Description
BinaryRead Performs a binary read from the current input stream. The method lets

you specify the number of bytes to read and returns an array of bytes.
The method is provided for compatibility with ASP. ASP.NET applications
should read from the stream associated with the InputStream property.

MapImageCoordinates Maps an incoming image-field form parameter to x/y coordinate values.

MapPath Maps the specified virtual path to a physical path on the Web server.

SaveAs Saves the current request to a file disk with or without headers. This
 method is especially useful for debugging.

ValidateInput Performs a quick, nonexhaustive check to find potentially dangerous input
data in the request.

Saving the Request to Disk
The SaveAs method lets you create a file to store the entire content of the HTTP request.
Note that the storage medium can only be a disk file; no stream or writer can be used.
Because ASP.NET by default isn’t granted write permissions, this method causes an access-
denied exception unless you implement ad hoc measures. Granting the ASP.NET account full
control over the file to be created (or over the whole folder) is one of the possible ways to

674 Part IV Infrastructure of the Application

successfully use the SaveAs method. The following listing shows possible content that SaveAs
writes to disk:

GET /MyApp/Samples/Ch14/Misc/TestFilter.aspx HTTP/1.1
Connection: Keep-Alive
Accept: */*
Accept-Encoding: gzip, deflate
Accept-Language: it,en-us;q=0.5
Cookie: .ASPXANONYMOUS=AGzHqyVAyAEkAAAAO ... MWE3YZreWoYt-jkSc_RwU169brWNTIw1
Host: localhost:1066
User-Agent: ...

UA-CPU: x86

If the intercepted request is a POST, you’ll find posted values at the bottom of the string.

Validating Client Input
A golden rule of Web security claims that all user input is evil and should always be filtered
and sanitized before use. The @Page directive has an attribute—ValidateRequest—that
automatically blocks postbacks that contain potentially dangerous data. This feature is not
the silver bullet of Web input security, but it helps detect possible problems. From a general
security perspective, you’re better off replacing the automatic input validation with a strong,
application-specific validation layer.

The automatic input validation feature—ValidateRequest—is enabled by default and
 implemented via a call to the HttpRequest’s ValidationInput method. ValidateInput can be
called by your code if the validation feature is not enabled. Request validation works by
checking all input data against a hard-coded list of potentially dangerous data. The contents
of the collections QueryString, Form, and Cookies are checked during request validation.

Summary
In this chapter, we covered some basic objects that are the foundation of ASP.NET
 programming: Server, Response, Request, and others. An ASP.NET application is represented
by an instance of the HttpApplication class properly configured by the contents of the
global.asax file. And both the HttpApplication class and the global.asax file found their space
in this chapter too.

While discussing the interface of the objects that generate the context of an HTTP request,
we reviewed in detail some specific programming issues, such as server-side page redirection
and the setup of response filters. In the next chapter, we’ll discuss an important topic related
to Web applications and ASP.NET—state management. Fundamentally, Web applications are
stateless, but ASP.NET provides various mechanisms for maintaining application state and
caching pages.

In ASP.NET 4, all intrinsic objects (except Cache) have been derived from a new base class to
give developers better chances to be able to write testable Web pages.

 675

Chapter 17

ASP.NET State Management
In the beginner’s mind there are many possibilities. In the expert’s mind there
are few.

—Shunryu Suzuki

All real-world applications of any shape and form need to maintain their own state to serve
users’ requests. ASP.NET applications are no exception. However, unlike other types of
 applications, they need special system-level tools to achieve the result. The reason for this
peculiarity lies in the stateless nature of the underlying protocol that Web applications still
rely upon. As long as HTTP remains the transportation protocol for the Web, all applica-
tions will run into the same problem—figuring out the most effective way to persist state
information.

Application state is a sort of blank container that each application and programmer can
fill with whatever piece of information makes sense to persist: from user preferences to
global settings, from worker data to hit counters, from lookup tables to shopping carts. This
 extremely variegated mess of data can be organized and accessed according to a number of
different usage patterns. Typically, all the information contributing to the application state
is distributed in various layers, each with its own settings for visibility, programmability, and
lifetime.

ASP.NET provides state management facilities at four levels: application, session, page,
and request. Each level has its own special container object, which is a topic we’ll cover in
this chapter. In this chapter, we’ll explore the HttpApplicationState, HttpSessionState, and
ViewState objects, which provide for application, session, and page state maintenance,
 respectively. In the next chapter, we’ll dive into the Cache object.

Note In this chapter, we won’t discuss cookies in detail, but cookies are definitely useful for
storing small amounts of information on the client. The information is sent with the request to
the server and can be manipulated and re-sent through the response. The cookie is a text-based
structure with simple key/value pairs, and it consumes no resources on the server. In e-commerce
applications, for example, cookies are the preferred way of storing user preferences. In addition,
cookies have a configurable expiration policy. The negatives for cookies are their limited size
(browser-dependent, but seldom greater than 8 KB) and the fact that the user can disable them.

676 Part IV Infrastructure of the Application

The Application’s State
Table 17-1 summarizes the main features of the various state objects.

TABLE 17-1 State Management Objects at a Glance
Object Lifetime Data Visibility Location
Cache Implements an automatic

scavenging mechanism,
and periodically clears less
 frequently used contents

Global to all sessions Does not support
Web farm or Web
garden scenarios

HttpApplicationState Created when the first
 request hits the Web server,
and released when the
 application shuts down

Same as for Cache Same as for Cache

HttpContext Spans the entire lifetime of
the individual request

Global to the objects
involved with the re-
quest

Same as for Cache

HttpSessionState Created when the user makes
the first request, and lasts un-
til the user closes the session

Global to all requests
issued by the user who
started the session

Configurable to
work on Web farms
and gardens

ViewState Represents the calling
 context of each page being
generated

Limited to all requests
queued for the same
page

Configurable to
work on Web farms
and gardens

The HttpApplicationState object makes a dictionary available for storage to all request
 handlers invoked within an application. An instance of the HttpApplicationState class is cre-
ated the first time a client requests any resource from within a particular virtual directory.
Each running application holds its own global state object. The most common way to access
application state is by means of the Application property of the Page object. Application state
is not shared across either a Web farm or Web garden.

Important Application state exists today mostly for compatibility reasons, and I don’t know of
any application where Application is used instead of the more powerful and built-in Cache object
or external distributed cache engines.

Properties of the HttpApplicationState Class
The HttpApplicationState class is sealed and inherits from a class named
NameObjectCollectionBase. In practice, the HttpApplicationState class is a collection of pairs,
each made of a string key and an object value. Such pairs can be accessed either using the
key string or the index. Internally, the base class employs a hashtable with an initial capac-
ity of zero that is automatically increased as required. Table 17-2 lists the properties of the
HttpApplicationState class.

 Chapter 17 ASP.NET State Management 677

TABLE 17-2 HttpApplicationState Properties
Property Description
AllKeys Gets an array of strings containing all the keys of the items currently stored in the

object.

Contents Gets the current instance of the object. But wait! What this property returns is
simply a reference to the application state object, not a clone. It’s provided for ASP
compatibility.

Count Gets the number of objects currently stored in the collection.

Item Indexer property, provides read/write access to an element in the collection. The
element can be specified either by name or index. Accessors of this property are
implemented using Get and Set methods.

StaticObjects Gets a collection including all instances of all objects declared in global.asax using
an <object> tag with the scope attribute set to Application.

Note that static objects and actual state values are stored in separate collections. The exact
type of the static collection is HttpStaticObjectsCollection.

Methods of the HttpApplicationState Class
The set of methods that the HttpApplicationState class features are mostly specialized ver-
sions of the typical methods of a name/value collection. As Table 17-3 shows, the most sig-
nificant extension includes the locking mechanism necessary to serialize access to the state
values.

TABLE 17-3 HttpApplicationState Methods
Method Description
Add Adds a new value to the collection. The value is boxed as an object.

Clear Removes all objects from the collection.

Get Returns the value of an item in the collection. The item can be specified either
by key or index.

GetEnumerator Returns an enumerator object to iterate through the collection.

GetKey Gets the string key of the item stored at the specified position.

Lock Locks writing access to the whole collection. No concurrent caller can write to
the collection object until UnLock is called.

Remove Removes the item whose key matches the specified string.

RemoveAll Calls Clear.

RemoveAt Removes the item at the specified position.

Set Assigns the specified value to the item with the specified key. The method is
thread-safe, and the access to the item is blocked until the writing is +com-
pleted.

UnLock Unlocks writing access to the collection.

678 Part IV Infrastructure of the Application

Note that the GetEnumerator method is inherited from the base collection class and, as such,
is oblivious to the locking mechanism of the class. If you enumerate the collection using this
method, each returned value is obtained through a simple call to one of the get methods
on the base NameObjectCollectionBase class. Unfortunately, that method is not aware of the
locking mechanism needed on the derived HttpApplicationState class because of the concur-
rent access to the application state. As a result, your enumeration is thread-safe. A better way
to enumerate the content of the collection is by using a while statement and the Get method
to access an item. Alternatively, you can lock the collection before you enumerate.

State Synchronization
Note that all operations on HttpApplicationState require some sort of synchronization to
ensure that multiple threads running within an application safely access values without incur-
ring deadlocks and access violations. The writing methods, such as Set and Remove, as well as
the set accessor of the Item property implicitly apply a writing lock before proceeding. The
Lock method ensures that only the current thread can modify the application state. The Lock
method is provided to apply the same writing lock around portions of code that need to be
protected from other threads’ access.

You don’t need to wrap a single call to Set, Clear, or Remove with a lock/unlock pair of
 statements—those methods, in fact, are already thread-safe. Using Lock in these cases
will only have the effect of producing additional overhead, increasing the internal level of
recursion.

// This operation is thread-safe
Application["MyValue"] = 1;

Use Lock instead if you want to shield a group of instructions from concurrent writings:

// These operations execute atomically
Application.Lock();
int val = (int) Application["MyValue"];
if (val < 10)
 Application["MyValue"] = val + 1;
Application.UnLock();

Reading methods such as Get, the get accessor of Item, and even Count have an internal
 synchronization mechanism that, when used along with Lock, will protect them against
 concurrent and cross-thread readings and writings:

// The reading is protected from concurrent read/writes
Application.Lock();
int val = (int) Application["MyValue"];
Application.UnLock();

 Chapter 17 ASP.NET State Management 679

You should always use Lock and UnLock together. However, if you omit the call to UnLock, the
likelihood of incurring a deadlock is not high because the Microsoft .NET Framework auto-
matically removes the lock when the request completes or times out, or when an unhandled
error occurs. For this reason, if you handle the exception, consider using a finally block to
clear the lock or expect to face some delay while ASP.NET clears the lock for you when the
request ends.

Tradeoffs of Application State
Instead of writing global data to the HttpApplicationState object, you can use pub-
lic members within the global.asax file. Compared to entries in the HttpApplicationState
 collection, a global member is preferable because it is strongly typed and does not require a
hashtable access to locate the value. On the other hand, a global variable is not synchronized
per se and must be manually protected. You have to use language constructs to protect
 access to these members—for example, the C# lock operator or, in Microsoft Visual Basic
.NET, the SyncLock operator.

Whatever form you choose for storing the global state of an application, some general
 considerations apply regarding the opportunity to store data globally. For one thing, global
data storage results in permanent memory occupation. Unless explicitly removed by the
code, any data stored in the application global state is removed only when the applica-
tion shuts down. On one end, putting a few megabytes of data in the application’s memory
speeds up access; on the other hand, doing this occupies valuable memory for the entire
 duration of the application.

For this reason, it is extremely important that you consider using the Cache object (which is
discussed further in the next chapter) whenever you have a need for globally shared data.
Unlike data stored with Application and global members, data stored in the ASP.NET Cache
is subject to an automatic scavenging mechanism that ensures the data is removed when a
too-high percentage of virtual memory is being consumed. In addition, the Cache object has
a lot of other beneficial features that we’ll explore in the next chapter. The bottom line is that
the Cache object was introduced specifically to mitigate the problem of memory occupation
and to replace the Application object.

To put it down even clearer, today writing to the Application object is bad practice and is
 supported only to help with migration from classic ASP, where it was the common and easiest
way of storing global data. In ASP.NET, Cache is the recommended solution for a single
worker process and distributed caches (for example, Microsoft AppFabric Caching Services) if
you’re in a Web farm context.

680 Part IV Infrastructure of the Application

The Session’s State
The HttpSessionState class provides a dictionary-based model of storing and retrieving
 session-state values. Unlike HttpApplicationState, this class doesn’t expose its contents to
all users operating on the virtual directory at a given time. Only the requests that originate
in the context of the same session—that is, those generated across multiple page requests
made by the same user—can access the session state. The session state can be stored and
published in a variety of ways, including in a Web farm or Web garden scenario. By default,
though, the session state is held within the ASP.NET worker process.

The ASP.NET implementation of session state provides some extremely handy facilities—
such as support for cookieless browsers, Web farms, and Web gardens—and the capabil-
ity of being hosted by external processes, including Microsoft SQL Server. In this way, ASP.
NET session management can provide an unprecedented level of robustness and reliability.
Developers can also create custom data stores for session state. For example, if you need the
robustness that a database-oriented solution can guarantee but you work with Oracle data-
bases, you need not install SQL Server as well. By writing a piece of additional code, you can
support an Oracle session data store while using the same Session semantics and classes.

The extensibility model for session state offers two options: customizing bits and pieces
of the existing ASP.NET session state mechanism (for example, creating an Oracle session
 provider or a module controlling the generation of the ID), and replacing the standard
 session state HTTP module with a new one. The former option is easier to implement but
provides a limited set of features you can customize. The latter option is more complicated to
code but provides the greatest flexibility.

The Session-State HTTP Module
Regardless of the internal implementation, the programmer has only one application
 programming interface (API) for session state management—the old acquaintance known
as the Session object. In classic ASP, it was a COM object that was instantiated in the asp.dll
ISAPI extension and injected into the memory space of the ActiveX Scripting engine called
to parse and process the .asp script. It is a collection object in ASP.NET, living behind the
Session property of the Page class. The exact type is HttpSessionState; it’s a class that’s not
further inheritable and that implements ICollection and IEnumerable. An instance of this class
is created during the startup of each request that requires session support. The collection
is filled with name/value pairs read from the specified medium and attached to the context
of the request—the HttpContext class. The Page’s Session property just mirrors the Session
property of the HttpContext class.

 Chapter 17 ASP.NET State Management 681

If developers can simply work with one object—the Session object—regardless of other
details, most of the credit goes to an HTTP module that governs the process of retrieving
and storing session state with some help from special provider objects. The ASP.NET mod-
ule in charge of setting up the session state for each user connecting to an application is an
HTTP module named SessionStateModule. Structured after the IHttpModule interface, the
SessionStateModule object provides session-state services for ASP.NET applications.

Although, as an HTTP module, it is required to supply a relatively simple programming
interface—the IHttpModule interface contracts only for Init and Dispose methods—
SessionStateModule does perform a number of quite sophisticated tasks, most of which
are fundamental to the health and functionality of the Web application. The session-state
module is invoked during the setup of the HttpApplication object that will process a given
request, and it’s responsible for either generating or obtaining a unique session ID string and
for storing and retrieving state data from a state provider—for example, SQL Server or the
Web server’s memory.

State Client Managers
When invoked, the session-state HTTP module reads the settings in the <sessionState>
 section of the web.config file and determines what the expected state client manager is
for the application. A state client manager is a component that takes care of storing and
 retrieving the data of all currently active sessions. The SessionStateModule component
 queries the state client manager to get the name/value pairs of a given session.

In ASP.NET, there are four possibilities for working with the session state. The session state
can be stored locally in the ASP.NET worker process; the session state can be maintained in
an external, even remote, process named aspnet_state.exe; and the session state can be man-
aged by SQL Server and stored in an ad hoc database table. The fourth option entails you
storing the sessions in a custom component. Table 17-4 briefly describes the various options.

TABLE 17-4 State Client Providers
Mode Description
Custom The values for all the sessions are stored in a custom data store.

InProc The values for all the sessions are maintained as live objects in the memory of
the ASP.NET worker process. This is the default option.

Off Session state is disabled, and no state client provider is active.

SQLServer The values for all the sessions are serialized and stored in a SQL Server table.
The nstance of SQL Server can run either locally or remotely.

StateServer The values for all the sessions are serialized and stored in the memory of a
 separate system process (aspnet_state.exe). The process can also run on another
machine. Session values are deserialized into the session dictionary at the
 beginning of the request. If the request completes successfully, state values are
serialized into the process memory and made available to other pages.

682 Part IV Infrastructure of the Application

The SessionStateMode enum type lists the available options for the state client provider. The
InProc option is by far the fastest possible in terms of access. However, bear in mind that the
more data you store in a session, the more memory is consumed on the Web server, which
increases the risk of performance hits. If you plan to use any of the out-of-process solutions,
the possible impact of serialization and deserialization should be carefully considered. We’ll
discuss this aspect in detail later in the “Persist Session Data to Remote Servers” section.

The session-state module determines the state provider to use based on what it reads out of
the <sessionState> section of the web.config file. Next, it instantiates and initializes the state
provider for the application. Each provider continues its own initialization, which is quite dif-
ferent depending on the type. For example, the SQL Server state manager opens a connec-
tion to the given database, whereas the out-of-process manager checks the specified TCP
port. The InProc state manager, on the other hand, stores a reference to the callback function
that will be used to fire the Session_End event. (I’ll discuss this further in the section “Lifetime
of a Session.”)

Creating the HttpSessionState Object
The state module is responsible for retrieving the session state and attaching it to the
 context of each request that runs within the session. The session state is available only after
the HttpApplication.AcquireRequestState event fires, and it gets irreversibly lost after the
HttpApplication.ReleaseRequestState event. Subsequently, this means that no state is still
available when Session_End fires.

The session module creates the HttpSessionState object for a request while processing the
HttpApplication.AcquireRequestState event. At this time, the HttpSessionState object—a sort
of collection—is given its session ID and the session dictionary. The session dictionary is the
actual collection of state values that pages will familiarly access through the Session property.

If a new session is being started, such a data dictionary is simply a newly created empty
 object. If the module is serving a request for an existing session, the data dictionary will be
filled by deserializing the contents supplied by the currently active session state provider.
At the end of the request, the current content of the dictionary, as modified by the page
 request, is flushed back to the state provider through a serialization step. The whole process
is depicted in Figure 17-1.

 Chapter 17 ASP.NET State Management 683

BeginRequest

HttpContext

Session

Session state loaded
from support

Storage

Session ID SessionStateItem
Session ID SessionStateItem
Session ID SessionStateItem

Name Value
Name Value
Name Value

HttpContext

Session

Session state loaded
from support

Storage

Session ID SessionStateItem
Session ID SessionStateItem
Session ID SessionStateItem

Name Value
Name Value
Name Value

Storage medium locked for the duration of the request

Page
code

IRequiresSessionState
or

IReadOnlySessionState

Storage medium unlocked to serve new requests

..

AcquireRequestState

Postback code

ReleaseRequestState

..

EndRequest

..

FIGURE 17-1 The session state management timeline.

Synchronizing Access to the Session State
So when your Web page makes a call into the Session property, it’s actually accessing a local,
in-memory copy of the data. What if other pages (in the same session) attempt to concur-
rently access the session state? In that case, the current request might end up working on
inconsistent data or data that isn’t up to date.

To avoid that, the session state module implements a reader/writer locking mechanism
and queues the access to state values. A page that has session-state write access will hold a
writer lock on the session until the request finishes. A page gains write access to the session
state by setting the EnableSessionState attribute on the @Page directive to true. A page that
has session-state read access—for example, when the EnableSessionState attribute is set to
ReadOnly—will hold a reader lock on the session until the request finishes.

684 Part IV Infrastructure of the Application

If a page request sets a reader lock, other concurrently running requests cannot update the
session state but are allowed to read. If a page request sets a writer lock on the session state,
all other pages are blocked regardless of whether they have to read or write. For example,
if two frames attempt to write to Session, one of them has to wait until the other finishes.
Figure 17-2 shows the big picture.

Frame1

Frame2

Browser−
Page2.aspx

Browser−
Page1.aspx

SessionStateModule

State Provide

Store

Lock Lock

Client

ASP.NET Worker Process

Dictionary

Session
object

Session
object

Request

FIGURE 17-2 Page access to the session state is synchronized, and a serialization/deserialization layer ensures
that each request is served an up-to-date dictionary of values, stored at the application’s convenience.

Note Concurrent access to the session state is not very common in reality. It might happen if
you have a multiframe page or if your users work with two copies of the same page or multiple
pages of the same application at the same time. It also happens when you use session-enabled
HTTP handlers to serve embedded resources such as images or cascading style sheet (CSS) files.
By default, you are protected against concurrent accesses. However, declaring the exact use of
the session state that a page is going to make (read/write, readonly, or no use) is an excellent
form of optimization. You do this through the EnableSessionState attribute on the @Page
 directive.

 Chapter 17 ASP.NET State Management 685

Properties of the HttpSessionState Class
The HttpSessionState class is defined in the System.Web.SessionState namespace. It is a
generic collection class and implements the ICollection interface. The properties of the
HttpSessionState class are listed in Table 17-5.

TABLE 17-5 HttpSessionState Properties
Property Description
CodePage Gets or sets the code page identifier for the current session.

Contents Returns a reference to this object. It’s provided for ASP compatibility.

CookieMode Details the application’s configuration for cookieless sessions. Declared to be of
type HttpCookieMode. (I’ll discuss this in more detail later.)

Count Gets the number of items currently stored in the session state.

IsCookieless Indicates whether the session ID is embedded in the URL or stored in an HTTP
cookie. It’s more specific than CookieMode.

IsNewSession Indicates whether the session was created with the current request.

IsReadOnly Indicates whether the session is read-only. The session is read-only if the
EnableSessionState attribute on the @Page directive is set to the keyword
ReadOnly.

IsSynchronized Returns false. (See references to this later in the chapter.)

Item Indexer property, provides read/write access to a session-state value. The value
can be specified either by name or index.

Keys Gets a collection of the keys of all values stored in the session.

LCID Gets or sets the locale identifier (LCID) of the current session.

Mode Gets a value denoting the state client manager being used. Acceptable values
are listed in Table 17-4.

SessionID Gets a string with the ID used to identify the session.

StaticObjects Gets a collection including all instances of all objects declared in global.asax
 using an <object> tag with the scope attribute set to Session. Note that you
 cannot add objects to this collection from within an ASP.NET application—that
is, programmatically.

SyncRoot Returns a reference to this object. (See references to this property later in the
chapter.)

Timeout Gets or sets the minutes that the session module should wait between two
 successive requests before terminating the session.

The HttpSessionState class is a normal collection class because it implements the ICollection
interface, but synchronization-wise it is a very special collection class. As mentioned, the
synchronization mechanism is implemented in the SessionStateModule component, which
guarantees that at most one thread will ever access the session state. However, because
HttpSessionState implements the ICollection interface, it must provide an implementation
for both IsSynchronized and SyncRoot. Note that IsSynchronized and SyncRoot are collection-
specific properties for synchronization and have nothing to do with the session synchroniza-

686 Part IV Infrastructure of the Application

tion discussed previously. They refer to the ability of the collection class (HttpSessionState in
this case) to work in a synchronized manner. Technically speaking, the HttpSessionState is not
synchronized, but access to session state is.

Methods of the HttpSessionState Class
Table 17-6 shows all the methods available in the HttpSessionState class. They mostly relate
to typical operations on a collection. In this sense, the only exceptional method is Abandon,
which causes the session to be canceled.

TABLE 17-6 HttpSessionState Methods
Method Description
Abandon Sets an internal flag that instructs the session module to cancel the current

session.

Add Adds a new item to the session state. The value is boxed in an object type.

Clear Clears all values from the session state.

CopyTo Copies the collection of session-state values to a one-dimensional array,
 starting at the specified index in the array.

GetEnumerator Gets an enumerator to loop through all the values in the session.

Remove Deletes an item from the session-state collection. The item is identified by
the key.

RemoveAll Calls Clear.

RemoveAt Deletes an item from the session-state collection. The item is identified by
position.

When the procedure to terminate the current request is running, the session-state module
checks an internal flag to verify whether the user ordered that the session be abandoned.
If the flag is set—that is, the Abandon method was called—any response cookie is removed
and the procedure to terminate the session is begun. Notice, though, that this does not mean
that a Session_End event will fire.

First, the Session_End event fires only if the session mode is InProc; second, the event does
not fire if the session dictionary is empty and no real session state exists for the application.
In other words, at least one request must have been completed for the Session_End to fire
when the session is closed either naturally or after a call to Abandon.

Working with a Session’s State
Now that you have grabbed hold of the session state basics, you can sharpen your skills
by looking into more technically relevant aspects of session state management. Handling
session state is a task that can be outlined in three steps: assigning a session ID, obtaining
 session data from a provider, and stuffing it into the context of the page. As mentioned, the

 Chapter 17 ASP.NET State Management 687

session state module governs the execution of all these tasks. In doing so, it takes advantage
of a couple of additional components: the session ID generator and session state provider. In
ASP.NET, both can be replaced with custom components, as we’ll discuss later. For now, let’s
tackle some of the practical issues you face when working with session state.

Identifying a Session
Each active ASP.NET session is identified using a 120-bit string made only of URL-allowed
characters. Session IDs are guaranteed to be unique and randomly generated to avoid data
conflicts and prevent malicious attacks. Obtaining a valid session ID algorithmically from an
existing ID is virtually impossible. The generator of the session ID is a customizable system
component that developers can optionally replace.

Note An old proverb reminds us that nothing should be done only because it is doable. This
motto is particularly apt here as we talk about parts of the session state management that
are customizable in ASP.NET. These subsystems, such as the session ID generator, should be
 customized only when you have a good reason to and only when you’re certain it won’t make
things worse or lower the level of security. I’ll return to this point in a moment with more details.

Generating the Session ID
A session ID is 15 bytes long by design (15x8 = 120 bits). The session ID is generated using
the Random Number Generator (RNG) cryptographic provider. The service provider returns a
sequence of 15 randomly generated numbers. The array of numbers is then mapped to valid
URL characters and returned as a string.

If the session contains nothing, a new session ID is generated for each request and the ses-
sion state is not persisted to the state provider. However, if a Session_Start handler is used,
the session state is always saved, even if empty. For this reason, and especially if you’re not
using the in-process session provider, define Session_Start handlers with extreme care and
only if strictly necessary.

In contrast, the session ID remains the same after a nonempty session dictionary times out or
is abandoned. By design, even though the session state expires, the session ID lasts until the
browser session is ended. This means that the same session ID is used to represent multiple
sessions over time as long as the browser instance remains the same.

Session Cookies
The SessionID string is communicated to the browser and then returned to the server
 application in either of two ways: using a cookie or a modified URL. By default, the
 session-state module creates an HTTP cookie on the client, but a modified URL can be

688 Part IV Infrastructure of the Application

used—especially for cookieless browsers—with the SessionID string embedded. Which
 approach is taken depends on the configuration settings stored in the application’s
web.config file. By default, session state uses cookies.

A cookie is really nothing more than a text file placed on the client’s hard disk by a Web
page. In ASP.NET, a cookie is represented by an instance of the HttpCookie class. Typically, a
cookie has a name, a collection of values, and an expiration time. In addition, you can con-
figure the cookie to operate on a particular virtual path and over secure connections (for
example, HTTPS).

Important ASP.NET takes advantage of the HTTP-only feature for session cookies on the
browsers that support it—nowadays, pretty much every browser supports this. The HTTP-only
feature prevents cookies from being available to client-side script, thus raising a barrier against
potential cross-site scripting attacks aimed at stealing session IDs.

When cookies are enabled, the session-state module actually creates a cookie with a
 particular name and stores the session ID in it. The cookie is created as the following pseudo-
code shows:

HttpCookie sessionCookie;
sessionCookie = new HttpCookie("ASP.NET_SessionId", sessionID);
sessionCookie.Path = "/";

ASP.NET_SessionId is the name of the cookie, and the SessionID string is its value. The cookie
is also associated with the root of the current domain. The Path property describes the rela-
tive URL that the cookie applies to. A session cookie is given a very short expiration term and
is renewed at the end of each successful request. The cookie’s Expires property indicates the
time of day on the client at which the cookie expires. If not explicitly set, as is the case with
session cookies, the Expires property defaults to DateTime.MinValue—that is, the smallest
possible unit of time in the .NET Framework.

Note A server-side module that needs to write a cookie adds an HttpCookie object to the
Response.Cookies collection. All cookies found on the client and associated with the requested
domain are uploaded and made available for reading through the Request.Cookies collection.

Cookieless Sessions
For the session state to work, the client must be able to pass the session ID to the server
application. How this happens depends on the configuration of the application. ASP.NET
applications define their session-specific settings through the <sessionState> section of the
configuration file. To decide about the cookie support, you set the cookieless attribute to one
of the values in Table 17-7. The listed values belong to the HttpCookieMode enumerated type.

 Chapter 17 ASP.NET State Management 689

TABLE 17-7 HttpCookieMode Enumerated Type
Mode Description
AutoDetect Use cookies only if the requesting browser supports cookies.

UseCookies Use cookies to persist the session ID regardless of whether or not the browser
supports cookies. This is the default option.

UseDeviceProfile Base the decision on the browser’s capabilities as listed in the device profile
 section of the configuration file.

UseUri Store the session ID in the URL regardless of whether the browser supports
cookies or not. Use this option if you want to go cookieless no matter what.

When AutoDetect is used, ASP.NET queries the browser to determine whether it supports
cookies. If the browser supports cookies, the session ID is stored in a cookie; otherwise, the
session ID is stored in the URL. When UseDeviceProfile is set, on the other hand, the effec-
tive capabilities of the browser are not checked. For the session HTTP module to make the
decision about cookies or the URL, the declared capabilities of the browser are used, as they
result from the SupportsRedirectWithCookie property of the HttpBrowserCapabilities object.
Note that even though a browser can support cookies, a user might have disabled cookies. In
this case, session state won’t work properly.

With cookie support disabled, suppose that you request a page at the following URL:

http://www.contoso.com/test/sessions.aspx

What is displayed in the browser’s address bar is slightly different and now includes the
 session ID, as shown here:

http://www.contoso.com/test/(S(5ylg0455mrvws1uz5mmaau45))/sessions.aspx

When instantiated, the session-state module checks the value of the cookieless attribute. If
the value is true, the request is redirected (HTTP 302 status code) to a modified virtual URL
that includes the session ID just before the page name. When processed again, the request
embeds the session ID. A special ISAPI filter—the aspnet_filter.exe component—preprocesses
the request, parses the URL, and rewrites the correct URL if it incorporates a session ID. The
detected session ID is also stored in an extra HTTP header, named AspFilterSessionId, and
 retrieved later.

Issues with Cookieless Sessions
Designed to make stateful applications also possible on a browser that does not support
cookies or on one that does not have cookies enabled, cookieless sessions are not free of
issues. First, they cause a redirect when the session starts and whenever the user follows an
absolute URL from within an application’s page.

When cookies are used, you can clear the address bar, go to another application, and then
return to the previous one and retrieve the same session values. If you do this when session
cookies are disabled, the session data is lost. This feature is not problematic for postbacks,

http://www.contoso.com/test/sessions.aspx
http://www.contoso.com/test/

690 Part IV Infrastructure of the Application

which are automatically implemented using relative URLs, but it poses a serious problem if
you use links to absolute URLs. In this case, a new session will always be created. For example,
the following code breaks the session:

Click

Is there a way to automatically mangle absolute URLs in links and hyperlinks so that
they incorporate session information? You can use the following trick, which uses the
ApplyAppPathModifier method of the HttpResponse class:

<a href='<% =Response.ApplyAppPathModifier("test/page.aspx")%>' >Click

The ApplyAppPathModifier method takes a string representing a relative URL and returns
an absolute URL, which embeds session information. This trick is especially useful when you
need to redirect from an HTTP page to an HTTPS page, where the full, absolute address is
mandatory. Note that ApplyAppPathModifier returns the original URL if session cookies are
enabled and if the path is an absolute path.

Caution You can’t use <%...%> code blocks in server-side expressions—that is, expressions
flagged with the runat=server attribute. It works in the preceding code because the <a> tag is
emitted verbatim, being devoid of the runat attribute. Code blocks mentioned here have noth-
ing to do with data binding expressions <%# … %>, which are perfect legal and even desirable in
server-side code. The reason why you can’t use <%...%> code blocks in server-side expressions is
that the presence of the runat attribute forces the creation of a server object that is not designed
for handling code blocks.

Cookieless Sessions and Security
Another issue regarding the use of cookieless sessions is related to security. Session hijacking
is one of the most popular types of attacks and consists of accessing an external system
through the session ID generated for another, legitimate user.

Try this: set your application to work without cookies and visit a page. Grab the URL with the
session ID as it appears in the browser’s address bar, and send it immediately in an e-mail to
a friend. Have your friend paste the URL in his or her own machine and click Go. Your friend
will gain access to your session state as long as the session is active.

The session ID is certainly not well-protected information (and probably couldn’t work
 otherwise). For the safety of a system, an unpredictable generator of IDs is key because
it makes it difficult to guess a valid session ID. With cookieless sessions, the session ID is
 exposed in the address bar and visible to all. For this reason, if you are storing private or
 sensitive information in the session state, it is recommended that you use Secure Sockets
Layer (SSL) or Transport Layer Security (TLS) to encrypt any communication between the
browser and server that includes the session ID.

 Chapter 17 ASP.NET State Management 691

In addition, you should always provide users the ability to log out and call the Abandon
method when they think security has been breached in this way. This contrivance reduces
the amount of time available for anybody attempting to use your session ID to exploit data
stored in the session state. And, speaking of security, it is important that you configure the
system to avoid the reuse of expired session IDs when cookieless sessions are used. This be-
havior is configurable in ASP.NET through the <sessionState> section, as you can read in the
following section.

Cookieless Sessions and SEO
Cookieless sessions are also problematic from a Search-Engine Optimization (SEO)
 perspective. Pages based on cookieless sessions are poorly ranked by Web spiders such as
Googlebot. The reason is that every time the spider attempts to crawl the page, ASP.NET
generates a different session ID, which results in a different URL for the same content. So a
crawler typically concludes that you have several pages with the same content and gives you
a low ranking.

An effective workaround for this issue is using UseDeviceProfile (described in Table 17-7)
instead of the default value. In addition, you create in web.config a browser profile for each
of the major crawlers, such as Googlebot. In the profile, you just declare that any agent that
contains the word “Googlebot” in the user agent string should be treated like a browser that
supports cookies. In this way, ASP.NET will not append the session ID to the URL. It’s not
 really a clean solution, but it does work. You can add a new profile for each crawler that is
not indexing your pages well enough.

Configuring the Session State
The <sessionState> section groups the settings you can apply to configure the behavior of
ASP.NET session state. Here’s what it looks like:

<sessionState
 mode="[Off|InProc|StateServer|SQLServer|Custom]"
 timeout="number of minutes"
 cookieName="session identifier cookie name"
 cookieless=
 "[true|false|AutoDetect|UseCookies|UseUri|UseDeviceProfile]"
 regenerateExpiredSessionId="[True|False]"
 sessionIDManagerType="session manager type"
 sqlConnectionString="sql connection string"
 sqlCommandTimeout="number of seconds"
 allowCustomSqlDatabase="[True|False]"
 useHostingIdentity="[True|False]"
 stateConnectionString="tcpip=server:port"
 stateNetworkTimeout="number of seconds"
 customProvider="custom provider name"
 compressionEnabled="[True|False]"
 sqlConnectionRetryInterval="number of seconds">
 <providers>...</providers>
</sessionState>

692 Part IV Infrastructure of the Application

Table 17-8 details the goals and characteristics of the various attributes.

TABLE 17-8 <sessionState> Attributes
Mode Description
allowCustomSqlDatabase If true, enables specifying a custom database table to store session

data instead of using the standard ASPState.

compressionEnabled Indicates whether the session state content is compressed during
 serialization and deserialization to and from an out-of-process pro-
vider. Compression is disabled by default and, if enabled, uses the
built-in Gzip stream. This feature is available only in ASP.NET 4.

cookieless Specifies how to communicate the session ID to clients.

cookieName Name of the cookie, if cookies are used for session IDs.

customProvider The name of the custom session state store provider to use for
 storing and retrieving session state data.

mode Specifies where to store session state.

partitionResolverType Indicates the type and assembly of the partition resolver component
to be loaded to provide connection information when session state is
working in SQLServer or StateServer mode. If a partition resolver can
be correctly loaded, sqlConnectionString and stateConnectionString
attributes are ignored.

regenerateExpiredSessionId When a request is made with a session ID that has expired, if this
 attribute is true, a new session ID is generated; otherwise, the expired
one is revived. The default is false.

sessionIDManagerType Null by default. If set, it indicates the component to use as the
 generator of session IDs.

sqlCommandTimeout Specifies the number of seconds a SQL command can be idle before
it is canceled. The default is 30.

sqlConnectionString Specifies the connection string to SQL Server.

stateConnectionString Specifies the server name or address and port where session state is
stored remotely.

stateNetworkTimeout Specifies the number of seconds the TCP/IP network connection
between the Web server and the state server can be idle before the
request is canceled. The default is 10.

timeout Specifies the number of minutes a session can be idle before it is
abandoned. The default is 20.

useHostingIdentity True by default. It indicates that the ASP.NET process identity is
 impersonated when accessing a custom state provider or the
SQLServer provider configured for integrated security.

In addition, the child <providers> section lists custom session-state store providers. ASP.NET
session state is designed to enable you to easily store user session data in different sources,
such as a Web server’s memory or SQL Server. A store provider is a component that manages
the storage of session state information and stores the information in an alternative media
(for example, Oracle) and layout. We’ll return to this topic later in the chapter.

 Chapter 17 ASP.NET State Management 693

Lifetime of a Session
The life of a session state begins only when the first item is added to the in-memory
 dictionary. The following code demonstrates how to modify an item in the session dictionary.
“MyData” is the key that uniquely identifies the value. If a key named “MyData” already exists
in the dictionary, the existing value is overwritten.

Session["MyData"] = "I love ASP.NET";

The Session dictionary generically contains object types; to read data back, you need to cast
the returned values to a more specific type:

var tmp = (String) Session["MyData"];

When a page saves data to Session, the value is loaded into an in-memory dictionary—an
instance of an internal class named SessionDictionary. (See Figure 17-1 to review session state
loading and saving.) Other concurrently running pages cannot access the session until the
ongoing request completes.

The Session_Start Event
The session startup event is unrelated to the session state. The Session_Start event fires when
the session-state module is servicing the first request for a given user that requires a new
session ID. The ASP.NET runtime can serve multiple requests within the context of a single
session, but only for the first of them does Session_Start fire.

A new session ID is created and a new Session_Start event fires whenever a page is re-
quested that doesn’t write data to the dictionary. The architecture of the session state is
quite sophisticated because it has to support a variety of state providers. The overall schema
has the content of the session dictionary being serialized to the state provider when the re-
quest completes. However, to optimize performance, this procedure really executes only if
the content of the dictionary is not empty. As mentioned earlier, though, if the application
 defines a Session_Start event handler, the serialization takes place anyway.

The Session_End Event
The Session_End event signals the end of the session and is used to perform any clean-up
code needed to terminate the session. Note, though, that the event is supported only in
InProc mode—that is, only when the session data is stored in the ASP.NET worker process.

For Session_End to fire, the session state has to exist first. That means you have to store some
data in the session state and you must have completed at least one request. When the first
value is added to the session dictionary, an item is inserted into the ASP.NET cache—the
aforementioned Cache object that we’ll cover in detail in the next chapter. The behavior is

694 Part IV Infrastructure of the Application

specific to the in-process state provider; neither the out-of-process state server nor the SQL
Server state server work with the Cache object.

However, much more interesting is that the item added to the cache—only one item per
 active session—is given a special expiration policy. You’ll also learn more about the ASP.NET
cache and related expiration policies in the next chapter. For now, it suffices to say that the
session-state item added to the cache is given a sliding expiration, with the time interval set
to the session timeout. As long as there are requests processed within the session, the sliding
period is automatically renewed. The session-state module resets the timeout while process-
ing the EndRequest event. It obtains the desired effect by simply performing a read on the
cache! Given the internal structure of the ASP.NET Cache object, this evaluates to renewing
the sliding period. As a result, when the cache item expires, the session has timed out.

An expired item is automatically removed from the cache. As part of the expiration policy
for this item, the state-session module also indicates a remove callback function. The cache
 automatically invokes the remove function which, in turn, fires the Session_End event.

Note The items in Cache that represent the state of a session are not accessible from outside
the system.web assembly and can’t even be enumerated, because they are placed in a system-
reserved area of the cache. In other words, you can’t programmatically access the data resident
in another session or even remove it.

Why Does My Session State Sometimes Get Lost?
Values parked in a Session object are removed from memory either programmatically by the
code or by the system when the session times out or it is abandoned. In some cases, though,
even when nothing of the kind seemingly happens, the session state gets lost. Is there a
 reason for this apparently weird behavior?

When the working mode is InProc, the session state is mapped in the memory space of
the AppDomain in which the page request is being served. In light of this, the session state
is subject to process recycling and AppDomain restarts. The ASP.NET worker process is
 periodically restarted to maintain an average good performance; when this happens, the
session state is lost. Process recycling depends on the percentage of memory consumption
and maybe the number of requests served. Although it’s cyclic, no general estimate can
be made regarding the interval of the cycle. Be aware of this when designing your session-
based, in-process application. As a general rule, bear in mind that the session state might
not be there when you try to access it. Use exception handling or recovery techniques as
 appropriate for your application.

Consider that some antivirus software might be marking the web.config or global.asax file as
modified, thus causing a new application to be started and subsequently causing the loss of

 Chapter 17 ASP.NET State Management 695

the session state. This holds true also if you or your code modify the timestamp of those files
or alter the contents of one of the special folders, such as Bin or App_Code.

Note What happens to the session state when a running page hits an error? Will the current
dictionary be saved, or is it just lost? The state of the session is not saved if, at the end of the re-
quest, the page results in an error—that is, the GetLastError method of the Server object returns
an exception. However, if in your exception handler you reset the error state by calling Server.
ClearError, the values of the session are saved regularly as if no error ever occurred.

Persist Session Data to Remote Servers
The session state loss problem that I mentioned earlier for InProc mode can be neatly solved
by employing either of the two predefined out-of-process state providers: StateServer or
SQLServer. In this case, though, the session state is held outside the ASP.NET worker process
and an extra layer of code is needed to serialize and deserialize it to and from the actual
storage medium. This operation takes place whenever a request is processed.

The need to copy session data from an external repository into the local session dictionary
might tax the state management process to the point of causing a 15 percent to 25 percent
decrease in performance. Note, though, that this is only a rough estimate, and it’s closer to
the minimum impact rather than to the maximum impact. The estimate, in fact, does not fully
consider the complexity of the types actually saved into the session state.

Note When you get to choose an out-of-process state provider (for example, StateServer and
SQLServer), be aware that you need to set up the runtime environment before putting the appli-
cation in production. This means either starting a Windows service for StateServer or configuring
a database for SQLServer. No preliminary work is needed if you stay with the default, in-process
option.

State Serialization and Deserialization
When you use the InProc mode, objects are stored in the session state as live instances of
classes. No real serialization and deserialization ever takes place, meaning that you can
 actually store in Session whatever objects (including COM objects) you have created and
 access them with no significant overhead. The situation is less favorable if you opt for an
 out-of-process state provider.

In an out-of-process architecture, session values are copied from the native storage medium
into the memory of the AppDomain that processes the request. A serialization/deserial-
ization layer is needed to accomplish the task and represents one of the major costs for
 out-of-process state providers. How does this affect your code? First, you should make sure

696 Part IV Infrastructure of the Application

that only serializable objects are ever stored in the session dictionary; otherwise, as you can
easily imagine, the session state can’t be saved and you’ll sustain an exception, moreover.

To perform the serialization and deserialization of types, ASP.NET uses two methods, each
providing different results in terms of performance. For basic types, ASP.NET resorts to an
optimized internal serializer; for other types, including objects and user-defined classes,
ASP.NET makes use of the .NET binary formatter, which is slower. Basic types are string,
DateTime, Guid, IntPtr, TimeSpan, Boolean, byte, char, and all numeric types.

The optimized serializer—an internal class named AltSerialization—employs an instance of
the BinaryWriter object to write out one byte to denote the type and then the value. While
reading, the AltSerialization class first extracts one byte, detects the type of the data to read,
and then resorts to a type-specific method of the BinaryReader class to take data. The type is
associated with an index according to an internal table, as shown in Figure 17-3.

Session Timeout

Cookieless

Dictionary empty?

StaticObjects empty?

Dictionary

StaticObjects

Int32

Bool

Bool

Bool

Array of bytes

Array of bytes

FIGURE 17-3 The serialization schema for basic types that the internal AltSerialization class uses.

Note While Booleans and numeric types have a well-known size, the length of a string
can vary quite a bit. How can the reader determine the correct size of a string? The
BinaryReader.ReadString method exploits the fact that on the underlying stream the string
is always prefixed with the length, encoded as an integer seven bits at a time. Values of the
DateTime type, on the other hand, are saved by writing only the total number of ticks that form
the date and are read as an Int64 type.

As mentioned, more complex objects are serialized using the relatively slower
BinaryFormatter class as long as the involved types are marked as serializable. Both simple
and complex types use the same stream, but all nonbasic types are identified with the same
type ID. The performance-hit range of 15 percent to 25 percent is a rough estimate based
on the assumption that basic types are used. The more you use complex types, the more
the overhead grows, and reliable numbers can be calculated only by testing a particular
 application scenario.

 Chapter 17 ASP.NET State Management 697

In light of this, if you plan to use out-of-process sessions, make sure you store data
 effectively. For example, if you need to persist an instance of a class with three string
 properties, performancewise you are probably better off using three different slots filled with
a basic type rather than one session slot for which the binary formatter is needed. Better
yet, you can use a type converter class to transform the object to and from a string format.
However, understand that this is merely a guideline to be applied case by case and this
 advice should be taken with a grain of salt.

Storing Session Data
When working in StateServer mode, the entire content of the HttpSessionState object is
 serialized to an external application—a Windows service named aspnet_state.exe. The ser-
vice is called to serialize the session state when the request completes. The service internally
stores each session state as an array of bytes. When a new request begins processing, the
array corresponding to the given session ID is copied into a memory stream and then dese-
rialized into an internal session state item object. This object really represents the contents
of the whole session. The HttpSessionState object that pages actually work with is only its
 application interface.

As mentioned, nonbasic types are serialized and deserialized using the system’s binary
 formatter class, which can handle only classes explicitly marked to be serializable. This means
that COM objects, either programmatically created or declared as static objects with a
 session scope in global.asax, can’t be used with an out-of-process state provider. The same
limitation applies to any nonserializable object.

Configuring the StateServer Provider
Using out-of-process storage scenarios, you give the session state a longer life and your
 application greater robustness. Out-of-process session-state storage basically protects the
session against Internet Information Services (IIS) and ASP.NET process failures. By separating
the session state from the page itself, you can also much more easily scale an existing appli-
cation to Web farm and Web garden architectures. In addition, the session state living in an
external process eliminates at the root the risk of periodically losing data because of process
recycling.

As mentioned, the ASP.NET session-state provider is a Windows service named
aspnet_state.exe. It normally resides in the installation folder of ASP.NET:

%WINDOWS%\Microsoft.NET\Framework\[version]

As usual, note that the final directory depends on the .NET Framework version you’re
 actually running. Before using the state server, you should make sure that the service is up
and running on the local or remote machine used as the session store. The state service is a

698 Part IV Infrastructure of the Application

 constituent part of ASP.NET and gets installed along with it, so you have no additional setup
application to run.

By default, the state service is stopped and requires a manual start. You can change its
 configuration through the properties dialog box of the service, as shown in Figure 17-4.

FIGURE 17-4 The properties dialog box of the ASP.NET state server.

An ASP.NET application needs to specify the TCP/IP address of the machine hosting the
 session-state service. The following listing shows the changes that need to be made to the
web.config file to enable the remote session state:

<configuration>
 <system.web>
 <sessionState
 mode="StateServer"
 stateConnectionString="tcpip=MyMachine:42424" />
 </system.web>
</configuration>

Note that the value assigned to the mode attribute is case sensitive. The format of the
 stateConnectionString attribute is shown in the following line of code. The default machine
address is 127.0.0.1, while the port is 42424.

stateConnectionString="tcpip=server:port"

The server name can be either an IP address or a machine name. In this case, though,
 non-ASCII characters in the name are not supported. Finally, the port number is mandatory
and cannot be omitted.

 Chapter 17 ASP.NET State Management 699

Important The state server doesn’t offer any authentication barrier to requestors, meaning
that anyone who can get access to the network is potentially free to access session data. To
protect session state and make sure that it is accessed only by the Web server machine, you can
use a firewall, IPSec policies, or a secure net 10.X.X.X so that external attackers can’t gain direct
access. Another security-related countermeasure consists of changing the default port number.
To change the port, you edit the Port entry under the registry key: HKEY_LOCAL_MACHINE\
SYSTEM\CurrentControlSet\Services\aspnet_state\Parameters. Writing the port in the web.config
file isn’t enough.

The ASP.NET application attempts to connect to the session-state server immediately after
loading. The aspnet_state service must be up and running; otherwise, an HTTP exception is
thrown. By default, the service is not configured to start automatically. The state service uses
.NET Remoting to move data back and forth.

Note The ASP.NET state provider runs under the ASP.NET account. The account, though, can be
configured and changed at will using the Service Control Manager interface. The state service
is slim and simple and does not implement any special features. It is limited to holding data and
listens to the specified port for requests to serve. In particular, the service isn’t cluster-aware
(that is, it doesn’t provide a failover monitor to be error tolerant) and can’t be used in a clustered
world when another server takes on the one that fails.

Finally, note that by default the state server listens only to local connections. If the state
server and Web server live on different machines, you need to enable remote connections.
You do this through another entry in the same registry key as mentioned earlier. The entry is
AllowRemoteConnection, and it must be set to a nonzero value.

Persist Session Data to SQL Server
Maintaining the session state in an external process certainly makes the whole ASP.NET
 application more stable. Whatever happens to the worker process, the session state is still
there, ready for further use. If the service is paused, the data is preserved and automatically
retrieved when the service resumes. Unfortunately, if the state provider service is stopped
or if a failure occurs, the data is lost. If robustness is key for your application, drop the
StateServer mode in favor of SQLServer.

Performance and Robustness
When ASP.NET works in SQLServer mode, the session data is stored in a made-to-measure
database table. As a result, the session data survives even SQL Server crashes, but you
have to add higher overhead to the bill. SQLServer mode allows you to store data on any

700 Part IV Infrastructure of the Application

 connected machine, as long as the machine runs SQL Server 7.0 or newer. Aside from the
different medium, the storage mechanism is nearly identical to that described for remote
servers. In particular, the serialization and deserialization algorithm is the same, only it’s a bit
slower because of the characteristics of storage. When storing data of basic types, the time
required to set up the page’s Session object is normally at least 25 percent higher than in an
InProc scenario. Also in regard to this issue, the more complex types you use, the more time
it will take to manage the session data.

Note When you get to make a decision between state server or SQL server storage, consider
the fact that SQL Server is cluster-aware, which makes a solution based on it more robust (and
also more robust across machine restarts) and more reliable than one based on a state server.

Configuring Session State for SQL Server Support
To use SQL Server as the state provider, enter the following changes in the <sessionState>
section of the web.config file:

<configuration>
 <system.web>
 <sessionState
 mode="SQLServer"
 sqlConnectionString="server=127.0.0.1;integrated security=SSPI;" />
 </system.web>
</configuration>

In particular, you need to set the mode attribute (which is case sensitive) to SQLServer and
specify the connection string through the sqlConnectionString attribute. Note that the
 sqlConnectionString attribute string must provide credentials (user ID and password or in-
tegrated security) and a server name. However, it cannot contain tokens, such as Database
and Initial Catalog, unless a custom database is enabled using allowCustomSqlDatabase, as
mentioned in Table 17-8. You can specify a SQL Server Initial Catalog database name or use
the SQL Server Express attachDBFileName to point to an MDB file in the connection string
only if the allowCustomSqlDatabase configuration setting is enabled. If that is disabled, any
attempts to specify these settings in the connection string will result in an exception.

Note The connection string for an out-of-process session state implementation (both
SQLServer and StateServer) can also be specified to refer to a connection string defined in the
<connectionStrings> section. The session state module first attempts to look up a connec-
tion string from the <connectionStrings> section with the name specified in the appropriate
 <sessionState> attribute; if it is not found, the session state attempts to use the specified string
directly.

 Chapter 17 ASP.NET State Management 701

As for credentials to access the database, you can either use User ID and passwords or resort
to integrated security.

Note Whatever account you use to access session state in SQL Server, make sure that it is
 granted the db_datareader and db_datawriter permissions at least. Note also that to configure
the SQL Server environment for storing session state, administrative privileges are required, as a
new database and stored procedures need to be created.

Session state in SQL Server mode supports the specification of a custom command timeout
value (in seconds) to accommodate slow-responding-server scenarios. You control it through
the sqlCommandTimeout attribute, as mentioned in Table 17-8.

Creating the SQL Server Data Store
You use the aspnet_regsql.exe tool to configure the database environment by creating any
needed tables, stored procedures, triggers, and jobs. In general, the tool works through the
command line but also offers a visual interface. It is located in the following system folder:

%Windows%\Microsoft.NET\Framework\v4.0.30319

To create the ASPState database, you must use the command line, as shown here:

aspnet_regsql.exe –S [SqlServer Instance] –E –ssadd –sstype p

The tables that get created are named ASPStateTempApplications and
ASPStateTempSessions. Figure 17-5 shows a view of the session database in SQL Server.

FIGURE 17-5 The ASPState database in SQL Server Enterprise Manager.

The ASPStateTempApplications table defines a record for each currently running ASP.NET
 application. The table columns are listed in Table 17-9.

702 Part IV Infrastructure of the Application

TABLE 17-9 The ASPStateTempApplications Table
Column Type Description
AppId Int Indexed field. It represents a sort of autogenerated ID that identifies a

running application using the SQLServer session mode.

AppName char(280) Indicates the application ID of the AppDomain running the application.
It matches the contents of the AppDomainAppId property on the
HttpRuntime object.

The ASPStateTempSessions table stores the actual session data. The table contains one row
for each active session. The structure of the table is outlined in Table 17-10.

TABLE 17-10 The ASPStateTempSessions Table
Column Type Description
SessionId Char(88) Indexed field. It represents the session ID.

Created DateTime Indicates the time at which the session was created. It
defaults to the current date.

Expires DateTime Indicates the time at which the session will expire. This
value is normally the time at which the session state was
created plus the number of minutes specified in Timeout.
Note that Created refers to the time at which the session
started, whereas Expires adds minutes to the time in
which the first item is added to the session state.

Flags Int Indicates action flags—initialize items or none—from the
SessionStateActions enum.

LockCookie Int Indicates the number of times the session was locked—
that is, the number of accesses.

LockDate DateTime Indicates the time at which the session was locked to
add the last item. The value is expressed as the current
Universal Time Coordinate (UTC).

LockDateLocal DateTime Like the previous item, except that this one expresses the
system’s local time.

Locked bit Indicates whether the session is currently locked.

SessionItemLong Image Nullable field, represents the serialized version of a
 session longer than 7000 bytes.

SessionItemShort VarBinary(7000) Nullable field. It represents the values in the specified
session. The layout of the bytes is identical to the lay-
out discussed for StateServer providers. If more than
7000 bytes are needed to serialize the dictionary, the
SessionItemLong field is used instead.

Timeout int Indicates the timeout of the session in minutes.

The column SessionItemLong, contains a long binary block of data. Although the user always
works with image data as if it is a single, long sequence of bytes, the data is not stored in that
format. The data is stored in a collection of 8-KB pages that aren’t necessarily located next to
each other.

 Chapter 17 ASP.NET State Management 703

When installing the SQL Server support for sessions, a job is also created to delete
expired sessions from the session-state database. The job is named ASPState_Job_
DeleteExpiredSessions, and the default configuration makes it run every minute. You should
note that the SQLServerAgent service needs to be running for this to work.

Reverting to the Hosting Identity
The useHostingIdentity attribute (shown in Table 17-8) lets you decide about the identity
to use to grant access to the SQL Server table with session state. When the SQLServer state
 provider is used with integrated security, the identity is the one impersonated by the
ASP.NET process. This simplifies the administrative experience for intranet sites, requiring
that only the ASP.NET account be granted access to protected and critical resources. The
 useHostingIdentity attribute defaults to true, which enables you to revert to the ASP.NET
identity before making calls to the SQLServer session state provider. This will also happen if
a custom provider is used.

Note If you’re using Windows integrated authentication to access SQL Server, reverting to
the host identity is the most recommended option, for security reasons. Otherwise, it is advis-
able that you create a specific account and grant it only rights to execute session state stored
 procedures and access related resources.

Session State in a Web Farm Scenario
ASP.NET applications designed to run in a Web farm or Web garden hardware
 configuration cannot implement an in-process session state. The InProc mode won’t
work on a Web farm because a distinct worker process will be running on each con-
nected machine, with each process maintaining its own session state. It doesn’t even
work on a Web garden because multiple worker processes will be running on the same
machine.

Keeping all states separate from worker processes allows you to partition an application
across multiple worker processes even when they’re running on multiple computers.
In both Web farm and Web garden scenarios, there can be only one StateServer or
SQLServer process to provide session-state management.

If you’re running a Web farm, make sure you have the same <machineKey> in all
your Web servers. (More details can be found in Knowledge Base article Q313091.)
In addition, for the session state to be maintained across different servers in the Web
farm, all applications should have the same application path stored in the IIS metabase.
This value is set as the AppDomain application ID and identifies a running application
in the ASP.NET state database. (See Knowledge Base article Q325056 for more details.)

704 Part IV Infrastructure of the Application

Partition resolvers exist to let a session state provider partition its data onto multiple
back-end nodes. This allows you to scale session state on large Web farms, according
to a custom, user-defined load-balancing scheme. A partition provider is a component
that supplies the connection string (the actual string, not the pointer to a string in the
web.config file) to the session state that is used to access data, overriding any other
 settings in the <sessionState> section.

Customizing Session State Management
Since its beginning, the ASP.NET session state was devised to be an easy-to-customize and
extensible feature. All things considered, you have the following three options to customize
session state management:

■ You can stay with the default session state module but write a custom state provider
to change the storage medium (for example, to a non–SQL Server database or a differ-
ent table layout). In doing so, you also have the chance to override some of the helper
classes (mostly collections) that are used to bring data from the store to the Session
object and back.

■ You can stay with the default session state module but replace the session ID generator.
But hold on! The algorithm that generates session IDs is a critical element of the
 application, because making session IDs too easy for attackers to guess can lead
straight to session-hijacking attacks. Nonetheless, this remains a customizable aspect of
session state that, properly used, can make your application even more secure.

■ You can unplug the default session state module and roll your own. This option, how-
ever, should be used as a last resort. Obviously, it provides the maximum flexibility, but
it is also extremely complicated and is recommended only if strictly necessary and if
you know exactly what you’re doing. We won’t cover this topic in the book.

The first option—the easiest and least complicated of all—addresses most of the scenarios
for which some custom session management is desirable. So let’s tackle it first.

Building a Custom Session State Provider
A session state provider is the component in charge of serving any data related to the
 current session. Invoked when the request needs to acquire state information, it retrieves
data from a given storage medium and returns that to the module. Invoked by the module
when the request ends, it writes the supplied data to the storage layer. As mentioned,
ASP.NET supports three state providers, as listed in Table 17-11.

 Chapter 17 ASP.NET State Management 705

TABLE 17-11 Default State Providers
Name Class Storage Medium
InProc InProcSessionStateStore Stores data as live objects in the ASP.NET Cache.

StateServer OutOfProcSessionStateStore Stores data as serialized objects to the memory
of a Windows service named aspnet_state.exe.

SQLServer SqlSessionStateStore Stores data as serialized objects into a SQL
Server database.

You can write your own state provider class that uses the storage medium of your choice.
Note that the default state providers also make use of various helper classes to move data
around. In your custom provider, you can replace these classes too, or just stick to the
 standard ones.

Defining the Session State Store
A state provider (also often referred to as a session state store) is a class that inherits from
SessionStateStoreProviderBase. The main methods of the interface are listed in Table 17-12.

TABLE 17-12 Methods of the SessionStateStoreProviderBase Class
Method Description
CreateNewStoreData Creates an object to contain the data of a new session. It should

 return an object of type SessionStateStoreData.

CreateUninitializedItem Creates a new and uninitialized session in the data source. The
method is called when an expired session is requested in a cookie-
less session state. In this case, the module has to generate a new
session ID. The session item created by the method prevents the
next request with the newly generated session ID from being
 mistaken for a request directed at an expired session.

Dispose Releases all resources (other than memory) used by the state
 provider.

EndRequest Called by the default session state module when it begins to handle
the EndRequest event.

GetItem Returns the session item matching the specified ID from the data
store. The session item selected is locked for read. The method
serves requests from applications that use a read-only session state.

GetItemExclusive Returns the session item matching the specified ID from the data
store and locks it for writing. It’s used for requests originated by
 applications that use a read-write session state.

Initialize Inherited from the base provider class, performs one-off
 initialization.

InitializeRequest Called by the default session state module when it begins to handle
the AcquireRequestState event.

ReleaseItemExclusive Unlocks a session item that was previously locked by a call to the
GetItemExclusive method.

706 Part IV Infrastructure of the Application

Method Description
RemoveItem Removes a session item from the data store. It’s called when a

 session ends or is abandoned.

ResetItemTimeout Resets the expiration time of a session item. It’s invoked when the
application has session support disabled.

SetAndReleaseItemExclusive Writes a session item to the data store.

SetItemExpireCallback The default module calls this method to notify the data store class
that the caller has registered a Session_End handler.

Classes that inherit the SessionStateStoreProviderBase class work with the default ASP.NET
session state module and replace only the part of it that handles session-state data storage
and retrieval. Nothing else in the session functionality changes.

Locking and Expiration
Can two requests for the same session occur concurrently? You bet. Requests can certainly
arrive in parallel—for example, from two frames or when a user works with two instances
of the same browser, the second of which is opened as a new window. To avoid problems, a
state provider must implement a locking mechanism to serialize access to a session. The ses-
sion state module determines whether the request requires read-only or read-write access to
the session state and calls GetItem or GetItemExclusive accordingly. In the implementation of
these methods, the provider’s author should create a reader/writer lock mechanism to allow
multiple concurrent reads but prevent writing on locked sessions.

Another issue relates to letting the session state module know when a given session has
expired. The session state module calls the method SetItemExpireCallback when there’s a
Session_End handler defined in global.asax. Through the method, the state provider receives
a callback function with the following prototype:

public delegate void SessionStateItemExpireCallback(
 string sessionID, SessionStateStoreData item);

It has to store that delegate internally and invoke it whenever the given session times out.
Supporting expiration callbacks is optional and, in fact, only the InProc provider actually
supports it. If your custom provider is not willing to support expiration callbacks, you should
instruct the SetItemExpireCallback method to return false.

Note A provider that intends to support cookieless sessions must also implement the
CreateUninitialized method to write a blank session item to the data store. More precisely, a
blank session item is an item that is complete in every way except that it contains no session data.
In other words, the session item should contain the session ID, creation date, and perhaps lock
IDs, but no data. ASP.NET generates a new ID (in cookieless mode only) whenever a request is
made for an expired session. The session state module generates the new session ID and redi-
rects the browser. Without an uninitialized session item marked with a newly generated ID, the
new request will again be recognized as a request for an expired session.

 Chapter 17 ASP.NET State Management 707

Replacing the Session Data Dictionary
SessionStateStoreData is the class that represents the session item—that is, a data structure
that contains all the data that is relevant to the session. GetItem and GetItemExclusive, in
fact, are defined to return an instance of this class. The class has three properties: Items,
StaticObjects, and Timeout.

Items indicates the collection of name/values that will ultimately be passed to the page
through the Session property. StaticObjects lists the static objects belonging to the ses-
sion, such as objects declared in the global.asax file and scoped to the session. As the name
 suggests, Timeout indicates how long, in minutes, the session state item is valid. The default
value is 20 minutes.

After the session state module has acquired the session state for the request, it flushes the
contents of the Items collection to a new instance of the HttpSessionStateContainer class. This
object is then passed to the constructor of the HttpSessionState class and becomes the data
container behind the familiar Session property.

The SessionStateStoreData class is used in the definition of the base state provider class,
meaning that you can’t entirely replace it. If you don’t like it, you can inherit a new class from
it, however. To both the session module and state provider, the container of the session items
is merely a class that implements the ISessionStateItemCollection interface. The real class
 being used by default is SessionStateItemCollection. You can replace this class with your own
as long as you implement the aforementioned interface.

Note To write a state provider, you might find helpful the methods of the SessionStateUtility
class. The class contains methods to serialize and deserialize session items to and from the stor-
age medium. Likewise, the class has methods to extract the dictionary of data for a session and
add it to the HTTP context and the Session property.

Registering a Custom Session State Provider
To make a custom session state provider available to an application, you need to register it
in the web.config file. Suppose you have called the provider class SampleSessionStateProvider
and compiled it to MyLib. Here’s what you need to enter:

<system.web>
 <sessionState mode="Custom"
 customProvider="SampleSessionProvider">
 <providers>
 <add name="SampleSessionProvider"
 type="SampleSessionStateProvider, MyLib" />
 </providers>
 </sessionState>
</system.web>

708 Part IV Infrastructure of the Application

The name of the provider is arbitrary but necessary. To force the session state module to find
it, set the mode attribute to Custom.

Generating a Custom Session ID
To generate the session ID, ASP.NET uses a special component named SessionIDManager.
Technically speaking, the class is neither an HTTP module nor a provider. More simply, it is a
class that inherits from System.Object and implements the ISessionIDManager interface. You
can replace this component with a custom component as long as the component implements
the same ISessionIDManager interface. To help you decide whether you really need a custom
session ID generator, let’s review some facts about the default module.

The Default Behavior
The default session ID module generates a session ID as an array of bytes with a crypto-
graphically strong random sequence of 15 values. The array is then encoded to a string of 24
URL-accepted characters, which is what the system will recognize as the session ID.

The session ID can be round-tripped to the client in either an HTTP cookie or a mangled URL,
based on the value of the cookieless attribute in the <sessionState> configuration section.
Note that when cookieless sessions are used, the session ID module is responsible for adding
the ID to the URL and redirecting the browser. The default generator redirects the browser to
a fake URL like the following one:

http://www.contoso.com/test/(S(session_id))/page.aspx

How can a request for this fake URL be served correctly? In the case of a cookieless session,
the Session ID module depends on a small and simple ISAPI filter (aspnet_filter.dll) to
 dynamically rewrite the real URL to access. The request is served correctly, but the path on
the address bar doesn’t change. The detected session ID is placed in a request header named
AspFilterSessionId.

A Homemade Session ID Manager
Now that we’ve ascertained that a session ID manager is a class that implements
ISessionIDManager, you have two options: build a new class and implement the interface
from the ground up, or inherit a new class from SessionIDManager and override a couple
of virtual methods to apply some personalization. The first option offers maximum flexibil-
ity; the second is simpler and quicker to implement, and it addresses the most compelling
 reason you might have to build a custom session ID generator—to supply your own session
ID values.

http://www.contoso.com/test/

 Chapter 17 ASP.NET State Management 709

Let’s start by reviewing the methods of the ISessionIDManager interface, which are shown in
Table 17-13.

TABLE 17-13 Methods of the ISessionIDManager Interface
Method Description
CreateSessionID Virtual method. It creates a unique session identifier for the session.

Decode Decodes the session ID using HttpUtility.UrlDecode.

Encode Encodes the session ID using HttpUtility.UrlEncode.

Initialize Invoked by the session state immediately after instantiation; performs
 one-time initialization of the component.

InitializeRequest Invoked by the session state when the session state is being acquired for
the request.

GetSessionID Gets the session ID from the current HTTP request.

RemoveSessionID Deletes the session ID from the cookie or from the URL.

SaveSessionID Saves a newly created session ID to the HTTP response.

Validate Confirms that the session ID is valid.

If you plan to roll your own completely custom session ID generator, bear in mind the
 following points:

■ The algorithm you choose for ID generation is a critical point. If you don’t implement
strong cryptographic randomness, a malicious user can guess a valid session ID when
the same session is still active, thus accessing some user’s data. (This is known as ses-
sion hijacking.) A good example of a custom session ID algorithm is one that returns a
 globally unique identifier (GUID).

■ You can choose to support cookieless sessions or not. If you do, you have to endow
the component with the ability to extract the session ID from the HTTP request and
redirect the browser. You probably need an ISAPI filter or HTTP module to preprocess
the request and enter appropriate changes. The algorithm you use to store session IDs
without cookies is up to you.

If you are absolutely determined to have the system use your session IDs, you derive a new
class from SessionIDManager and override two methods: CreateSessionID and Validate. The
former returns a string that contains the session ID. The latter validates a given session ID to
ensure it conforms to the specification you set. After you have created a custom session ID
module, you register it in the configuration file. Here’s how to do it:

<sessionState
 sessionIDManagerType="Samples.MyIDManager, MyLib" />
</sessionState>

710 Part IV Infrastructure of the Application

Session State Performance Best Practices
State management is a necessary evil. By enabling it, you charge your application with
an extra burden. To reduce the performance impact of session state on Web applica-
tions, the first guideline is to disable session state whenever possible. However, to
prevent the session from expiring, the HTTP module still marks the session as active in
the data store. For out-of-process state servers, this means that a roundtrip is made.
Using a custom session ID manager returning a null session ID for requests that are
known not to require session state is the best way to work around this issue and avoid
the overhead entirely. (Write a class that inherits from SessionIDManager and overrides
GetSessionID.)

The second guideline entails minimizing contention on session data by avoiding frames
and downloadable resources served by session-enabled handlers.

The third guideline relates to data serialization and deserialization. You should always
use simple types and break complex classes into arrays of simple properties, at least as
far as session management is concerned. In other words, I’m not suggesting that you
should factor out your DAL classes—just change the way you serialize them into the
session store. An alternate approach entails building a custom serialization algorithm
that is optimized for session state storage. Breaking a class into various properties, with
each stored in a session slot, is advantageous because of the simple types being used,
but also because the extreme granularity of the solution minimizes the data to save in
case of changes. If one property changes, only one slot with a simple type is updated
instead of a single slot with a complex type.

The View State of a Page
ASP.NET pages supply the ViewState property to let applications build a call context and
 retain values across two successive requests for the same page. The view state represents the
state of the page when it was last processed on the server. The state is persisted—usually,
but not necessarily, on the client side—and is restored before the page request is processed.

By default, the view state is maintained as a hidden field added to the page. As such, it
 travels back and forth with the page itself. Although it is sent to the client, the view state
does not represent, nor does it contain, any information specifically aimed at the client.
The information stored in the view state is pertinent only to the page and some of its child
 controls and is not consumed in any way by the browser.

The view state comes at a cost. At the same time, however, the view state is one of the most
important features of ASP.NET, not so much because of its technical relevance but because it
allows you to benefit from most of the magic of the Web Forms model. Used without strict
criteria, though, the view state can easily become a burden for pages.

 Chapter 17 ASP.NET State Management 711

The StateBag Class
The StateBag class is the class behind the view state that manages the information that
ASP.NET pages and controls want to persist across successive posts of the same page in-
stance. The class works like a dictionary and, in addition, implements the IStateManager
interface. The Page and Control base classes expose the view state through the ViewState
property. So you can add or remove items from the StateBag class as you would with any
 dictionary object, as the following code demonstrates:

ViewState["FontSize"] = value;

You should start writing to the view state only after the Init event fires for the page request.
You can read from the view state during any stage of the page life cycle, but not after the
page enters rendering mode—that is, after the PreRender event fires.

View State Properties
Table 17-14 lists all the properties defined in the StateBag class.

TABLE 17-14 Properties of the StateBag Class
Property Description
Count Gets the number of elements stored in the object.

Item Indexer property. It gets or sets the value of an item stored in the class.

Keys Gets a collection object containing the keys defined in the object.

Values Gets a collection object containing all the values stored in the object.

Each item in the StateBag class is represented by a StateItem object. An instance of the
StateItem object is implicitly created when you set the Item indexer property with a value
or when you call the Add method. Items added to the StateBag object are tracked until the
view state is serialized prior to the page rendering. Items serialized are those with the IsDirty
property set to true.

View State Methods
Table 17-15 lists all the methods you can call in the StateBag class.

TABLE 17-15 Methods of the StateBag Class
Method Description
Add Adds a new StateItem object to the collection. If the item already exists, it gets

updated.

Clear Removes all items from the current view state.

GetEnumerator Returns an object that scrolls over all the elements in the StateBag.

IsItemDirty Indicates whether the element with the specified key has been modified
 during the request processing.

Remove Removes the specified object from the StateBag object.

712 Part IV Infrastructure of the Application

The IsItemDirty method represents an indirect way to call into the IsDirty property of the
specified StateItem object.

Note The view state for the page is a cumulative property that results from the contents of the
ViewState property of the page plus the view state of all the controls hosted in the page.

Common Issues with View State
Architecturally speaking, the importance of the view state cannot be denied because it is key
to setting up the automatic state management feature of ASP.NET. A couple of hot issues are
related to the usage of the view state, however. The most frequently asked questions about
the view state are related to security and performance. Can we say that the view state is in-
herently secure and cannot be tampered with? How will the extra information contained in
the view state affect the download time of the page? Let’s find out.

Encrypting and Securing
Many developers are doubtful about using the view state specifically because it is stored in
a hidden field and left on the client at the mercy of potential intruders. Although the data is
stored in a hashed format, there’s no absolute guarantee that it cannot be tampered with.
The first comment I’d like to make in response to this is that the view state as implemented
in ASP.NET is inherently more secure than any other hidden fields you might use (and that
you were likely using, say, in old classic ASP applications). My second remark is that only data
confidentiality is at risk. While this is a problem, it is minor compared to code injection.

Freely accessible in a hidden field named __VIEWSTATE, the view state information is, by
 default, hashed and Base64 encoded. To decode it on the client, a potential attacker must
 accomplish a number of steps, but the action is definitely possible. Once decoded, though,
the view state reveals only its contents—that is, confidentiality is at risk. However, there’s no
way an attacker can modify the view state to post malicious data. A tampered view state, in
fact, is normally detected on the server and an exception is thrown.

For performance reasons, the view state is not encrypted. If it’s needed, though, you can turn
the option on by acting on the web.config file, as follows:

<machineKey validation="3DES" />

When the validation attribute is set to 3DES, the view-state validation technique uses 3DES
encryption and doesn’t hash the contents. If you use web.config, the settings apply to all
 pages in the application. You can also control encryption settings separately for each page.

 Chapter 17 ASP.NET State Management 713

Furthermore, individual controls on the page can request to encrypt the view state. In case of
a conflict, page settings win. You use the ViewStateEncryptionMode property, which accepts
values from the ViewStateEncryptionMode enumeration. Feasible values are Auto, Always, and
Never. The default value is Auto. When the value is Auto, ASP.NET encrypts the entire view
state only if all controls want it encrypted. With values like Always and Never, the view state is
always or never encrypted, regardless of the control settings.

Machine Authentication Check
The @Page directive contains an attribute named EnableViewStateMac, whose only purpose
is making the view state a bit more secure by detecting any possible attempt at corrupting
the original data. When serialized, and if EnableViewStateMac is set to true, the view state
is appended with a validator hash string based on the algorithm and the key defined in the
<machineKey> section of the configuration file. The resulting array of bytes, which is the out-
put of the StateBag’s binary serialization plus the hash value, is Base64 encoded. By default,
the encryption algorithm to calculate the hash is SHA1, and the encryption and decryption
keys are autogenerated and stored in the Web server machine’s Local Security Authority
(LSA) subsystem. The LSA is a protected component of Windows. It provides security services
and maintains information about all aspects of local security on a system.

If EnableViewStateMac is true, when the page posts back, the hash value is extracted and
used to verify that the returned view state has not been tampered with on the client. If it
has been, an exception is thrown. The net effect is that you might be able to read the con-
tents of the view state, but to replace it you need the encryption key, which is in the Web
server’s LSA. The MAC in the name of the EnableViewStateMac property stands for Machine
Authentication Check, which is enabled by default. If you disable the attribute, an attacker
could alter the view-state information on the client and send a modified version to the server
and have ASP.NET blissfully use that tampered-with information.

To reinforce the security of the view state, you can use the ViewStateUserKey property. The
property evaluates to a user-specific string (typically, the session ID) that is known on the
server and hard to guess on the client. ASP.NET uses the content of the property as an input
argument to the hash algorithm that generates the MAC code.

Size Thresholds and Page Throughput
My opinion is that you should be concerned about the view state, but not for the potential
security holes it might open in your code—it can let hackers exploit only existing holes. You
should be more concerned about the overall performance and responsiveness of the page.
Especially for feature-rich pages that use plenty of controls, the view state can reach a con-
siderable size, measured in KB of data. Such an extra burden taxes all requests, in downloads
and uploads, and ends up creating serious overhead for the application as a whole.

714 Part IV Infrastructure of the Application

What is a reasonable size for an ASP.NET page? And for the view state of a page? Let’s
take a look at a sample page that contains a grid control bound to about 100 records (the
Customers table in the Northwind database of SQL Server):

<html>
<head runat="server">
 <title>Measure Up Your ViewState</title>
</head>
<script language="javascript">
function ShowViewStateSize()
{
 var buf = document.forms[0]["__VIEWSTATE"].value;
 alert("View state is " + buf.length + " bytes");
}
</script>
<body>
 <form id="form1" runat="server">
 <input type="button" value="Show View State Size"
 onclick="ShowViewStateSize()">
 <asp:SqlDataSource ID="SqlDataSource1" runat="server"
 SelectCommand="SELECT companyname, contactname, contacttitle
 FROM customers"
 ConnectionString="<%$ ConnectionStrings:LocalNWind %>"
 <asp:DataGrid ID="grid" runat="server"
 DataSourceID="SqlDataSource1" />
 </form>
</body>
</html>

In ASP.NET 2.0 and beyond, the total size of the page is about 20 KB. The view state alone,
though, takes up about 11 KB. If you port the same page back to ASP.NET 1.x, results are
even worse. The whole page amounts to 28 KB, while the view state alone amounts to a
 burdensome 19 KB. Two conclusions can be drawn from these numbers:

■ Starting with ASP.NET 2.0, the view-state field appears to be more compact. And
ASP.NET 2.0 was released back in 2005.

■ The view state takes up a large share of the downloaded bytes for the page. You won’t
be too far from the truth if you estimate the view-state size to be about 60 percent of
the entire page size.

What can you do about this? First, let’s play with some numbers to determine a reasonable
goal for view-state size in our applications. All things considered, you should endeavor to
keep a page size around 30 KB, to the extent that is possible of course. The ideal size for a
view state is around 7 KB; it is optimal if you can keep it down to 3 KB or so. In any case, the
view state, regardless of its absolute size, should never exceed 30 percent of the page size.

 Chapter 17 ASP.NET State Management 715

Note Where do these numbers come from? “From my personal experience” would perhaps be
a valid answer, but it’s not necessarily a good or exhaustive one. Let’s put it this way: the smallest
you can keep a page is the best size. To me, 30 KB looks like a reasonable compromise, because
most things can be stuffed into that size. Clearly, if you have 250 items to display, your page size
can grow up to 1 MB or so. In the end, having a smaller or larger view state is a design choice
and is mostly application-specific.

Within these boundaries, though, a few guidelines can be stated. The most important guideline
is not so much that view state should be limited to a few KB, but that it should take a minimal
percentage of the overall page size. Which percentage? Being the view-state helper, I’d say no
more than 25 percent or 30 percent at the most.

But here I’m just throwing out numbers using a bit of common sense. If you can disable the view
state altogether, do it. At the very least, you should avoid storing there the avoidable items that
don’t change often and are easily cached on the server, such as a long list of countries/regions.

Programming the View State
By default, the view state is enabled for all server controls; however, this doesn’t mean that
you strictly need it all the time and for all controls. The use of the view-state feature should
be carefully monitored because it can hinder your code. View state saves you from a lot of
coding and, more importantly, makes coding simpler and smarter. However, if you find you’re
paying too much for this feature, drop view state altogether and reinitialize the state of the
size-critical controls at every postback. In this case, disabling view state saves processing time
and speeds up the download process.

Disabling View State
You can disable the view state for an entire page by using the EnableViewState attribute
of the @Page directive. Although this is not generally a recommended option, you should
 definitely consider it for read-only pages that either don’t post back or don’t need state to be
maintained.

<% @Page EnableViewState="false" %>

A little known aspect of view state programming is that, with the previous setting in place,
all controls within the page have view state disabled no matter what their view state set-
tings are. When view state is enabled at the page level, instead, disabling the view state on a
 control produces the effect of disabling it just on that control.

The net effect of this situation is that if you have 300 controls in a page and just want to have
view state enabled on, say, three of them, all that you can do is disable view state on the
 remaining 297. To make up for this, in ASP.NET 4 a new property has been added to exercise

716 Part IV Infrastructure of the Application

stricter control over view state: the ViewStateMode property. The property accepts three
values: Inherit, Enabled, and Disabled. If the value is Inherit, the control gets the setting of its
parent. The ViewStateMode property takes precedence over EnableViewState.

Determining When to Disable View State
Let’s briefly recap what view state is all about and what you might lose if you ban it from
your pages. View state represents the current state of the page and its controls just before
the page is rendered to HTML. It is then serialized to a hidden field and downloaded to
the client. When the page posts back, the view state—a sort of call context for the page
request—is recovered from the hidden field, deserialized, and used to initialize the server
 controls in the page and the page itself. However, this is only the first half of the story.

After loading the view state, the page reads client-side posted information and uses those
values to override most of the settings for the server controls. Applying posted values over-
rides some of the settings read from the view state. You understand that in this case, and
only for the properties modified by posted values, the view state represents an extra burden.

Let’s examine a typical case and suppose you have a page with a text box server control.
What you expect is that when the page posts back, the text box server control is automati-
cally assigned the value set on the client. Well, to meet this rather common requirement, you
don’t need view state. Let’s consider the following page:

<% @Page language="c#" %>
<form runat="server">
 <asp:textbox runat="server" viewstatemode="disabled"
 id="theInput" readonly="false" text="Type here" />
 <asp:checkbox runat="server" viewstatemode="disabled"
 id="theCheck" text="Check me" />
 <asp:button runat="server" text="Click" onclick="OnPost" />
</form>

Apparently, the behavior of the page is stateful even if view state is disabled for a couple
of controls. The reason lies in the fact that you are using two server controls—TextBox and
CheckBox—whose key properties—Text and Checked—are updated according to the values
set by the user. For these properties, posted values override any setting that view state might
have set. As a result, as long as you’re simply interested in persisting these properties you
don’t need view state at all.

Likewise, you don’t need view state for all control properties that are set at design-time in the
.aspx file and are not expected to change during the session. The following code illustrates
this point:

<asp:textbox runat="server" id="TextBox1" Text="Some text"
 MaxLength="20" ReadOnly="true" />

 Chapter 17 ASP.NET State Management 717

You don’t need view state to keep the Text property of a TextBox up to date; you do need
view state to keep up to date, say, ReadOnly or MaxLength, as long as these properties have
their values changed during the page lifetime. If the two properties are constant during the
page lifetime, you don’t need view state for them either.

So when is view state really necessary?

View state is necessary whenever your page requires that accessory control properties (other
than those subject to posted values) are updated during the page lifetime. In this context,
“updated” means that their original value changes—either the default value or the value you
assign to the property at design time. Consider the following form:

<script runat="server">
 void Page_Load(object sender, EventArgs e)
 {
 if (!IsPostBack)
 theInput.ReadOnly = true;
 }
</script>

<form id="form1" runat="server">
 <asp:textbox runat="server" id="theInput" text="Am I read-only?" />
 <asp:button ID="Button1" runat="server" text="Click" onclick="OnPost" />
</form>

When the page is first loaded, the text box becomes read-only. Next, you click the button
to post back. If view state is enabled, the page works as expected and the text box remains
read-only. If view state is disabled for the text box, the original setting for the ReadOnly
property is restored—in this case, false.

In general, you can do without view state whenever the state can be deduced either from the
client or from the runtime environment. In contrast, doing without view state is hard when-
ever state information can’t be dynamically inferred and you can’t ensure that all properties
are correctly restored when the page posts back. This is exactly what view state guarantees
at the cost of extra bytes when downloading and uploading. To save those bytes, you must
provide an alternate approach.

Disabling the view state can also create subtler problems that are difficult to diagnose and
fix, especially if you’re working with third-party controls or, in general, controls for which you
have source code access. Some ASP.NET controls, in fact, might save to the view state not just
properties that are officially part of the programming interface (and that can be set accord-
ingly), but also behavioral properties that serve internal purposes and are marked as protect-
ed or even private. Unfortunately, for these controls, you do not have the option of disabling
the view state. But ASP.NET comes to the rescue with control state.

718 Part IV Infrastructure of the Application

The Control State
It is not uncommon for a server control to persist information across postbacks. For example,
consider what happens to a DataGrid control modified to support autoreverse sorting. When
the user clicks to sort by a column, the control compares the current sort expression and the
new sort expression. If the two are equivalent, the sort direction is reversed. How does the
DataGrid track the current sort direction? If you don’t place the sort direction property in the
control’s view state, it will be lost as soon as the control renders to the browser.

This kind of property is not intended to be used for plain configurations such as pager style
or background color. It has an impact on how the control works. What if the control is then
used in a page that has the view state disabled?

The control state is a special data container introduced just to create a sort of protected zone
inside the classic view state. For developers of custom controls, it is safer to use the control
state than the view state because application-level and page-level settings cannot affect it.
If your existing custom control has private or protected properties stored in the view state,
you should move all of them to the control state. Anything you store in the control state re-
mains there until it is explicitly removed. Also the control state is sent down to the client and
uploaded when the page posts back. The more data you pack into it, the more data is moved
back and forth between the browser and the Web server. You should use control state, but
you should do so carefully.

Programming the Control State
The implementation of the control state is left to the programmer, which is both good and
bad. It is bad because you have to manually implement serialization and deserialization for
your control’s state. It is good because you can control exactly how the control works and
tweak its code to achieve optimal performance in the context in which you’re using it. The
page’s infrastructure takes care of the actual data encoding and serialization. The control
state is processed along with the view state information and undergoes the same treatment
as for serialization and Base64 encoding. The control state is also persisted within the same
view state’s hidden field. The root object serialized to the view state stream is actually a Pair
object that contains the control state as the first element and the classic view state as the
second member.

There’s no ready-made dictionary object to hold the items that form the control state. You
no longer have to park your objects in a fixed container such as the ViewState state bag—
you can maintain control-state data in plain private or protected members. Among other
things, this means that access to data is faster because it is more direct and is not mediated
by a dictionary object.

 Chapter 17 ASP.NET State Management 719

To restore control state, the Page class invokes the LoadControlState on all controls that
have registered with the page object as controls that require control state. The following
 pseudocode shows the control’s typical behavior:

private override void LoadControlState(object savedState)
{
 // Make a copy of the saved state.
 // You know what type of object this is because
 // you saved it in the SaveControlState method.
 object[] currentState = (object[]) savedState;
 if (currentState == null)
 return;

 // Initialize any private/protected member you stored
 // in the control state. The values are packed in the same
 // order and format you stored them in the SaveControlState method.
 _myProperty1 = (int) currentState[0];
 _myProperty2 = (string) currentState[1];
 ...
}

The LoadControlState method receives an object identical to the one you created in
SaveControlState. As a control developer, you know that type very well and can use this
knowledge to extract any information that’s useful for restoring the control state. For
 example, you might want to use an array of objects in which every slot corresponds to a
 particular property.

The following pseudocode gives you an idea of the structure of the SaveControlState method:

private override object SaveControlState()
{
 // Declare a properly sized array of objects
 object[] stateToSave = new Object[...];

 // Fill the array with local property values
 stateToSave[0] = _myProperty1;
 stateToSave[1] = _myProperty2;
 ...

 // Return the array
 return stateToSave;
}

You allocate a new data structure (such as a Pair, a Triplet, an array, or a custom type) and fill
it with the private properties to persist across postbacks. The method terminates, returning
this object to the ASP.NET runtime. The object is then serialized and encoded to a Base64
stream. The class that you use to collect the control state properties must be serializable.

Keeping the View State on the Server
The more stuff you pack into the view state, the more time the page takes to download and
upload because the view state is held in a hidden field. The client-side hidden field is not set

720 Part IV Infrastructure of the Application

in stone, but is simply the default storage medium where the view state information can be
stored. Does it make sense to store the view state somewhere on the server?

Leaving the view state on the server is definitely possible and all you have to do is override a
couple of protected members on the Page class. The devil is in the details, however.

You should guarantee that the correct view-state file will be served to each page instance the
user retrieves via the browser’s history. This is not an issue as long as each page contains its
own view state. But when the view state is stored elsewhere, unless you want to disable
Back/Forward functionality, you should provide a mechanism that serves the “right” view
state for the instance of a given page that the user is reclaiming. At a minimum, you need to
make copies of the view state for about six to eight instances.

As you can see, what you save in the roundtrip is lost in the server’s memory or server-
side I/O operations. All in all, keeping the view state on the client and inside of the page is
 perhaps the option that works better in the largest number of scenarios. If the view state is a
problem, you have only one way out: reducing its size.

Summary
Although HTTP is a stateless protocol, Web applications can’t just do without certain forms of
state. Moreover, state management is a hot topic for all real-world Web applications. Setting
up an effective and efficient solution for state management is often the difference between
an application being scalable or nonscalable.

One of the most-used forms of state is session state—that is, the state specific to a user and
the one that’s valid as long as that user works with the application. You can store session data
in the memory of the ASP.NET worker process as well as in external processes, and even in a
SQL Server table or in a custom state provider. In spite of the radically different options, the
top-level programming interface is identical. More importantly, the ASP.NET session state can
be persisted in a Web farm or Web garden scenario as well.

In the next chapter, we’ll deal with another extremely powerful form of state container—the
Cache object.

It’s worth spending a final word on a form of state management that might grow significantly
in the future, especially as HTML 5 becomes widely supported by browsers—client side state.
Around the HTML 5 working draft, in fact, a number of technologies are being developed
for storing information on the browser in a much more powerful way than with cookies. It
ranges from simple forms of isolated storage (already in Internet Explorer 8) to Web SQL
 databases. As usual, time will tell. And years of experience remind us that no matter how cool
it could be, it only works if it is widely supported.

 721

Chapter 18

ASP.NET Caching
Hope is a good breakfast, but it is a bad supper.

—Sir Francis Bacon

Caching indicates the system’s, or the application’s, ability to save frequently used data to
an intermediate storage medium. An intermediate storage medium is any support placed in
between the application and its primary data source that lets you persist and retrieve data
more quickly than with the primary data source. In a typical Web scenario, the canonical
intermediate storage medium is the Web server’s memory, whereas the data source is the
back-end data management system. Obviously, you can design caching around the require-
ments and characteristics of each application, thus using as many layers of caching as needed
to reach your performance goals. In ASP.NET, caching comes in two independent but not
 exclusive flavors: caching application data, and caching the output of served pages.

To build an application-specific caching subsystem, you use the caching application
 programming interface (API) that lets you store data in a global, system-managed object—
the Cache object. This approach gives you the greatest flexibility, but you need to learn a few
usage patterns to stay on the safe side.

Page-output caching, instead, is a very quick way to take advantage of cache capabilities.
You don’t need to write code; you just configure it at design time and go. The ASP.NET
 system takes care of caching the output of the page to serve it back to clients for the
 specified time. For pages that don’t get stale quickly, page-output caching is a kind of free
performance booster.

In this chapter, I’ll cover the aspects of caching in a single server as well as caching in a
 distributed scenario.

Caching Application Data
Centered on the Cache object, the ASP.NET caching API is much more than simply a
 container of global data shared by all sessions, such as the Application object that I briefly
discussed in the previous chapter. The Application object, by the way, is preserved only for
backward compatibility with legacy applications. The Cache object is a smarter and thread-
safe container that can automatically remove unused items, support various forms of depen-
dencies, and optionally provide removal callbacks and priorities. New ASP.NET applications
should use the Cache object and seriously consider the AppFabric Caching services if strong
scalability is needed.

722 Part IV Infrastructure of the Application

The Cache Class
The Cache class is defined in the System.Web.Caching namespace. The current instance of the
application’s ASP.NET cache is returned by the Cache property of the HttpContext object or
the Cache property of the Page object.

Fundamental Aspects of the Cache Object
The Cache object is unique in its capability to automatically scavenge the memory and get
rid of unused items. Cached items can be prioritized and associated with various types of
dependencies, such as disk files, other cached items, and database tables. When any of these
items change, the cached item is automatically invalidated and removed. Aside from that,
the Cache object provides the same dictionary-based and familiar programming interface as
Session. Unlike Session, however, the Cache object does not store data on a per-user basis.
Furthermore, when the session state is managed in-process, all currently running sessions are
stored as distinct items in the ASP.NET Cache.

Keep in mind that an instance of the Cache class is created on a per-AppDomain basis and
remains valid as long as that AppDomain is up and running. If you’re looking for a global
repository object that, like Session, works across a Web farm or Web garden architecture,
the Cache object is not for you. You have to resort to AppFabric Caching services or to some
commercial frameworks (for example, ScaleOut or NCache) or open-source frameworks (for
example, Memcached or SharedCache).

Properties of the Cache Class
The Cache class provides a few properties and public fields. Table 18-1 lists and describes
them all.

TABLE 18-1 Cache Class Properties and Public Fields
Property Description
Count Gets the number of items stored in the cache.

EffectivePercentagePhysicalMemoryLimit Gets the maximum percentage of memory that can be
used before the scavenging process starts. The default
value is 97.

EffectivePrivateBytesLimit Returns the bytes of memory available to the cache.

Item An indexer property that provides access to the cache
item identified by the specified key.

NoAbsoluteExpiration A static constant that indicates a given item will never
expire.

NoSlidingExpiration A static constant that indicates sliding expiration is
 disabled for a given item.

 Chapter 18 ASP.NET Caching 723

The NoAbsoluteExpiration field is of the DateTime type and is set to the DateTime.MaxValue
date—that is, the largest possible date defined in the Microsoft .NET Framework. The
NoSlidingExpiration field is of the TimeSpan type and is set to TimeSpan.Zero, meaning that
sliding expiration is disabled. I’ll say more about sliding expiration shortly.

The Item property is a read/write property that can also be used to add new items to the
cache. If the key specified as the argument of the Item property does not exist, a new entry is
created. Otherwise, the existing entry is overwritten.

Cache["MyItem"] = value;

The data stored in the cache is generically considered to be of type object, whereas the key
must be a case-sensitive string. When you insert a new item in the cache using the Item
property, a number of default attributes are assumed. In particular, the item is given no
 expiration policy, no remove callback, and a normal priority. As a result, the item will stay in
the cache indefinitely, until programmatically removed or until the application terminates. To
specify any extra arguments and exercise closer control on the item, use the Insert method of
the Cache class instead.

Methods of the Cache Class
The methods of the Cache class let you add, remove, and enumerate the items stored.
Methods of the Cache class are listed and described in Table 18-2.

TABLE 18-2 Cache Class Methods
Method Description
Add Adds the specified item to the cache. It allows you to specify dependencies,

 expiration and priority policies, and a remove callback. The call fails if an item
with the same key already exists. The method returns the object that represents
the newly added item.

Get Retrieves the value of the specified n item from the cache. The item is identified
by key. The method returns null if no item with that key is found. (This method is
used to implement the get accessor of the Item property.)

GetEnumerator Returns a dictionary enumerator object to iterate through all the valid items
stored in the cache.

Insert Inserts the specified item into the cache. Insert provides several overloads
and allows you to specify dependencies, expiration and priority policies, and
a remove callback. The method is void and, unlike Add, overwrites an existing
item having the same key as the item being inserted. (This method is used to
 implement the set accessor of the Item property.)

Remove Removes the specified item from the cache. The item is identified by the key.
The method returns the instance of the object being removed or null if no item
with that key is found.

724 Part IV Infrastructure of the Application

Both the Add and Insert methods don’t accept null values as the key or the value of an item
to cache. If null values are used, an exception is thrown. You can configure sliding expiration
for an item for no longer than one year. Otherwise, an exception will be raised. Finally, bear
in mind that you cannot set both sliding and absolute expirations on the same cached item.

Note Add and Insert work in much the same way, but a couple of differences make it
 worthwhile to have both on board. Add fails (but no exception is raised) if the item already exists,
whereas Insert overwrites the existing item. In addition, Add has just one signature, while Insert
provides several overloads.

An Interior View
The Cache class inherits from Object and implements the IEnumerable interface. It is a
 wrapper around an internal class that acts as the true container of the stored data. The real
class used to implement the ASP.NET cache varies depending on the number of affinitized
CPUs. If only one CPU is available, the class is CacheSingle; otherwise, it is CacheMultiple. In
both cases, items are stored in a hashtable and there will be a distinct hashtable for each
CPU. It turns out that CacheMultiple manages an array of hashtables. Figure 18-1 illustrates
the architecture of the Cache object.

hashtable hashtable

public private
public private

CacheSingle CacheMultiple

1 CPU n CPU

Cache

FIGURE 18-1 The internal structure of the ASP.NET cache.

The hashtable is divided into two parts: public elements and private elements. In the public
portion of the hashtable are placed all items visible to user applications. System-level data,
on the other hand, goes in the private section. The cache is a resource extensively used by
the ASP.NET runtime itself; system items, though, are neatly separated by application data
and there’s no way an application can access a private element on the cache.

 Chapter 18 ASP.NET Caching 725

The Cache object is mostly a way to restrict applications to read from, and write to, the public
segment of the data store. Get and set methods on internal cache classes accept a flag to
 denote the public attribute of the item. When called from the Cache class, these internal
methods always default to the flag that selects public items.

The hashtable containing data is then enhanced and surrounded by other internal
 components to provide a rich set of programming features. The list includes the
 implementation of a least recently used (LRU) algorithm to ensure that items can be
 removed f the system runs short of memory, dependencies, and removal callbacks.

Note On a multiprocessor machine with more than one CPU affinitized with the ASP.NET worker
process, each processor ends up getting its own Cache object. The various cache objects are
not synchronized. In a Web garden configuration, you can’t assume that users will return to the
same CPU (and worker process) on subsequent requests. So the status of the ASP.NET cache is
not guaranteed to be aligned with what the same page did last time. Later in the chapter, we’ll
discuss a variation of the Cache object that addresses exactly this scenario.

Working with the ASP.NET Cache
An instance of the Cache object is associated with each running application and shares the
associated application’s lifetime. Each item when stored in the cache can be given special
attributes that determine a priority and an expiration policy. All these are system-provided
tools to help programmers control the scavenging mechanism of the ASP.NET cache.

Inserting New Items in the Cache
A cache item is characterized by a handful of attributes that can be specified as input
 arguments of both Add and Insert. In particular, an item stored in the ASP.NET Cache object
can have the following properties:

■ Key A case-sensitive string, it is the key used to store the item in the internal hash
table the ASP.NET cache relies upon. If this value is null, an exception is thrown. If the
key already exists, what happens depends on the particular method you’re using: Add
fails, while Insert just overwrites the existing item.

■ Value A non-null value of type Object that references the information stored in the
cache. The value is managed and returned as an Object and needs casting to become
useful in the application context.

■ Dependencies An object of type CacheDependency, tracks a physical dependency
between the item being added to the cache and files, directories, database tables, or
other objects in the application’s cache. Whenever any of the monitored sources are
modified, the newly added item is marked obsolete and automatically removed.

726 Part IV Infrastructure of the Application

■ Absolute Expiration Date A DateTime object that represents the absolute expiration
date for the item being added. When this time arrives, the object is automatically
 removed from the cache. Items not subject to absolute expiration dates must use the
NoAbsoluteExpiration constants representing the farthest allowable date. The absolute
expiration date doesn’t change after the item is used in either reading or writing.

■ Sliding Expiration A TimeSpan object, represents a relative expiration period for the
item being added. When you set the parameter to a non-null value, the expiration-
date parameter is automatically set to the current time plus the sliding period. If you
 explicitly set the sliding expiration, you cannot set the absolute expiration date too.
From the user’s perspective, these are mutually exclusive parameters. If the item is
 accessed before its natural expiration time, the sliding period is automatically renewed.

■ Priority A value picked out of the CacheItemPriority enumeration, denotes the
 priority of the item. It is a value ranging from Low to NotRemovable. The default level of
priority is Normal. The priority level determines the importance of the item; items with
a lower priority are removed first.

■ Update Callback If specified, indicates the function that the ASP.NET Cache
 object calls back when the item will be removed from the cache because it expired
or the associated dependency changed. The function won’t be called if the item is
 programmatically removed from the cached or scavenged by the cache itself. The
 delegate type used for this callback is CacheItemUpdateCallback.

■ Removal Callback If specified, indicates the function that the ASP.NET Cache object
calls back when the item will be removed from the cache. In this way, applications can
be notified when their own items are removed from the cache, no matter what the
reason is. As mentioned in Chapter 17, “ASP.NET State Management,” when the session
state works in InProc mode, a removal callback function is used to fire the Session_End
event. The delegate type used for this callback is CacheItemRemovedCallback.

There are basically three ways to add new items to the ASP.NET Cache object—the set
 accessor of the Item property, the Add method, and the Insert method. The Item property
allows you to indicate only the key and the value. The Add method has only one signature
that includes all the aforementioned arguments. The Insert method is the most flexible of all
options and provides the following overloads:

public void Insert(String, Object);
public void Insert(String, Object, CacheDependency);
public void Insert(String, Object, CacheDependency, DateTime, TimeSpan);
public void Insert(String, Object, CacheDependency, DateTime, TimeSpan,
 CacheItemUpdateCallback);
public void Insert(String, Object, CacheDependency, DateTime, TimeSpan,
 CacheItemPriority, CacheItemRemovedCallback);

 Chapter 18 ASP.NET Caching 727

The following code snippet shows the typical call that is performed under the hood when the
Item set accessor is used:

Insert(key, value, null, Cache.NoAbsoluteExpiration,
 Cache.NoSlidingExpiration, CacheItemPriority.Normal, null);

If you use the Add method to insert an item whose key matches that of an existing item, no
exception is raised, nothing happens, and the method returns null.

Removing Items from the Cache
All items marked with an expiration policy, or a dependency, are automatically removed from
the cache when something happens in the system to invalidate them. To programmatically
remove an item, on the other hand, you resort to the Remove method. Note that this method
removes any item, including those marked with the highest level of priority (NotRemovable).
The following code snippet shows how to call the Remove method:

var oldValue = Cache.Remove("MyItem");

Normally, the method returns the value just removed from the cache. However, if the
 specified key is not found, the method fails and null is returned, but no exception is ever
raised.

When items with an associated callback function are removed from the cache, a value
from the CacheItemRemovedReason enumeration is passed on to the function to justify the
 operation. The enumeration includes the values listed in Table 18-3.

TABLE 18-3 The CacheItemRemovedReason Enumeration
Reason Description
DependencyChanged Removed because the associated dependency changed.

Expired Removed because expired.

Removed Programmatically removed from the cache using Remove. Notice that a
Removed event might also be fired if an existing item is replaced either
through Insert or the Item property.

Underused Removed by the system to free memory.

If the item being removed is associated with a callback, the function is executed immediately
after having removed the item.

Note that the CacheItemUpdateReason enumeration contains only the first two items
of Table 18-3. Curiously, however, the actual numeric values behind the members in the
 enumeration don’t match.

728 Part IV Infrastructure of the Application

Tracking Item Dependencies
Items added to the cache through the Add or Insert method can be linked to an array of
files and directories as well as to an array of existing cache items, database tables, or exter-
nal events. The link between the new item and its cache dependency is maintained using
an instance of the CacheDependency class. The CacheDependency object can represent a
single file or directory or an array of files and directories. In addition, it can also represent
an array of cache keys—that is, keys of other items stored in the Cache—and other custom
 dependency objects to monitor—for example, database tables or external events.

The CacheDependency class has quite a long list of constructors that provide for the
 possibilities listed in Table 18-4.

TABLE 18-4 The CacheDependency Constructor List
Constructor Description
String A file path—that is, a URL to a file or a directory name

String[] An array of file paths

String, DateTime A file path monitored starting at the specified time

String[], DateTime An array of file paths monitored starting at the specified time

String[], String[] An array of file paths, and an array of cache keys

String[], String[],
CacheDependency

An array of file paths, an array of cache keys, and a separate
CacheDependency object

String[], String[], DateTime An array of file paths and an array of cache keys monitored starting at
the specified time

String[], String[],
CacheDependency,
DateTime

An array of file paths, an array of cache keys, and a separate instance of
the CacheDependency class monitored starting at the specified time

Any change in any of the monitored objects invalidates the current item. Note that you can
set a time to start monitoring for changes. By default, monitoring begins right after the
item is stored in the cache. A CacheDependency object can be made dependent on another
instance of the same class. In this case, any change detected on the items controlled by
the separate object results in a broken dependency and the subsequent invalidation of the
 present item.

In the following code snippet, the item is associated with the timestamp of a file. The net
 effect is that any change made to the file that affects the timestamp invalidates the item,
which will then be removed from the cache.

var dependency = new CacheDependency(filename);
Cache.Insert(key, value, dependency);

Bear in mind that the CacheDependency object needs to take file and directory names
 expressed through absolute file system paths.

 Chapter 18 ASP.NET Caching 729

Defining a Removal Callback
Item removal is an event independent from the application’s behavior and control. The
 difficulty with item removal is that because the application is oblivious to what has
 happened, it attempts to access the removed item later and gets only a null value back.
To work around this issue, you can either check for the item’s existence before access is
 attempted or, if you think you need to know about removal in a timely manner, register a
callback and reload the item if it’s invalidated. This approach makes particularly good sense if
the cached item just represents the content of a tracked file or query.

The following code demonstrates how to read the contents of a Web server’s file and cache it
with a key named MyData. The item is inserted with a removal callback. The callback simply
re-reads and reloads the file if the removal reason is DependencyChanged.

void Load_Click(Object sender, EventArgs e)
{
 AddFileContentsToCache("data.xml");
}

void AddFileContentsToCache(String fileName)
{
 var file = Server.MapPath(fileName);
 var reader = new StreamReader(file);
 var data = reader.ReadToEnd();
 reader.Close();
 CreateAndCacheItem(data, file);

 // Display the contents through the UI
 contents.Text = Cache["MyData"].ToString();
}

void CreateAndCacheItem(Object data, String file)
{
 var removal = new CacheItemRemovedCallback(ReloadItemRemoved);
 var dependency = new CacheDependency(file);
 Cache.Insert("MyData", data, dependency, Cache.NoAbsoluteExpiration,
 Cache.NoSlidingExpiration, CacheItemPriority.Normal, removal);
}

void ReloadItemRemoved(String key, Object value,
 CacheItemRemovedReason reason)
{
 if (reason == CacheItemRemovedReason.DependencyChanged)
 {
 // At this time, the item has been removed. We get fresh data and
 // re-insert the item
 if (key == "MyData")
 AddFileContentsToCache("data.xml");

 // This code runs asynchronously with respect to the application,
 // as soon as the dependency gets broken. To test it, add some
 // code here to trace the event
 }
}

730 Part IV Infrastructure of the Application

If the underlying file has changed, the dependency-changed event is notified and the new
contents are automatically loaded. So the next time you read from the cache, you get fresh
data. If the cached item is removed, any successive attempt to read returns null. Here’s some
code that shows you how to read from the cache and remove a given item:

void Read_Click(Object sender, EventArgs e)
{
 var data = Cache["MyData"];
 if (data == null)
 {
 contents.Text = "[No data available]";
 return;
 }

 // Update the UI
 contents.Text = (String) data;
}

void Remove_Click(Object sender, EventArgs e)
{
 Cache.Remove("MyData");
}

Note that the item removal callback is a piece of code defined by a user page but
 automatically run by the Cache object as soon as the removal event is fired. The code con-
tained in the removal callback runs asynchronously with respect to the page. If the removal
event is related to a broken dependency, the Cache object executes the callback as soon as
the notification is detected.

If you add an object to the Cache and make it dependent on a file, directory, or key that
doesn’t exist, the item is regularly cached and marked with a dependency as usual. If the file,
directory, or key is created later, the dependency is broken and the cached item is invali-
dated. In other words, if the dependency item doesn’t exist, it’s virtually created with a null
timestamp or empty content.

Setting the Item’s Priority
Each item in the cache is given a priority—that is, a value picked up from the
CacheItemPriority enumeration. A priority is a value ranging from Low (lowest) to
NotRemovable (highest), with the default set to Normal. The priority is supposed to
 determine the importance of the item for the Cache object. The higher the priority is, the
more chances the item has to stay in memory even when the system resources are going
dangerously down.

If you want to give a particular priority level to an item being added to the cache, you have
to use either the Add or Insert method. The priority can be any value listed in Table 18-5.

 Chapter 18 ASP.NET Caching 731

TABLE 18-5 Priority Levels in the Cache Object
Priority Value Description
Low 1 Items with this level of priority are the first items to be deleted from

the cache as the server frees system memory.

BelowNormal 2 Intermediate level of priority between Normal and Low.

Normal 3 Default priority level. It is assigned to all items added using the Item
property.

Default 3 Same as Normal.

AboveNormal 4 Intermediate level of priority between Normal and High.

High 5 Items with this level of priority are the last items to be removed from
the cache as the server frees memory.

NotRemovable 6 Items with this level of priority are never removed from the cache.
Use this level with extreme care.

The Cache object is designed with two goals in mind. First, it has to be efficient and built
for easy programmatic access to the global repository of application data. Second, it has
to be smart enough to detect when the system is running low on memory resources and
to clear elements to free memory. This trait clearly differentiates the Cache object from
HttpApplicationState, which maintains its objects until the end of the application (unless
the application itself frees those items). The technique used to eliminate low-priority and
 seldom-used objects is known as scavenging.

Controlling Data Expiration
Priority level and changed dependencies are two of the factors that can lead a cached item
to be automatically garbage-collected from the Cache. Another possible cause for a pre-
mature removal from the Cache is infrequent use associated with an expiration policy. By
default, all items added to the cache have no expiration date, neither absolute nor relative.
If you add items by using either the Add or Insert method, you can choose between two
 mutually exclusive expiration policies: absolute expiration and sliding expiration.

Absolute expiration is when a cached item is associated with a DateTime value and is removed
from the cache as the specified time is reached. The DateTime.MaxValue field, and its more
general alias NoAbsoluteExpiration, can be used to indicate the last date value supported by
the .NET Framework and to subsequently indicate that the item will never expire.

Sliding expiration implements a sort of relative expiration policy. The idea is that the object
expires after a certain interval. In this case, though, the interval is automatically renewed
 after each access to the item. Sliding expiration is rendered through a TimeSpan object—
a type that in the .NET Framework represents an interval of time. The TimeSpan.Zero field
 represents the empty interval and is also the value associated with the NoSlidingExpiration

732 Part IV Infrastructure of the Application

static field on the Cache class. When you cache an item with a sliding expiration of 10
 minutes, you use the following code:

Insert(key, value, null, Cache.NoAbsoluteExpiration,
 TimeSpan.FromMinutes(10), CacheItemPriority.Normal, null);

Internally, the item is cached with an absolute expiration date given by the current time plus
the specified TimeSpan value. In light of this, the preceding code could have been rewritten
as follows:

Insert(key, value, null, DateTime.Now.AddMinutes(10),
 Cache.NoSlidingExpiration, CacheItemPriority.Normal, null);

However, a subtle difference still exists between the two code snippets. In the former case—
that is, when sliding expiration is explicitly turned on—each access to the item resets the
absolute expiration date to the time of the last access plus the time span. In the latter case,
because sliding expiration is explicitly turned off, any access to the item doesn’t change the
absolute expiration time.

Note Immediately after initialization, the Cache collects statistical information about the
 memory in the system and the current status of the system resources. Next, it registers a timer
to invoke a callback function at one-second intervals. The callback function periodically updates
and reviews the memory statistics and, if needed, activates the scavenging module. Memory
 statistics are collected using a bunch of Win32 API functions to obtain information about the
system’s current usage of both physical and virtual memory. The Cache object classifies the status
of the system resources in terms of low and high pressure. When the memory pressure exceeds
the guard level, seldom-used objects are the first to be removed according to their priority.

Practical Issues
Caching is a critical factor for the success of a Web application. Caching mostly relates to
getting quick access to prefetched data that saves you roundtrips, queries, and any other
sort of heavy operations. Caching is important also for writing, especially in systems with a
high volume of data to be written. By posting requests for writing to a kind of intermediate
memory structure, you decouple the main body of the application from the service in charge
of writing. Some people call this a batch update, but in the end it is nothing more than a form
of caching for data to write.

The caching API provides you with the necessary tools to build a bullet-proof caching
 strategy. When it comes to this, though, a few practical issues arise.

 Chapter 18 ASP.NET Caching 733

Should I Cache or Should I Fetch?
There’s just one possible answer to this question—it depends. It depends on the
 characteristics of the application and the expected goals. For an application that must
 optimize throughput and serve requests in the shortest possible amount of time, caching is
essential. The quantity of data you cache and the amount of time you cache it in are the two
parameters you need to play with to arrive at a good solution.

Caching is about reusing data, so data that is not often used in the lifetime of the application
is not a good candidate for the cache. In addition to being frequently used, cacheable data
is also general-purpose data rather than data that is specific to a request or a session. If your
application manages data with these characteristics, cache it with no fear.

Caching is about memory, and memory is relatively cheap. However, a bad application
 design can easily drive the application to unpleasant out-of-memory errors regardless of the
cost of a memory chip. On the other hand, caching can boost the performance just enough
to ease your pain and give you more time to devise a serious refactoring.

Sometimes you face users who claim to have an absolute need for live data. Sure, data
parked in the cache is static, unaffected by concurrent events, and not fully participating in
the life of the application. Can your users afford data that has not been updated for a few
seconds? With a few exceptions, the answer is, “Sure, they can.” In a canonical Web applica-
tion, there’s virtually no data that can’t be cached at least for a second or two. No matter
what end users claim, caching can realistically be applied to the vast majority of scenarios.
Real-time systems and systems with a high degree of concurrency (for example, a book-
ing application) are certainly an exception, but most of the time a slight delay of one or two
 seconds can make the application run faster under stress conditions without affecting the
quality of the service.

In the end, you should be considering caching all the time and filter it out in favor of direct
data access only in special situations. As a practical rule, when users claim they need live data,
you should try to provide a counterexample that proves to them that a few seconds of delay
are still acceptable and that the delay can maximize hardware and software investments.

Fetching the real data is an option, but it might be the most expensive one. If you choose
that option, make sure you really need it. Accessing cached data is usually faster if the
data you get in this way makes sense to the application. On the other hand, be aware that
 caching requires memory. If abused, it can lead to out-of-memory errors and performance
hits. Having said that, don’t be too surprised if you find out that sometimes fetching data is
 actually faster than accessing items in a busy cache. This is due to how optimized SQL Server
access has gotten these days.

734 Part IV Infrastructure of the Application

Building a Wrapper Cache Object
As mentioned, no data stored in the ASP.NET cache is guaranteed to stay there when a piece
of code attempts to read it. For the safety of the application, you should never rely on the
value returned by the Get method or the Item property. The following pattern keeps you on
the safe side:

var data = Cache["MyData"];
if (data != null)
{
 // The data is here, process it
 ...
}

The code snippet deliberately omits the else branch. What should you do if the requested
item is null? You can abort the ongoing operation and display a friendly message to the user,
or you can perhaps reload the data with a new fetch. Whatever approach you opt for, it will
hardly fit for just any piece of data you can have in the cache.

If you need the cache as a structural part of the application (rather than just for caching
only a few individual pieces of data), it has to be strictly related to the data access layer
(DAL) and the repository interfaces you have on top of that. (See Chapter 14, “Layers of an
Application.”) Depending on the pattern you prefer, you can have caching implemented
as a service in the business tier (Cache-side pattern) or integrated in the DAL and transpar-
ent to the rest of the application (Cache Through pattern). Figure 18-2 shows the resulting
 architecture in both cases.

Presentation

Application Logic

D
om

ai
n

En
tit

ie
s

Cache Service

DAL DAL Cache Service

Ca
ch

e
A

si
de

 m
od

el

Ca
ch

e
Th

ro
ug

h
m

od
el

Data Storage

FIGURE 18-2 Isolating the caching layer.

 Chapter 18 ASP.NET Caching 735

In addition, you need to consider the pluggability of the caching layer. Whether you design
it as an application service or as an integral part of the DAL, the caching service must be
 abstracted to an interface so that it can be injected in the application or in the DAL. At a
minimum, the abstraction will offer the following:

public interface ICacheService
{
 Object Get(String key);
 void Set(String key, Object data);
 ...
}

You are responsible for adding dependencies and priorities as appropriate. Here’s the
 skeleton of a class that implements the interface using the native ASP.NET Cache object:

public class AspNetCacheService : ICacheService
{
 public Object Get(String key)
 {
 return HttpContext.Current.Cache[key];
 }
 public void Set(String key, Object data)
 {
 HttpContext.Current.Cache[key] = data;
 }
 ...
}

As emphatic as it might sound, you should never use the Cache object directly from
 code-behind classes in a well-designed, ASP.NET-based layered solution.

Clearing the Cache
The .NET Framework provides no method on the Cache class to programmatically clear all
the content. The following code snippet shows how to build one:

public void Clear()
{
 foreach(DictionaryEntry elem in Cache)
 {
 string s = elem.Key.ToString();
 Cache.Remove(s);
 }
}

Even though the ASP.NET cache is implemented to maintain a neat separation between the
application’s items and the system’s items, it is preferable that you delete items in the cache
individually. If you have several items to maintain, you might want to build your own wrapper
class and expose one single method to clear all the cached data.

736 Part IV Infrastructure of the Application

Cache Synchronization
Whenever you read or write an individual cache item, from a threading perspective you’re
absolutely safe. The ASP.NET Cache object guarantees that no other concurrently running
threads can ever interfere with what you’re doing. If you need to ensure that multiple opera-
tions on the Cache object occur atomically, that’s a different story. Consider the following
code snippet:

var counter = -1;
object o = Cache["Counter"];
if (o == null)
{
 // Retrieve the last good known value from a database
 // or return a default value
 counter = RetrieveLastKnownValue();
}
else
{
 counter = (Int32) Cache["Counter"];
 counter ++;
 Cache["Counter"] = counter;
}

The Cache object is accessed repeatedly in the context of an atomic operation—increment-
ing a counter. Although individual accesses to Cache are thread-safe, there’s no guarantee
that other threads won’t kick in between the various calls. If there’s potential contention on
the cached value, you should consider using additional locking constructs, such as the C#
lock statement (SyncLock in Microsoft Visual Basic .NET).

Important Where should you put the lock? If you directly lock the Cache object, you might run
into trouble. ASP.NET uses the Cache object extensively, and directly locking the Cache object
might have a serious impact on the overall performance of the application. However, most of the
time ASP.NET doesn’t access the cache via the Cache object; rather, it accesses the direct data
container—that is, the CacheSingle or CacheMultiple class. In this regard, a lock on the Cache
object probably won’t affect many ASP.NET components; regardless, it’s a risk that I wouldn’t like
to take.

By locking the Cache object, you also risk blocking HTTP modules and handlers active in the
pipeline, as well as other pages and sessions in the application that need to use cache entries
 different from the ones you want to serialize access to.

The best way out seems to be by using a synchronizer—an intermediate but global object that
you lock before entering in a piece of code sensitive to concurrency:

lock(yourSynchronizer) {
 // Access the Cache here. This pattern must be replicated for
 // each access to the cache that requires serialization.
}

The synchronizer object must be global to the application. For example, it can be a static
 member defined in the global.asax file.

 Chapter 18 ASP.NET Caching 737

Per-Request Caching
Although you normally tend to cache only global data and data of general interest, to squeeze
out every little bit of performance you can also cache per-request data that is long-lived even
though it’s used only by a particular page. You place this information in the Cache object.

Another form of per-request caching is possible to improve performance. Working
 information shared by all controls and components participating in the processing of a
 request can be stored in a global container for the duration of the request. In this case,
though, you might want to use the Items collection on the HttpContext class (discussed in
Chapter 16, “The HTTP Request Context”) to park the data because it is automatically freed
up at the end of the request and doesn’t involve implicit or explicit locking like Cache.

Designing a Custom Dependency
Let’s say it up front: writing a custom cache dependency object is no picnic. You should have
a very good reason to do so, and you should carefully design the new functionality before
proceeding. The CacheDependency class is inheritable—you can derive your own class from
it to implement an external source of events to invalidate cached items.

The base CacheDependency class handles all the wiring of the new dependency object to the
ASP.NET cache and all the issues surrounding synchronization and disposal. It also saves you
from implementing a start-time feature from scratch—you inherit that capability from the
base class constructors. (The start-time feature allows you to start tracking dependencies at a
particular time.)

Let’s start reviewing the original limitations of CacheDependency that have led to removing
the sealed attribute on the class, making it fully inheritable.

Extensions to the CacheDependency Base Class
To fully support derived classes and to facilitate their integration into the ASP.NET caching
infrastructure, a bunch of new public and protected members have been added to the
CacheDependency class. They are summarized in Table 18-6.

TABLE 18-6 Public and Protected Members of CacheDependency
Member Description
DependencyDispose Protected method. It releases the resources used by the class.

GetUniqueID Public method. It retrieves a unique string identifier for the object.

NotifyDependencyChanged Protected method. It notifies the base class that the dependency
 represented by this object has changed.

SetUtcLastModified Protected method. It marks the time when a dependency last changed.

UtcLastModified Public read-only property. It gets the time when the dependency was
last changed.

738 Part IV Infrastructure of the Application

As mentioned, a custom dependency class relies on its parent for any interaction with
the Cache object. The NotifyDependencyChanged method is called by classes that inherit
CacheDependency to tell the base class that the dependent item has changed. In response,
the base class updates the values of the HasChanged and UtcLastModified properties. Any
cleanup code needed when the custom cache dependency object is dismissed should go into
the DependencyDispose method.

Getting Change Notifications
As you might have noticed, nothing in the public interface of the base CacheDependency
class allows you to insert code to check whether a given condition—the heart of the
 dependency—is met. Why is this? The CacheDependency class was designed to support only
a limited set of well-known dependencies—against files, time, and other cached items.

To detect file changes, the CacheDependency object internally sets up a file monitor
 object and receives a call from it whenever the monitored file or directory changes. The
CacheDependency class creates a FileSystemWatcher object and passes it an event handler.
A similar approach is used to establish a programmatic link between the CacheDependency
object and the Cache object and its items. The Cache object invokes a CacheDependency
internal method when one of the monitored items changes. What does this all mean to the
developer?

A custom dependency object must be able to receive notifications from the external data
source it is monitoring. In most cases, this is really complicated if you can’t bind to existing
notification mechanisms (such as file system monitor or SQL Server notifications). When the
notification of a change in the source is detected, the dependency uses the parent’s infra-
structure to notify the cache of the event. We’ll consider a practical example in a moment.

The AggregateCacheDependency Class
Not only can you create a single dependency on an entry, you can also aggregate
 dependencies. For example, you can make a cache entry dependent on both a disk file and
a SQL Server table. The following code snippet shows how to create a cache entry, named
MyData, that is dependent on two different files:

// Creates an array of CacheDependency objects
CacheDependency dep1 = new CacheDependency(fileName1);
CacheDependency dep2 = new CacheDependency(fileName2);
CacheDependency deps[] = {dep1, dep2};

// Creates an aggregate object
AggregateCacheDependency aggDep = new AggregateCacheDependency();
aggDep.Add(deps);
Cache.Insert("MyData", data, aggDep)

 Chapter 18 ASP.NET Caching 739

Any custom cache dependency object (including SqlCacheDependency) inherits
CacheDependency, so the array of dependencies can contain virtually any type of
dependency.

The AggregateCacheDependency class is built as a custom cache dependency object and
 inherits the base CacheDependency class.

A Cache Dependency for XML Data
Suppose your application gets some key data from a custom XML file and you don’t want
to access the file on disk for every request. So you decide to cache the contents of the XML
file, but still you’d love to detect changes to the file that occur while the application is up and
running. Is this possible? You bet. You arrange a file dependency and you’re done.

In this case, though, any update to the file that modifies the timestamp is perceived as a
 critical change. As a result, the related entry in the cache is invalidated and you’re left with no
choice other than re-reading the XML data from the disk. The rub here is that you are forced
to re-read everything even if the change is limited to a comment or to a node that is not
 relevant to your application.

Because you want the cached data to be invalidated only when certain nodes change, you
create a made-to-measure cache dependency class to monitor the return value of a given
XPath expression on an XML file.

Note If the target data source provides you with a built-in and totally asynchronous notification
mechanism (such as the command notification mechanism of SQL Server), you just use it.
Otherwise, to detect changes in the monitored data source, you can only poll the resource at a
reasonable rate.

Designing the XmlDataCacheDependency Class
To better understand the concept of custom dependencies, think of the following example.
You need to cache the inner text of a particular node in an XML file. You can define a cus-
tom dependency class that caches the current value upon instantiation and reads the file
 periodically to detect changes. When a change is detected, the cached item bound to the
dependency is invalidated.

Note Admittedly, polling might not be the right approach for this particular problem. Later on,
in fact, I’ll briefly discuss a more effective implementation. Be aware, though, that polling is a
valid and common technique for custom cache dependencies.

740 Part IV Infrastructure of the Application

A good way to poll a local or remote resource is through a timer callback. Let’s break the
procedure into a few steps:

 1. The custom XmlDataCacheDependency class gets ready for the overall functionality.
It initializes some internal properties and caches the polling rate, file name, and XPath
expression to find the subtree to monitor.

 2. After initialization, the dependency object sets up a timer callback to access the file
 periodically and check contents.

 3. In the callback, the return value of the XPath expression is compared to the previously
stored value. If the two values differ, the linked cache item is promptly invalidated.

There’s no need for the developer to specify details about how the cache dependency is
 broken or set up. The CacheDependency class takes care of it entirely.

Note If you’re curious to know how the Cache detects when a dependency is broken, read
on. When an item bound to a custom dependency object is added to the Cache, an additional
entry is created and linked to the initial item. NotifyDependencyChanged simply invalidates this
 additional element which, in turn, invalidates the original cache item.

Implementing the Dependency
The following source code shows the core implementation of the custom
XmlDataCacheDependency class:

public class XmlDataCacheDependency : CacheDependency
{
 // Internal members
 static Timer _timer;
 Int32 _pollSecs = 10;
 String _fileName;
 String _xpathExpression;
 String _currentValue;

 public XmlDataCacheDependency(String file, String xpath, Int32 pollTime)
 {
 // Set internal members
 _fileName = file;
 _xpathExpression = xpath;
 _pollSecs = pollTime;

 // Get the current value
 _currentValue = CheckFile();

 Chapter 18 ASP.NET Caching 741

 // Set the timer
 if (_timer == null) {
 var ms = _pollSecs * 1000;
 var cb = new TimerCallback(XmlDataCallback);
 _timer = new Timer(cb, this, ms, ms);
 }
 }

 public String CurrentValue
 {
 get { return _currentValue; }
 }

 public void XmlDataCallback(Object sender)
 {
 // Get a reference to THIS dependency object
 var dep = sender as XmlDataCacheDependency;

 // Check for changes and notify the base class if any are found
 var value = CheckFile();
 if (!String.Equals(_currentValue, value))
 dep.NotifyDependencyChanged(dep, EventArgs.Empty);
 }

 public String CheckFile()
 {
 // Evaluates the XPath expression in the file
 var doc = new XmlDocument();
 doc.Load(_fileName);
 var node = doc.SelectSingleNode(_xpathExpression);

 return node.InnerText;
 }

 protected override void DependencyDispose()
 {
 // Kill the timer and then proceed as usual
 _timer.Dispose();
 _timer = null;
 base.DependencyDispose();
 }
}

When the cache dependency is created, the file is parsed and the value of the XPath
 expression is stored in an internal member. At the same time, a timer is started to repeat the
operation at regular intervals. The return value is compared to the value stored in the con-
structor code. If the two are different, the NotifyDependencyChanged method is invoked on
the base CacheDependency class to invalidate the linked content in the ASP.NET Cache.

742 Part IV Infrastructure of the Application

Testing the Custom Dependency
How can you use this dependency class in a Web application? It’s as easy as it seems—you
just use it in any scenario where a CacheDependency object is acceptable. For example, you
create an instance of the class in the Page_Load event and pass it to the Cache.Insert method:

protected const String CacheKeyName = "MyData";
protected void Page_Load(Object sender, EventArgs e)
{
 if (!IsPostBack)
 {
 // Create a new entry with a custom dependency (and poll every 10 seconds)
 var dependency = new XmlDataCacheDependency(
 Server.MapPath("employees.xml"),
 "MyDataSet/NorthwindEmployees/Employee[employeeid=3]/lastname",
 10);
 Cache.Insert(CacheKeyName, dependency.CurrentValue, dependency);
 }

 // Refresh the UI
 Msg.Text = Display();
}

You write the rest of the page as usual, paying close attention to accessing the specified
Cache key. The reason for this is that because of the dependency, the key could be null.
Here’s an example:

protected String Display()
{
 var o = Cache[CacheKeyName];
 return o ?? "[No data available--dependency broken]";
}

The XmlDataCacheDependency object allows you to control changes that occur on a file and
decide which are relevant and might require you to invalidate the cache. The sample depen-
dency uses XPath expressions to identify a subset of nodes to monitor for changes.

Note I decided to implement polling in this sample custom dependency because polling is a
pretty common, often mandatory, approach for custom dependencies. However, in this particu-
lar case polling is not the best option. You could set a FileSystemWatcher object and watch for
changes to the XML file. When a change is detected, you execute the XPath expression to see
whether the change is relevant for the dependency. Using an asynchronous notifier, if one is
available, results in much better performance.

 Chapter 18 ASP.NET Caching 743

SQL Server Cache Dependency
Many ASP.NET applications query some data out of a database, cache it, and then manage
to serve a report to the user. Binding the report to the data in the cache will both reduce the
time required to load each report and minimize traffic to and from the database. What’s the
problem, then? With a report built from the cache, if the data displayed is modified in the
database, users will get an out-of-date report. If updates occur at a known or predictable
rate, you can set an appropriate duration for the cached data so that the report gets auto-
matically refreshed at regular intervals. However, this contrivance just doesn’t work if serving
live data is critical for the application or if changes occur rarely and, worse yet, randomly. In
the latter case, whatever duration you set might hit the application in one way or the other.
A too-long duration creates the risk of serving outdated reports to end users which, in some
cases, could undermine the business; a too-short duration burdens the application with
 unnecessary queries.

A database dependency is a special case of custom dependency that consists of the
 automatic invalidation of some cached data when the contents of the source database
table changes. In ASP.NET, you find an ad hoc class—SqlCacheDependency—that inherits
CacheDependency and supports dependencies on SQL Server tables. More precisely, the class
is compatible with SQL Server 2005 and later.

Taking Advantage of SQL Server Dependencies
The SqlCacheDependency class has two constructors. The first takes a SqlCommand object,
and the second accepts two strings: the database name and the table name. The following
code creates a SQL Server dependency and binds it to a cache key:

protected void AddToCache(Object data)
{
 var database = "Northwind";
 var table = "Customers";
 var dependency = new SqlCacheDependency(database, table);
 Cache.Insert("MyData", data, dependency);
}
protected void Page_Load(Object sender, EventArgs e)
{
 if (!IsPostBack)
 {
 // Get some data to cache
 var data = Customers.LoadByCountry("USA");

 // Cache with a dependency on Customers
 AddToCache(data);
 }
}

744 Part IV Infrastructure of the Application

The data in the cache can be linked to any data-bound control, as follows:

var data = Cache["MyData"] as IList<Customer>;
if (data == null)
 Trace.Warn("Null data");

CustomerList.DataTextField = "CompanyName";
CustomerList.DataSource = data;
CustomerList.DataBind();

When the database is updated, the MyData entry is invalidated and, as in the sample
 implementation provided here, the list box displays empty.

Important You get notification based on changes in the table as a whole. In the preceding
code, we’re displaying a data set that results from the following:

SELECT * FROM customers WHERE country='USA'

If, say, a new record is added to the Customers table, you get a notification no matter what the
value in the country column is. The same happens if a record is modified or deleted where the
country column is not USA.

By using a SqlCommand object in the constructor of the dependency class, you gain a finer level
of control and can notify applications only of changes to the database that modify the output of
that specific command.

Distributed Cache
Scalability is an aspect of software that came with the advent of successful Web applications.
It is strictly related to the stateless nature of the HTTP protocol so that any new requests
from the same user in the same session must be bound to the same “state” left by the last
request.

The need to “re-create” the last known good state results in an additional workload that
 saturates Web and data servers quite soon and kind of linearly as the number of users
 increases. Caching is a way to smooth the issue by providing a data store that sits nearer to
the user and doesn’t require frequent roundtrips to central servers.

The ASP.NET Cache object has a number of powerful and relevant capabilities. Unfortunately,
today’s business needs raised the bar a little higher. As a result, the Cache object is limited
today because it is bound to a worker process and a single machine. The Cache object
doesn’t span multiple machines like in a Web farm; its amount of memory affects only a
single machine and can’t be scaled out horizontally. Enter distributed caching.

The power of a distributed cache is in its design, which distributes load and data on multiple
and largely independent machines. Implemented across multiple servers, a distributed cache
is scalable by nature but still gives the logical view of a single cache. Moreover, you don’t

 Chapter 18 ASP.NET Caching 745

need high-end machines to serve as cache servers. Add this to cheaper storage and faster
network cards and you get the big picture—distributed caching these days is much more
affordable than only a few years ago. Figure 18-3 shows the abstraction that a distributed
caching layer provides to applications.

Data Data Data Data Data

(Distributed) Caching Layer

FIGURE 18-3 Overall design of a distributed cache.

Note In a previous edition of this book, in the same chapter about caching, I had arguments
against the widespread use of a distributed cache. Only a few years ago, the perception of
 scalability was different. It was recognized as a problem, but most of the time it could be
 resolved in the scope of the single Web server.

Today, it is different—not only do you welcome the possibility of caching on multiple machines,
but you also demand an ad hoc layer to do the hard work of data synchronization and retrieval.
This is referred to as a distributed caching system.

Features of a Distributed Cache
As mentioned, lack of scalability is the fundamental problem addressed by a distributed
cache. Compared to a classic database, a distributed cache is much easier and cheaper to
scale and replicate. It is not coincidental that there is a growing interest in NoSQL solutions,
which are essentially distributed stores that can be easily and effectively scaled horizontally.
Ultimately, a distributed cache and most NoSQL frameworks offer nearly the same set of
features.

746 Part IV Infrastructure of the Application

High Availability
Commonly based on a cluster of cache servers, distributed cache gains scalability through
the addition of new servers and high availability (H/A) through replication of the content on
each server. If one cache server goes down, no data is lost because another copy on another
server is immediately available to the application.

Although high availability remains a natural attribute of a distributed caching system, the real
effectiveness of replication has to be measured against the real behavior of the application.
Replication is great for applications that do a lot of reads. As you add more servers, you add
more read capacity to your cache cluster and improve the responsiveness and availability of
the application.

At the same time, a heavily replicated cache is not desirable for write-intensive applications.
If the application updates the cache frequently, maintaining multiple synchronized copies of
the data becomes ineffective.

Topology
The topology of the distributed cache plays an important role in determining its success.
There are two main topologies: the replicated cache and the partitioned cache.

In a replicated cache topology, the various servers in the cluster hold a private copy of the
data. In this way, the reliability is high and users never experience loss of data, even when a
server goes down. This cache topology is excellent for read-intensive apps, but it turns into
overhead for write-intensive applications.

In a partitioned cache topology, the entire content of the cache is partitioned among the
various servers. This design represents a good compromise between availability and per-
formance. This is the first option to consider in scenarios where read/write operations are
balanced.

A popular variation of this topology privileges high availability and is often referred to as
partitioned cache with H/A. In this case, each partition is also replicated and servers contain
their regular data partition plus a copy of another partition.

A distributed caching system is not necessarily limited to just one tier. It can be complement-
ed with a client cache that lives close to the user and keeps in-process a copy of frequently
used data from the cache. When used, such a client cache is usually read-only and not kept
in sync with the rest of the caching system.

 Chapter 18 ASP.NET Caching 747

Freshness of Data
By design, the cache is a place for temporary information that needs be replaced periodically
with up-to-date data. Of high importance in the feature list of a distributed cache is the
 ability to specify how long data should stay in the cache. Common expiration policies are
based on an absolute time (for example, “Remove items at noon or in one hour”) or a sliding
usage time (for example, “Remove items if not used for a given period”).

Most distributed caches are in-memory and do not persist their content to disk. So in most
situations, memory is limited and the cache size cannot grow beyond a certain fixed limit.
When the cache reaches this size, it should start removing cached items to make room for
new ones, a process usually referred to as performing evictions. Least recently used (LRU) and
least frequently used (LFU) are the two most popular algorithms for data eviction.

Cache dependencies, both on other cached items and external resources, are also desirable
features to have in a distributed cache. Especially when you have domain data in the cache,
you might want to search for data using a more flexible approach than using a simple key.
Ideally, a LINQ-based query language for cached items is a big plus.

Integration with the Data Access Layer
Finally, read-through and write-through (or write-behind) capabilities qualify a caching
 solution as a top-quality solution. Read-through capabilities refer to the cache’s ability to
 automatically read data from a configured data store in case of a cache miss.

Write-through capabilities, instead, enable the cache to automatically write data to the
 configured data store whenever you update the cache. In other words, the cache, not your
application, holds the key to the data access layer. The difference between write-through
and write-behind capabilities is that in the former case the application waits until both the
cache and data store are updated. In write-behind (or write-back) mode, the application
updates the cache synchronously but then the cache ripples changes to the database in an
 asynchronous manner.

This is a list of the features one would reasonably expect from a distributed cache. Not all
products available today, however, offer these features to the same extent. Let’s see what the
Microsoft distributed caching service currently offers.

AppFabric Caching Services
Windows Server AppFabric consists of a few extensions to Microsoft Windows Server to
 improve the application infrastructure and make it possible to use it to run applications that
are easier to scale and manage.

748 Part IV Infrastructure of the Application

Currently, Windows Server AppFabric has two extensions: AppFabric Caching Services
and AppFabric Hosting Services. The former is Microsoft’s long-awaited distributed cache
 solution; the latter is the centralized host environment for services, and specifically services
created using Windows Workflow Foundation. Let’s focus on caching services.

Fast Facts
AppFabric Caching Services (ACS) is an out-of-process cache that combines a simple
 programming interface with a clustered architecture. ACS should not be viewed as a mere
(distributed) replacement for the native ASP.NET Cache object. When you have a very slow
data access layer that assembles data from various sources (for example, relational databases,
SAP, mainframes, and documents) and when you have an application deployed on a Web
farm, you definitely need a caching layer to mediate access to data and distribute the load of
data retrieval on an array of servers.

The plain old Cache object of ASP.NET is simply inadequate and, in similar scenarios, you are
encouraged to use ACS in lieu of Cache. Keep in mind, however, that although endowed with
a similar programming interface, ACS currently lacks some of the more advanced capabilities
of the ASP.NET Cache, such as dependencies, sliding and absolute expiration, and removal
callbacks. At the same time, it remains as simple to use as a hashtable, offers a scalable and
reliable infrastructure, is configurable via Windows PowerShell, and presents some develop-
er-oriented features that are not in ASP.NET, such as programmatic access to cache-related
properties of cached items (such as priority or expiration) and event propagation (such as
notifying client apps of changed items).

Architecture of Caching Services
ACS is articulated in two levels: the client cache and distributed cache. The client cache is
a component to install on the Web server machine and represents the gateway used by
ASP.NET applications to read and write through ACS. The distributed cache includes some
cache server machines that are each running an instance of the AppFabric Caching Services
and storing data according to the configured topology. In addition, the client cache can
optionally implement a local, server-specific cache that makes access to selected data even
faster. The data found in this local cache is not kept in sync with the data in the cluster.
Figure 18-4 provides an overall vision of AppFabric Caching Services.

 Chapter 18 ASP.NET Caching 749

Server 1

Cache Client
AppFabric

Server 2

Cache Client
AppFabric

Server N

Cache Client
AppFabric

AppFabric
Caching
Services

AppFabric
Caching
Services

AppFabric
Caching
Services

AppFabric
Caching
Services

AppFabric
Caching
Services

Data Data Data Data Data

Configuration

Configuration

Web Farm

FIGURE 18-4 Architecture of AppFabric Caching Services.

The configuration script for the servers in the cache cluster contains the name of the cluster
and general settings such as topology and data eviction policies. In addition, the configura-
tion contains the list of servers and relative names and ports. Each service is configured to
use two main ports: one to communicate with the client (cachePort) and one to communicate
their availability to neighbors (clusterPort). Configuration information for the cluster is saved
in one location, which can be an XML file on a shared network folder, a SQL Server database,
or a custom store. Here’s an example excerpted from an XML file (clusterconfig.xml):

<configuration>
 <configSections>
 <section name="dataCache"
 type="Microsoft.ApplicationServer.Caching.DataCacheSection,
 Microsoft.ApplicationServer.Caching.Core, ..." />
 </configSections>
 <dataCache size="Small">
 <hosts>
 <host replicationPort="22236"
 arbitrationPort="22235"
 clusterPort="22234"

750 Part IV Infrastructure of the Application

 hostId="879796007"
 size="1007"
 leadHost="true"
 account="My-Laptop\DinoE"
 cacheHostName="AppFabricCachingService"
 name="My-Laptop"
 cachePort="22233" />
 </hosts>
 </dataCache>
</configuration>

Each server can have one or multiple caches of data. A data cache is simply a logical way of
grouping data. Each enabled server has one default data cache (which is unnamed), but you
are allowed to create your own. Data caches can be individually configured.

Each data cache is optionally made of regions. A region is a logical way of grouping data
within a given data cache. Each region is defined programmatically on a given server and,
unlike data caches, they do not span multiple servers. Finally, you have cached objects. A
cached object is simply the data you store either directly in the data cache or in a region.
Figure 18-5 provides an illustration.

AppFabric

Region
“Computed Data”

Region
“Customers”

(Unnamed)

ProductCatalog

AppFabric AppFabric

FIGURE 18-5 Data caches and regions.

In Figure 18-5, you see that named and unnamed caches can span multiple servers,
 whereas optional regions are specific to just one server and are usually created via Windows
PowerShell. As a developer, you are not interested in the location of a region; you only

 Chapter 18 ASP.NET Caching 751

need to know whether it exists and what data it contains. In this way, you can provide more
 information to ACS and make it return data more quickly.

Note To be precise, in ACS an unnamed cache is not really unnamed. It is just named in a
default way and must still be explicitly created via the administration console of Windows
PowerShell. The “unnamed” cache gets the name of “default.” The only difference between this
and a regular named cache is that you can gain access to it using an additional shortcut method
on the cache factory object—GetDefaultCache.

Client-Side Configuration of Caching Services
To use ACS in your ASP.NET pages, you need to configure the Web server environment first.
This requires adding a section to the application’s web.config file. Here’s a snippet:

<dataCacheClient>
 <localCache isEnabled="false" />
 <hosts>
 <host name="Server01" cachePort="22233" />
 ...
 </hosts>
</dataCacheClient>

Obviously, you must first have available a bunch of AppFabric assemblies on the Web server
so that you can safely declare the new dataCacheClient section in the configuration. For
some reason, the ACS assemblies don’t show up in the Microsoft Visual Studio list of avail-
able assemblies and you have to catch them yourself in the folds of the %System%\AppFabric
directory. You need to pick up two assemblies: Microsoft.ApplicationServer.Caching.Core and
Microsoft.ApplicationServer.Caching.Client.

<configuration>
 <configSections>
 <section name="dataCacheClient"
 type="Microsoft.ApplicationServer.Caching.DataCacheClientSection,
 Microsoft.ApplicationServer.Caching.Core"
 allowLocation="true"
 allowDefinition="Everywhere" />
 </configSections>
 ...
</configuration>

The dataCacheClient section specifies the desired deployment type, the list of hosts that
 provide cache data, and any optional settings regarding the local cache.

An ACS client can connect to all listed hosts. The ACS infrastructure tracks the placement
of cached objects across all hosts and routes your client straight to the right host when a
 request for a particular cached object is made.

752 Part IV Infrastructure of the Application

Important Note that some old documentation and literature still refer to this feature as one of
two possible deployment strategies: routing and simple. In the final version of ACS, the simple
deployment mode is no longer supported. The drawback is that the same stale documentation
and literature suggests you add a deployment attribute to the dataCacheClient section, which
will cause a runtime configuration exception as the code attempts to gain access to the cache
 factory.

If you enable the local cache, any retrieved objects are saved in a local cache within the ACS
client, thus forming an additional layer of virtual memory. The local cache takes precedence
over data in the cluster. Note that ACS performs no automatic checks on data in the cluster
to detect possible recent changes that occurred for the objects in the local cache. In other
words, by using the local cache you trade speed of data retrieval for data accuracy.

Note To install AppFabric Caching Services on a machine intended to serve as a cache cluster,
you also need to have IIS 7 Manager for Remote Administration enabled on that machine.

Programming Caching Services
Let’s look at some sample code. The entry point in ACS is the cache factory object. The
 factory, then, will gain you access to any data cache available in the system. The simplest way
to get a factory is shown here:

var factory = new DataCacheFactory();

The factory needs to consume some information to be successfully instantiated. You can
 provide configuration settings as a constructor parameter or let the class figure it out itself
from the configuration file. Here’s the fluent code you can use to initialize the factory without
using the web.config file:

var servers = new List<DataCacheServerEndpoint>(1)
 {
 new DataCacheServerEndpoint("Server01", 22233)
 };
var configuration = new DataCacheFactoryConfiguration
 {
 Servers = servers,
 LocalCacheProperties = new DataCacheLocalCacheProperties()
 };
var factory = new DataCacheFactory(configuration);

The next steps are straightforward. First, you get a data cache and then you start reading
and writing data to it. A data cache must be created administratively using the Windows
PowerShell console. Here’s the command you need to create a named cache. (As mentioned,
you use the name default to create the default unnamed cache.)

 Chapter 18 ASP.NET Caching 753

New-Cache –cachename yourCache

In this way, you get a named cache with the same default settings as the default unnamed
cache. Of course, you can express additional parameters on the command line. For example,
the following line creates a cache with no eviction policy enabled:

New-Cache –cachename yourCache –eviction:none

To get command line information, you can type the following:

New-Cache -?

If the requested cache is not available, the constructor of DataCacheFactory just throws an
exception:

var factory = new DataCacheFactory();
var dinoCache = factory.GetCache("Dino");
var defaultCache = factory.GetDefaultCache();

From this point on, you can use the object returned by GetCache and GetDefaultCache in
much the same way you would use the native Cache object of ASP.NET. With just a little
 difference, you now can access information stored across a (expansible) cluster of servers:

dinoCache[key] = value;

Of course, you might want to call the factory and get cache objects only once in the
 application, preferably at startup. Unlike to the ASP.NET Cache, you don’t have dependencies,
but you do have regions, search capabilities, and a rich event model (through which you can
simulate some of the ASP.NET cache dependencies).

Note Interestingly, after you install AppFabric Caching Services, you also have a new (and free)
out-of-process session provider that uses caching services to store your session data. You might
want to check out the documentation to find out more details.

Other Solutions
As a matter of fact, most distributed applications today need distributed caching and just
can’t afford the native ASP.NET Cache object. AppFabric Caching Services is a solution that
addresses many scenarios, but overall it is not feature-complete yet from the perspective of a
realistic distributed cache. What other solutions are available?

Memcached
Memcached (http://memcached.org) is a popular, open-source distributed cache widely
used by some popular social networks. Facebook is the most illustrious example. Technically

http://memcached.org

754 Part IV Infrastructure of the Application

speaking, Memcached can be hosted on a number of platforms, including Windows.
Memcached, however, was originally created for Unix-based machines. For this reason, it’s
 often associated with PHP and, in general, with the LAMP stack (where LAMP stands for
Linux, Apache, MySQL, and PHP/Python/Perl).

Memcached runs as a background service on a variety of servers and communicates with the
outside world through a configured port (usually port 11211). Client applications employ ad
hoc libraries to contact a Memcached-equipped server and read or write data. A client can
connect to any available servers; servers, on the other hand, are isolated from one another.
The server stores data in memory and applies an eviction policy when it runs short of RAM.

A .NET library that can be used to talk to a Memcached installation (regardless of the host
environment) can be found at http://sourceforge.net/projects/memcacheddotnet.

Note Is it Memcache or Memcached? Both names seem to be frequently used to mean the same
product. The product name is Memcache, but because on Unix it runs as a daemon, the program
file has been named with a trailing “d” just to stay consistent with Unix naming conventions for
daemons. It soon became common to use Memcached to refer to either the product or the ex-
ecutable. A subtler question is, how should you pronounce that? Should it be like the past form
of “to cache” or like it would be in a Unix environment—that is, memcache-dee? In the end, it’s
up to you!

SharedCache
Written in C# and entirely based on .NET managed code, SharedCache (sharedcache.com) is
another open-source distributed and replicated cache for use in server farms. SharedCache
supports three deployment scenarios: a partitioned cache, a replicated cache, and a single
instance.

With a partitioned cache, the entire data set is split across the active servers that form the
cluster of cache server machines. With a replicated cache, each cache server contains the
 entire data set. In this case, the runtime infrastructure is responsible for keeping data over
the servers in sync. Finally, the single instance mode entails you having a single cache server
but host it out of process with respect to the client Web application. Moving from one con-
figuration to another doesn’t require code refactoring; it’s simply a matter of configuration.

Commercial Solutions
With good products available for free or under open-source licenses, why should you ever
consider commercial solutions, then? The answer is simple: commercial solutions offer more
advanced features, capabilities and, especially, support. At their core, both commercial and
free solutions provide a fast and scalable caching layer; the difference is in the extras that are
provided. If you’re OK with the core features you get from ACS or the community edition of

http://sourceforge.net/projects/memcacheddotnet

 Chapter 18 ASP.NET Caching 755

Memcached, by all means stick to that. Otherwise, be ready to spend some good money for
the extras. Table 18-7 lists a few products currently available.

TABLE 18-7 A Quick List of Commercially Distributed Cache Products

Product Description
NorthScale Memcached
Server

It’s the leading commercial distribution of Memcached as worked out
by some of the key contributors to the original open-source project.
Enhancements include security, dynamic scaling, packaged setup, and
Web-based management capabilities. From the same group, you can also
get Membase Server, which is a NoSQL database backed by Memcached.
For more information, visit http://www.membase.com/ products-and-
services/memcached.

ScaleOut StateServer Part of a suite of products aimed at making enterprise applications more
scalable, StateServer runs as a service on every machine in your server
farm and stores data objects in memory while making them globally ac-
cessible across the farm within its distributed data grid. Its top selling
points are the patented technology for H/A, its comprehensive API, and
the outstanding StateServer console for administrative and management
tasks.
For more information, visit http://www.scaleoutsoftware.com/ products/
scaleout-stateserver.

AlachiSoft NCache It presents itself as the distributed version of the ASP.NET native Cache
object with a ton of extra features, including a LINQ-based query lan-
guage, rich eviction functionalities, event notification, and dynamic
 clustering. As a plus, it also has an Express version that is free for up
to two cache servers running .NET 3.5. The NCache engine is also ex-
posed as a second-level caching layer for both NHibernate and Entity
Framework 4 and as an extension to the Enterprise Library Caching Block
and the Cache provider mechanism of ASP.NET 4.
For more information, visit http://www.alachisoft.com/ncache.

Caching ASP.NET Pages
The concept of a Web cache is probably as old as the Web itself. Don’t worry if you’re not
familiar with this term; you certainly know very well at least one kind of Web cache—the
browser’s local cache.

Web sites and applications rely on the services provided by the Web server, which essentially
receives requests and sends out responses. Generally speaking, a Web cache is something
that sits in between a Web server and a client browser and gently takes the liberty of serving
some requests without disturbing the Web server at the back end. Fundamental reasons for
installing a Web cache are to reduce network traffic and to reduce latency.

The most popular type of Web cache is the browser cache. Another example of a Web cache
is a proxy server that, deployed on the network, has requests and responses routed to it

http://www.membase.com/�products-and-services/memcached
http://www.membase.com/�products-and-services/memcached
http://www.membase.com/�products-and-services/memcached
http://www.scaleoutsoftware.com/�products/scaleout-stateserver
http://www.scaleoutsoftware.com/�products/scaleout-stateserver
http://www.alachisoft.com/ncache

756 Part IV Infrastructure of the Application

to cache on a larger scale than the local browser. A proxy cache is recommended for large
 organizations where many users might be requesting the same pages from a bunch of sites.
The beneficial effects of a proxy cache expand, then, to the entire organization.

A Web cache stores representations of requested resources (such as script files, images, and
style sheets), and it applies a few simple rules to determine whether it can serve the request
right away or whether the resource has to be requested by the origin server. In general, all
requests are subject to Web caching. At the same time, each response that serves a given
resource can contain instructions for the Web cache regarding if and how to cache the
resource.

Let’s see how ASP.NET pages interact with the browser cache.

ASP.NET and the Browser Cache
All Web browsers look into their cache before making a request for a given URL. ASP.NET
requests are no exception. This means that if the content of the requested ASP.NET page is
available on the client (and valid), often no request is made to the server. However, every
time you make a change to the source ASPX file on the server, the next request for that page
will get the update. If you make a change to a JavaScript file, instead, you likely will have to
wait a few hours or just manually clean the local browser cache to get the update. Let’s try to
understand how things work under the hood.

Typical Behavior of the Browser Cache
First and foremost, browsers won’t save any responses that explicitly prohibit the use of the
cache. Furthermore, browsers won’t save any responses that come from a secure channel
(HTTPS) or that require authentication.

If the requested URL doesn’t have a match in the local cache, the browser just sends the
request on to the server. Otherwise, if a match is found, the browser checks whether the
cached representation of the requested resource is still valid. A valid representation is a rep-
resentation that has not expired. Valid representations (also referred to as fresh representa-
tions) are served directly from the cache without any contact with the server.

The browser uses HTTP headers to determine whether the representation is fresh or stale.
The Expires HTTP header indicates the absolute expiration date of the resource. The max-age
HTTP header indicates for how long the representation is fresh. If the resource is stale, the
browser will ask the origin server to validate the representation. If the server replies that a
newer resource exists, a new request is made. Otherwise, the saved representation is served.

These simple rules express the behavior of Web caches—both browser cache and proxy
cache. If ASP.NET pages and JavaScript files behave differently, the difference is all in the
HTTP headers that accompany them.

 Chapter 18 ASP.NET Caching 757

Typical Behavior of an ASP.NET Page
An ASP.NET page is a dynamic resource, meaning that its content might be different even
when the requesting URL is the same. This structural attribute makes an ASP.NET page a non-
cacheable resource. An image that represents a company’s logo or a script file, on the other
hand, is a much more static type of resource and is inherently more cacheable.

By default, an ASP.NET page is cacheable by browsers but not by proxy servers. However,
an ASP.NET page has no expiration set and subsequently is always stale. For this reason, any
request you make for an ASPX resource will always result in an immediate refetch from the
server as if the page was never cached. Figure 18-6 shows this.

FIGURE 18-6 ASPX pages are always fetched from the server.

The screen shot shows that default.aspx is requested as usual, whereas cascading style sheets
(CSS), images, and scripts are checked and served from the local cache because they are not
modified.

The default behavior of the ASP.NET page results from a similar payload and especially from
the Cache-Control header.

Cache-Control private
Content-Type text/html; charset=utf-8
Server Microsoft-IIS/7.5
X-AspNet-Version 4.0.30319
X-Powered-By ASP.NET
Date Thu, 02 Dec 2010 17:56:06 GMT
Content-Length 12315

You can change at will the caching settings for any ASPX page. One of the tools you can use
for doing so is the @OutputCache directive that I’ll cover in just a moment.

Typical Behavior of Static Resources
Typically, static resources are served with a relatively long lifetime, with the goal of staying in
the cache as much as possible. Obviously, developers as well as Web masters are ultimately
responsible for deciding about the maximum age allowed for a given set of resources.
For static resources, you can set HTTP headers from the Web server (for example, IIS)
 management console. (See Figure 18-7.)

758 Part IV Infrastructure of the Application

FIGURE 18-7 Typical response headers for a static resource.

The figure shows the response headers of a JPEG file, which is given about a month of life
in the browser cache. Modern Web servers add an ETag header, which represents a hash
 calculated on the content of the resource. They also include the Last-Modified header with
the timestamp of the server resource. When the resource gets stale and both the ETag
 header and timestamp match, you can be really sure that the resource is still the same.

Making ASP.NET Pages Cacheable
As mentioned, by default ASP.NET pages are not served from any cache, neither the browser
cache nor some proxy cache in the middle. This behavior is inspired by the fact that an
ASP.NET page, in general, is a dynamic resource whose content might change frequently.
There are many situations, however, where it is acceptable for a page response to be a little
stale if this brings significant performance advantages. Want an example?

Think of an e-commerce application and its set of pages for the products catalog. These
pages are relatively expensive to create because they could require one or more database
calls and likely some form of data join. All things considered, a page like this could easily cost
you a few million CPU cycles. Why should you regenerate this same page a hundred times
per second? Product pages tend to remain the same for weeks and are rarely updated more
than once per day.

A much better strategy is to create the page once, cache it somewhere, and give the page
response a maximum duration. When the cached page becomes stale, the first incoming
 request will be served in the standard way, running the page’s code, and the new page out-
put will be cached for another period until it also becomes stale.

ASP.NET page output caching is the feature that allows you to control the cache-related
behavior of the page. Output caching can take place at two levels: for entire pages or for
portions of the page. Page caching is smart enough to let you save distinct output based on
the requesting URL, query string, or form parameters, and it lets you choose the location and

 Chapter 18 ASP.NET Caching 759

duration of the cache. The console through which you control all of this is the @OutputCache
directive.

The @OutputCache Directive
Just like other page directives, @OutputCache goes at the top of the ASP.NET page. The
directive allows you to specify a handful of attributes, a couple of which—Duration and
VaryByParam—are mandatory. The Duration attribute indicates in seconds how long the
page output should stay in the cache. The VaryByParam attribute allows you to vary the
cached output depending on the GET query string or form POST parameters. The following
declaration indicates the page should stay in the cache for one minute regardless of any GET
or POST parameters:

<%@ OutputCache Duration="60" VaryByParam="None" %>

For frequently requested pages and relatively static pages, the @OutputCache directive is
a real performance booster. With a shorter duration, even limited to one second or two, it
 provides a way to speed up the entire application.

Available attributes indicate the location of the cache, its duration, and the arguments to use
to vary page caching. The list of supported attributes is shown in Table 18-8. Note that the
directive can be applied to both pages (.aspx) and user controls (.ascx). Note that some of the
attributes are valid in one case but not the other.

TABLE 18-8 Attributes of the @OutputCache Directive
Attribute Applies to Description
CacheProfile Page Associates a page with a group of output caching

 settings specified in the web.config file. (More details
about this appear later in the chapter.)

Duration Page, User control The time, in seconds, that the page or user control is
cached.

Location Page Specifies the location (browser, proxy, or server) where to
store the output of a page. The attribute takes its value
from the OutputCacheLocation enumeration.

NoStore Page Indicates whether to send a Cache-Control:no-store
header to prevent browser-side storage of the page
 output.

Shared User control Indicates whether the user control output can be shared
with multiple pages. It is false by default.

SqlDependency Page, User control Indicates a dependency on the specified table on a given
SQL Server database. Whenever the contents of the table
changes, the page output is removed from the cache.

VaryByControl User control A semicolon-separated list of strings that represent
properties of the user control. Each distinct combina-
tion of values for the specified properties will originate a
 distinct copy of the page in the cache.

760 Part IV Infrastructure of the Application

Attribute Applies to Description
VaryByCustom Page, User control A semicolon-separated list of strings that lets you

 maintain distinct cached copies of the page based on the
browser type or user-defined strings.

VaryByHeader Page A semicolon-separated list of HTTP headers.

VaryByParam Page, User control A semicolon-separated list of strings representing
query string values sent with GET method attributes, or
 parameters sent using the POST method.

Note that the VaryByParam attribute is mandatory. If you omit it, a runtime exception is
 always thrown. However, if you don’t need to vary by parameters, set the attribute to None.
The empty string is not an acceptable value for the VaryByParam attribute.

Choosing a Location for the Page Output
Among other things, you use the @OutputCache directive to decide where the page output
should be cached. In general, it can go in three different locations, one not necessarily ex-
cluding the other. The page can be cached on the client (the browser cache), on the IIS Web
server, and even by an intermediate proxy server. The various options are listed in Table 18-9.
They come from the OutputCacheLocation enumerated type.

TABLE 18-9 Output Cache Locations
Location Cache-

Control
Expires Description

Any Public Set according to
the value of the
duration attribute.

The page is cached everywhere, in the browser as
well as in any intermediate proxy. In addition, it is
also cached on the Web server according to the
current output cache provider.

Client Private Set according to
the value of the
duration attribute.

The page is cached only on the browser. It is
ignored by any intermediate proxy, and it is
not processed by any output cache provider
 registered in the ASP.NET application.

DownStream Public Set according to
the value of the
duration attribute.

The page can be cached on the browser and
by any intermediate cache-enabled proxies. It
won’t be processed by any output cache provider
 registered in the ASP.NET application.

None No-
Cache

–1 Also, the Pragma header is set to No-Cache. As a
result, the page is never served from any cache.

Server No-
Cache

–1 Also, the Pragma header is set to No-Cache. The
page is cached only by the output cache provider
currently registered in the ASP.NET application.

ServerAndClient Private Set according to
the value of the
duration attribute.

The page is cached on the browser, and it is also
processed by the output cache provider currently
registered in the ASP.NET application. It will be
ignored by any proxy in the middle.

 Chapter 18 ASP.NET Caching 761

When the cache-control header is public, ASP.NET also emits the header max-age set to the
same value as the duration attribute. Expires and max-age play the same role except that the
former requires an absolute date and time (that has to be parsed by browsers and proxies),
whereas the latter just indicates the number of seconds to wait. In general, when both Expires
and max-age are specified, max-age wins.

The value of No-Cache assigned to the cache-control HTTP header instructs the browser to
check with the server as to the freshness of the page before serving it. However, in combi-
nation with Expires set to –1, it indicates that the page is stale and subsequently needs be
refetched. The net effect is the same as if the page was never cached. The No-Store value, on
the other hand, instructs the browser not to save the resource locally. If the page comes over
HTTPS, however, it will never be cached locally.

In addition to browser and proxy caches, I mentioned server-side caching. I’ll return to that in
a moment; for now, it suffices to say that it is yet another level of page-output caching spe-
cific to ASP.NET. A special component—the page output provider—will capture the output
of a page and cache it somewhere on the server. The default provider caches pages inside
the ASP.NET Cache object in the memory space of the worker process (and machine) that
is currently serving the request. As you can see, this solution is not ideal if you have a Web
farm where there’s no guarantee that subsequent requests for the same page are served by
the same machine. If you’re running a Web farm, you might want to consider replacing the
default provider with the output cache provider made available by the AppFabric Caching
Services.

Choosing a Duration for ASP.NET Page Output
When the output caching service is active on a page, the Duration attribute indicates the
number of seconds that the caching system will maintain an HTML-compiled version of the
page. Next, requests for the same page, or for an existing parameterized version of the page,
will be serviced while bypassing most of the ASP.NET pipeline. As mentioned, this process has
two important repercussions—no authentication is possible and no code is run, meaning that
no page events are fired and handled and no state is updated.

A fair value for the Duration attribute depends on the application. It can be a few days or a
few hours if the page doesn’t need to be updated frequently. In general, a short duration
(say, just a few seconds) can always be useful also for applications that claim live data all the
time.

IIS Kernel Caching
In IIS 6 and newer versions, you have the possibility of telling IIS to cache the page output
for you without involving the ASP.NET runtime. This feature has tremendous potential and
can dramatically improve the performance of a Web server, as long as enough of the content
 being served is cacheable.

762 Part IV Infrastructure of the Application

The great news for ASP.NET developers is that no code changes are required to benefit from
kernel caching, except for the @OutputCache directive. You enable kernel caching adminis-
tratively from within the IIS Manager. When both output caching and IIS kernel caching are
enabled, a kernel-level driver in IIS intercepts any incoming requests and, if the response
was previously cached, it serves them by directly flushing the cached data from wherever
the output provider in use had stored it. As this happens at the kernel level, there’s no
need to make any context switch to user mode, which results in a remarkable performance
 improvement—about one tenth of the time it would take in classic user mode.

On a high-volume Web site, an output cache duration of only a few seconds can make a
huge difference for the overall throughput of a Web server. There’s more to know about
 kernel caching, though. First and foremost, kernel caching is available only for pages
 requested through a GET verb. No kernel caching is possible on postbacks. Furthermore,
pages with VaryByParam and VaryByHeader attributes set are also not stored in the kernel
cache. Finally, note that ASP.NET Request/Cache performance counters will not be updated
for pages served by the kernel cache.

Adding a Database Dependency to Page Output
The SqlDependency attribute is the @OutputCache directive’s interface to the
SqlCacheDependency class that we discussed earlier. When the SqlDependency attribute is
set to a Database:Table string, a SQL Server cache dependency object is created. When the
dependency is broken, the page output is invalidated and the next request will be served
by pushing the request through the pipeline as usual. The output generated will be cached
again.

<% @OutputCache Duration="15" VaryByParam="none"
 SqlDependency="Northwind:Employees" %>

A page that contains this code snippet has its output cached for 15 seconds or until a record
changes in the Employees table in the Northwind database. Note that the Northwind string
here is not the name of a database—it’s the name of an entry in the <databases> section of
the configuration file. That entry contains detailed information about the connection string
to use to reach the database. You can specify multiple dependencies by separating multiple
Database:Table pairs with a semicolon in the value of the SqlDependency attribute.

Important The more you move toward using layers in your ASP.NET solution (as discussed in
Chapter 14), the less you need features like SQL dependency, which build their effectiveness
on top of a tight form of coupling between ASP.NET pages and database details. The need of
having a dependency between ASP.NET pages and stored content remains, but you can handle
that using dependencies on cached items. This is one of the extra features that commercial
 distributed caches offer over most open-source solutions.

 Chapter 18 ASP.NET Caching 763

The HttpCachePolicy Class
The HttpCachePolicy class is a programming interface alternative to using the @OutputCache
directive. It provides direct methods to set cache-related HTTP headers, which you could also
control to some extent by using the members of the HttpResponse object.

Properties of the HttpCachePolicy Class
Table 18-10 shows the properties of the HttpCachePolicy class.

TABLE 18-10 HttpCachePolicy Class Properties
Property Description
VaryByHeaders Gets an object of type HttpCacheVaryByHeaders, representing the list of all

HTTP headers that will be used to vary cache output

VaryByParams Gets an object of type HttpCacheVaryByParams, representing the list of
 parameters received by a GET or POST request that affects caching

When a cached page has several vary-by headers or parameters, a separate version of the
page is available for each HTTP header type or parameter name.

Methods of the HttpCachePolicy Class
Table 18-11 shows the methods of the HttpCachePolicy class.

TABLE 18-11 HttpCachePolicy Class Methods
Method Description
AddValidationCallback Registers a callback function to be used to validate the

page output in the server cache before returning it.

AppendCacheExtension Appends the specified text to the Cache-Control HTTP
header. The existing text is not overwritten.

SetAllowResponseInBrowserHistory When this setting is true, the response is available
in the browser’s History cache, regardless of the
HttpCacheability option set on the server.

SetCacheability Sets the Cache-Control HTTP header to any of the values
taken from the HttpCacheability enumeration type.

SetETag Sets the ETag header to the specified string. The ETag
header is a unique identifier for a specific version of a
document.

SetETagFromFileDependencies Sets the ETag header to a string built by combining and
then hashing the last modified date of all the files upon
which the page is dependent.

SetExpires Sets the Expires header to an absolute date and time.

SetLastModified Sets the Last-Modified HTTP header to a particular date
and time.

764 Part IV Infrastructure of the Application

Method Description
SetLastModifiedFromFileDependencies Sets the Last-Modified HTTP header to the most recent

timestamps of the files upon which the page is depen-
dent.

SetMaxAge Sets the max-age attribute on the Cache-Control header
to the specified value. The sliding period cannot exceed
one year.

SetNoServerCaching Disables server output caching for the current response.

SetNoStore Sets the Cache-Control: no-store directive.

SetNoTransforms Sets the Cache-Control: no-transforms directive.

SetOmitVaryStar If set to true, causes HttpCachePolicy to ignore the *
value in VaryByHeaders.

SetProxyMaxAge Sets the Cache-Control: s-maxage header.

SetRevalidation Sets the Cache-Control header to either must-revalidate
or proxy-revalidate.

SetSlidingExpiration Sets cache expiration to sliding. When cache expiration
is set to sliding, the Cache-Control header is renewed at
each response.

SetValidUntilExpires Specifies whether the ASP.NET cache should ignore
HTTP Cache-Control headers sent by some browsers to
evict a page from the cache. If this setting is true, the
page stays in the cache until it expires.

SetVaryByCustom Sets the Vary HTTP header to the specified text string.

Most methods of the HttpCachePolicy class let you control the values of some HTTP headers
that relate to the browser cache. The AddValidationCallback method, on the other hand,
 provides a mechanism to programmatically check the validity of page output in the server
cache before it is returned from the cache.

Server Cache-Validation Callback
Before the response is served from the ASP.NET cache, all registered handlers are given a
chance to verify the validity of the cached page. If at least one handler marks the cached
page as invalid, the entry is removed from the cache and the request is served as if it were
never cached. The signature of the callback function looks like this:

public delegate void HttpCacheValidateHandler(
 HttpContext context,
 Object data,
 ref HttpValidationStatus validationStatus
);

The first argument denotes the context of the current request, whereas the second argument
is any user-defined data the application needs to pass to the handler. Finally, the third argu-
ment is a reference to a value from the HttpValidationStatus enumeration. The callback sets

 Chapter 18 ASP.NET Caching 765

this value to indicate the result of the validation. Acceptable values are IgnoreThisRequest,
Invalid, and Valid. In the case of IgnoreThisRequest, the cached resource is not invalidated
but the request is served as if no response was ever cached. If the return value is Invalid, the
cached page is not used and gets invalidated. Finally, if the return value is Valid, the cached
response is used to serve the request.

Caching Multiple Versions of a Page
Depending on the application context from which a certain page is invoked, the page might
generate different results. The same page can be called to operate with different parameters,
can be configured using different HTTP headers, can produce different output based on the
requesting browser, and so forth.

ASP.NET allows you to cache multiple versions of a page response; you can distinguish
 versions by GET and POST parameters, HTTP headers, browser type, custom strings, and
 control properties.

Vary by Parameters
To vary output caching by parameters, you can use either the VaryByParam attribute of the
@OutputCache directive or the VaryByParams property on the HttpCachePolicy class. If you
proceed declaratively, use the following syntax:

<% @OutputCache Duration="60" VaryByParam="employeeID" %>

Note that the VaryByParam attribute is mandatory; if you don’t want to specify a parameter
to vary cached content, set the value to None. If you want to vary the output by all param-
eters, set the attribute to an asterisk (*). When the VaryByParam attribute is set to multiple
parameters, the output cache contains a different version of the requested document for
each specified parameter. Multiple parameters are separated by a semicolon. Valid param-
eters to use are items specified on the GET query string or parameters set in the body of a
POST command.

If you want to use the HttpCachePolicy class to define caching parameters, first set the
 expiration and the cacheability of the page using the SetExpires and SetCacheability methods.
Next, set the VaryByParams property as shown here:

Response.Cache.SetExpires(DateTime.Now.AddSeconds(60));
Response.Cache.SetCacheability(HttpCacheability.Public);
Response.Cache.VaryByParams["employeeid;lastname"] = true;

This code snippet shows how to vary page output based on the employee ID and the last
name properties. Note that the Cache property on the HttpResponse class is just an instance
of the HttpCachePolicy type.

766 Part IV Infrastructure of the Application

Dealing with Postback Pages
Most ASP.NET pages do postbacks. Let’s consider the page in Figure 18-8. The page has
cache duration of, say, 30 seconds, but its actual output depends on the selection the user
makes every time the page is displayed. The drop-down list (named Countries) has auto-
postback functionality and places a POST request for the same page whenever you change
the selection.

FIGURE 18-8 To properly cache pages that post back, you need to vary them by one or more parameters.

With VaryByParam set to None, you’ll wait 30 seconds (or whatever the cache duration is) to
have your country selection processed. It is a bit frustrating: no matter which selection you
make, it is blissfully ignored and the same page is displayed.

Two points clearly emerge from this discussion. First, pages with static content are a much
better fit for caching than interactive pages. Second, the postback mechanism returns a
bunch of form parameters. You need to vary the cached copies of the page by the most
 critical of them. Varying by the selected countries is exactly what we need. The directive
shown next stores each country-specific page for 30 seconds:

<%@ OutputCache VaryByParam="Countries" Duration="30" %>

The bottom line is that enabling page output caching might not be painless for interactive
pages. It is free of pain and charge for relatively static pages like those describing a product,
a customer, or some news.

Caution A cached ASP.NET page is served more quickly than a processed page, but not as
quickly as a static HTML page. However, the response time is nearly identical if the ASP.NET page
is kernel-cached in IIS. Unfortunately, IIS doesn’t store in its kernel-level cache ASP.NET pages
requested via a POST verb and, more importantly, pages with VaryByParam or VaryByHeader. In
the end, postback pages have very few chances to be cached in the IIS kernel. They are cached in
the ASP.NET Cache, in downstream caching servers, or both.

 Chapter 18 ASP.NET Caching 767

Vary by Headers
The VaryByHeader attribute and the HttpCachePolicy’s VaryByHeaders property allow you to
cache multiple versions of a page, according to the value of one or more HTTP headers that
you specify.

If you want to cache pages by multiple headers, include a semicolon-delimited list of
 header names. If you want to cache a different version of the page for each different header
value, set the VaryByHeader attribute to an asterisk (*). For example, the following declara-
tion caches for one-minute pages based on the language accepted by the browser. Each
 language will have a different cached copy of the page output.

<%@ OutputCache Duration="60" VaryByParam="None"
 VaryByHeader="Accept-Language" %>

If you opt for a programmatic approach, here’s the code to use that leverages the
VaryByHeaders property of the HttpCachePolicy class:

Response.Cache.VaryByHeaders["Accept-Language"] = true;

If you want to programmatically vary the pages in the cache by all HTTP header names, use
the VaryByUnspecifiedParameters method of the HttpCacheVaryByHeaders class:

HttpCacheVaryByHeaders.VaryByUnspecifiedParameters();

The preceding code is equivalent to using the asterisk with the VaryByHeader attribute.

Vary by Custom Strings
The VaryByCustom attribute in the @OutputCache directive allows you to vary the versions
of page output by the value of a custom string. The string you assign to the VaryByCustom
attribute simply represents the description of the algorithm employed to vary page outputs.
The string is then passed to the GetVaryByCustomString method, if any, in the global.asax file.
The method takes the string and returns another string that is specific to the request. Let’s
examine a concrete example—varying pages by the type of device that requests the page.
You use, say, the string device with the VaryByCustom attribute:

<%@ OutputCache Duration="60" VaryByParam="None" VaryByCustom="device" %>

Next, you add your application-specific GetVaryByCustomString method in the global.asax
file. Here’s a possible implementation:

public override String GetVaryByCustomString(HttpContext context, String custom)
{
 if (custom == "device")
 return context.Request.Browser.Type;
 return base.GetVaryByCustomString(context, custom);
}

768 Part IV Infrastructure of the Application

The output of the page is varied by user agent string. You can use any other custom
 information as long as the information is available through the HttpContext class. You can’t
use information that is known only when the page is loaded, such as the theme. Custom
 information gathered by a custom HTTP module might be used if the HTTP module parks
the information in the Items collection of the HttpContext object, and as long as the HTTP
module is triggered before the request to resolve the page output cache is made.

Nicely enough, the feature just described—varying pages by user agent strings—has been
natively available since ASP.NET 1.0. The only difference is that it uses the keyword browser
instead of device. In other words, the following code is perfectly acceptable and leverages the
implementation of GetVaryByCustomString on the base HttpApplication class:

<%@ OutputCache Duration="60" VaryByParam="None" VaryByCustom="browser" %>

You use the SetVaryByCustom method on the HttpCachePolicy class if you don’t like the
 declarative approach:

Response.Cache.SetVaryByCustom("browser");

Caching Portions of ASP.NET Pages
The capability of caching the output of Web pages adds a lot of power to your programming
arsenal, but sometimes caching the entire content of a page is not possible or it’s just
 impractical. Some pages, in fact, are made of pieces with radically different features as far
as cacheability is concerned. In these situations, being able to cache portions of a page is an
incredible added value.

If caching the entire page is impractical, you can always opt for partial caching. Partial
 caching leverages the concept of ASP.NET user controls—that is, small, nested pages that
inherit several features of the page. In particular, user controls can be cached individu-
ally based on the browser, GET and POST parameters, and the value of a particular set of
properties.

Let’s start with a quick introduction of user controls.

What’s a User Control, Anyway?
A user control is a Web form saved to a distinct file with an .ascx extension. The similarity
between user controls and pages is not coincidental. You create a user control in much the
same way you create a Web form, and a user control is made of any combination of server
and client controls sewn together with server and client script code. After it is created, the

 Chapter 18 ASP.NET Caching 769

user control can be inserted in an ASP.NET page like any other server control. ASP.NET pages
see the user control as an atomic, encapsulated component and work with it as with any
other built-in Web control.

The internal content of the user control is hidden to the host page. However, the user control
can define a public programming interface and filter access to its constituent controls via
properties, methods, and events.

User controls and pages have so much in common that transforming a page, or a part of
it, into a user control is no big deal. You copy the portion of the page of interest to a new
.ascx file and make sure the user control does not contain any of the following tags: <html>,
<body>, or <form>. You complete the work by associating a code-behind file (or a <script
runat=”server”> block) to code the expected behavior of the user control. Finally, you add a
@Control directive in lieu of the @Page directive. Here’s an example of a user control:

<%@ Control Language="C#" CodeBehind="Message.ascx.cs" Inherits="Message" %>
<span style="color:<%= ForeColor%>"><%= Text%>

Here’s the related code-behind class:

public partial class Message : System.Web.UI.UserControl
{
 public String ForeColor;
 public String Text;
}

To insert a user control into an ASP.NET page, you drag it from the project onto the Web
form, when in design mode. Visual Studio .NET registers the user control with the page and
prepares the environment for you to start adding code.

<%@ Page Language="C#" CodeBehind="Test.aspx.cs" Inherits="TestUserCtl" %>
<%@ Register Src="Message.ascx" TagName="Message" TagPrefix="x" %>
<html><body>
 <form id="form1" runat="server">
 <x:Message ID="Message1" runat="server" />
 </form>
</body></html>

In the page code-behind class, you work the Message1 variable as you would do with any
other server control:

protected void Page_Load(Object sender, EventArgs e)
{
 Message1.ForeColor = "blue";
 Message1.Text = "Hello world";
}

770 Part IV Infrastructure of the Application

Caching the Output of User Controls
User controls are not only good at modularizing your user interface, they’re also great at
caching portions of Web pages. User controls, therefore, fully support the @OutputCache
directive, although they do so with some differences with ASP.NET pages, as outlined in
Table 18-8.

A page that contains some dynamic sections cannot be cached entirely. What if the page
also contains sections that are both heavy to compute and seldom updated? In this case, you
move static contents to one or more user controls and use the user control’s @OutputCache
directive to set up output caching.

To make a user control cacheable, you declare the @OutputCache attribute using almost the
same set of attributes we discussed earlier for pages. For example, the following code snippet
caches the output of the control that embeds it for one minute:

<% @OutputCache Duration="60" VaryByParam="None" %>

The Location attribute is not supported because all controls in the page share the same
location. So if you need to specify the cache location, do that at the page level and it will
work for all embedded controls. The same holds true for the VaryByHeader attribute.

The output of a user control can vary by custom strings and form parameters. More often,
though, you’ll want to vary the output of a control by property values. In this case, use the
new VaryByControl attribute.

Note A user control is made cacheable in either of two ways: by using the @OutputCache
 directive, or by defining the PartialCaching attribute on the user control’s class declaration in the
code-behind file, as follows:

[PartialCaching(60)]
public partial class CustomersGrid : UserControl {
 ...
}

The PartialCaching attribute allows you to specify the duration and values for the
VaryByParam, VaryByControl, and VaryByCustom parameters.

Vary by Controls
The VaryByControl attribute allows you to vary the cache for each specified control property.
For user controls, the property is mandatory unless the VaryByParam attribute has been
specified. You can indicate both VaryByParam and VaryByControl, but at least one of them is
required.

 Chapter 18 ASP.NET Caching 771

The following user control displays a grid with all the customers in a given country/region.
The country/region is specified by the user control’s Country property.

<%@ Control Language="C#" CodeFile="CustomersGrid.ascx.cs"
 Inherits="CustomersGridByCtl" %>
<%@ OutputCache Duration="30" VaryByControl="Country" %>

<h3><%= DateTime.Now.ToString() %></h3>
<asp:ObjectDataSource ID="ObjectDataSource1" runat="server"
 TypeName="Core35.DAL.Customers"
 SelectMethod="LoadByCountry">
</asp:ObjectDataSource>

<asp:GridView ID="GridView1" runat="server" AutoGenerateColumns="false">
 <Columns>
 <asp:BoundField DataField="ID" HeaderText="ID" />
 <asp:BoundField DataField="CompanyName" HeaderText="Company" />
 <asp:BoundField DataField="ContactName" HeaderText="Contact" />
 <asp:BoundField DataField="Country" HeaderText="Country" />
 </Columns>
</asp:GridView>

Here is the code file of the user control:

public partial class CustomersGridByCtl : System.Web.UI.UserControl
{
 public String Country;

 protected void Page_Load(Object sender, EventArgs e)
 {
 if (!String.IsNullOrEmpty(Country))
 {
 ObjectDataSource1.SelectParameters.Add("country", Country);
 GridView1.DataSourceID = "ObjectDataSource1";
 }
 }
}

The @OutputCache directive caches a different copy of the user control output based on the
different values of the Country property. Figure 18-9 shows it in action.

772 Part IV Infrastructure of the Application

FIGURE 18-9 Two pages created at different moments use the same user control output, as you can see from
the creation time of the grid.

The strings you assign to VaryByControl can be properties of the user controls as well as ID
property values for contained controls. In this case, you’ll get a distinct cached copy for each
distinct combination of property values on the specified control.

The Shared Attribute
In Figure 18-9, you see two instances of the same page sharing the cached output of a user
control. Try the following simple experiment. Make a plain copy of the page (say, page1.aspx),
and give it another name (say, page2.aspx). You should have two distinct pages that gener-
ate identical output. In particular, both pages contain an instance of the same cacheable user
control. Let’s say that the cache duration of the user control is 30 seconds.

As the next step of the experiment, you open both pages at different times while the
cache is still valid. Let’s say you open the second page ten seconds later than the first.
Interestingly enough, the two pages no longer share the same copy of user control output,
as Figure 18-10 documents.

 Chapter 18 ASP.NET Caching 773

FIGURE 18-10 Distinct pages don’t automatically share the output of the same user control.

By default, distinct pages don’t share the output of the same cacheable user control. Each
page will maintain its own copy of the user control response, instead. Implemented to guar-
antee total separation and avoid any sort of conflicts, this feature is far more dangerous than
one might think at first. It might lead to flooding the Web server memory with copies and
copies of the user control responses—one for each varying parameter or control property
and one set for each page that uses the control.

To allow distinct pages to share the same output of a common user control, you need to set
the Shared attribute to true in the user control’s @OutputCache directive:

<%@ OutputCache Duration="30" VaryByParam="None" Shared="true" %>

Fragment Caching in Cacheable Pages
If you plan to cache user controls—that is, if you’re trying for partial caching—it’s probably
because you just don’t want to, or cannot, cache the entire page. However, a good question
to ask is this: What happens if user controls are cached within a cacheable page?

774 Part IV Infrastructure of the Application

Both the page and the controls are cached individually, meaning that both the page’s raw
response and the control’s raw responses are cached. However, if the cache duration is
 different, the page duration wins and user controls are refreshed only when the page is
refreshed.

A cacheable user control can be embedded both in a cacheable page and in a wrapper-
cacheable user control.

Important Cacheable user controls should be handled with extreme care in the page’s code.
Unlike regular controls, a user control marked with the @OutputCache directive is not guaran-
teed to be there when your code tries to access it. If the user control is retrieved from the cache,
the property that references it in the code-behind page class is just null.

if (CustomerGrid1 != null)
 CustomerGrid1.Country = "USA";

To avoid bad surprises, you should always check the control reference against the null value
 before executing any code.

Advanced Caching Features
The output caching subsystem has also a few other cool features to offer. They are caching
profiles and post-cache substitution. In brief, caching profiles let you save a block of output
caching-related settings to the configuration file. Post-cache substitution completes the
ASP.NET offering as far as output caching is concerned. In addition to saving the entire page
or only fragments of the page, you can now also cache the entire page except for a few
regions.

Caching Profiles
The @OutputCache directive for pages supports the CacheProfile string attribute, which
 references an entry under the <outputCacheProfiles> section in the web.config file:

<caching>
 <outputCacheSettings>
 <outputCacheProfiles>
 <add name="..." enabled="true|false" duration="..."
 location="..." sqlDependency="..."
 varyByCustom="..." varyByControl="..."
 varyByHeader="..." varyByParam="..."
 noStore=true|false"
 />
 </outputCacheProfiles>
 </outputCacheSettings>
</caching>

 Chapter 18 ASP.NET Caching 775

Basically, by defining a named entry in the <add> section you can store in the configuration
file all the cache-related settings to be applied to the page. Instead of specifying the same
set of parameters for each page over and over again, you can put them in the web.config file
and reference them by name. In this way, you can also modify settings for a number of pages
without touching the source files.

<%@ OutputCache CacheProfile="MySettings" %>

In the preceding code, the application has a MySettings entry in the <outputCacheProfiles>
section and doesn’t need any additional attribute in the @OutputCache directive. As you can
see, the attributes of the <add> node match the attributes of the @OutputCache directive.

Post-Cache Substitution
With user controls, you can cache only certain portions of ASP.NET pages. With post-cache
substitution, you can cache the whole page except specific regions. For example, using this
mechanism, an AdRotator control can serve a different advertisement on each request even if
the host page is cached.

To use post-cache substitution, you place a new control—the <asp:substitution> control—
at the page location where content should be substituted, and you set the MethodName
 property of the control to a callback method. Here’s a quick example:

<form id="form1" runat="server">
 <h3>The output you see has been generated at:
 <%=DateTime.Now.ToString() %> and is valid for 30 seconds</h3>
 <hr />
 This content is updated regularly
 <h2><asp:Substitution ID="Substitution1" runat="server"
 MethodName="WriteTimeStamp" /></h2>
 <hr />
 This is more static and cached content
 <asp:Button runat="server" Text="Refresh" />
 </form>

The MethodName property must be set to the name of a static method that can be
 encapsulated in an HttpResponseSubstitutionCallback delegate, as follows:

public static string WriteTimeStamp(HttpContext context)
{
 return DateTime.Now.ToString();
}

Whatever string the method returns will be rendered out and becomes the output of the
Substitution control. Note also that the callback method must be static and thread-safe. The
HttpContext parameter to the method can be used to retrieve request parameters such as
query string variables, authentication information, or personalization details.

776 Part IV Infrastructure of the Application

You can also set up post-cache substitution programmatically through the WriteSubstitution
method of the HttpResponse object:

Response.WriteSubstitution(
 new HttpResponseSubstitutionCallback(WriteTimeStamp));

The preceding call inserts a sort of placeholder in the response, which will be replaced with
the output of the method. This trick allows the AdRotator control to automatically display a
new banner even on cached pages.

The use of post-cache substitution automatically enables server caching for the page output.
If the page is configured for client output caching, the setting is ignored. The reason for this
change lies in the fact that markup editing is necessarily a server-side operation. In addition,
a page that makes use of post-cache substitution can’t rely on IIS kernel caching because
ASP.NET needs to do some work before the page can be served to the user. In light of this,
the page can’t just be served by IIS without first involving ASP.NET.

Note The Substitution control can also be used in pages that don’t use output caching. In this
case, the substitution callback will be called at rendering time to contribute to the response. You
can think of the Substitution control as a server-side control that has the capability of expanding
a placeholder to some server-side processed results.

For performance reasons, you should also avoid calling the Substitution control from within
the callback. If you call it from there, the callback will maintain a reference to the control and
the page containing the control. As a result, the page instance won’t be garbage-collected
until the cached content expires.

Output Cache Providers
Up until ASP.NET 4, the mechanics of output cache providers was hardcoded in a system
component and wasn’t exposed to developers. Most of the internal implementation of the
component was public, but still there was no way to change it—take it or leave it were the
only choices.

In ASP.NET 4, the component has been abstracted to a provider model (much like the model
you have for session state or membership) and became replaceable by developers. When you
use the code snippets shown earlier (where you don’t explicitly specify any provider informa-
tion), you end up using the default provider, which delivers the same behavior as in previous
versions of ASP.NET. This means that the output of pages is kept in the ASP.NET Cache object
and, subsequently, in the memory of the worker process servicing the current request.

Where else would you like to store the output of ASP.NET pages on the server side? A
 possibility is storing the output in some permanent store, such as disk files or databases. The

 Chapter 18 ASP.NET Caching 777

benefit in this case is that you release a lot of the worker process memory while gaining the
chance to store much larger amounts of data on disk.

A much more enticing scenario, however, is using a distributed cache instead of a server-
bound cache to store the output of pages. AppFabric Caching Services, as well as many of
the commercial solutions I mentioned earlier in the chapter, offer an ASP.NET-compatible
output cache provider that you roll in your application in lieu of the default one. Here’s how
you change the output cache provider. It is as simple as editing a section of the web.config
file:

<caching>
 <outputCache defaultProvider="AspNetInternalProvider">
 <providers>
 <add name="FileCache"
 type="Samples.YourCacheProvider, Samples" />
 </providers>
 </outputCache>
</caching>

A custom output cache provider is a class that inherits from System.Web.Caching.
OutputCacheProvider which, in turn, inherits from ProviderBase. The class consists of four
 abstract methods, as shown here:

public abstract Object Add(String key, Object entry, DateTime utcExpiry);
public abstract Object Get(String key);
public abstract void Remove(String key);
public abstract void Set(String key, Object entry, DateTime utcExpiry);

In ASP.NET 4, the mechanism of output caching has been made open, but no additional
 providers are provided as part of the framework. At the following URL, however, you can find
the source code of the AppFabric Caching Services output provider written by one of the
Microsoft ASP.NET architects: http://aspnet.codeplex.com/releases/view/46576.

Summary
The ability to store in-memory chunks of frequently accessed data becomes a winning factor
in the building of scalable Web applications that handle significant volumes of data. Caching,
however, is a double-edged sword, and if it’s abused or misused, it can easily morph into an
insidious weakness. This typically happens when the quantity of memory-held information
grows uncontrolled and beyond a reasonable threshold. Aside from the performance reper-
cussions, the theoretical possibility that the data stored in the cache can grow uncontrolled
also opens up security concerns. A denial-of-service (DoS) attack, in fact, might succeed in
flooding the Web server’s memory with useless data if the caching subsystem is not well
designed.

http://aspnet.codeplex.com/releases/view/46576

778 Part IV Infrastructure of the Application

Caching is mostly about memory. In the short run, you can perhaps even find that some
good caching improves the overall performance enough to appease your customer or your
boss. I’m not at all claiming that caching can fix design holes, but caching can sometimes put
a patch on suboptimal performance and buy you time to rethink and refactor the application
properly.

To build high-performance applications, a fundamental guideline is “Cache as much as you
can.” However, be aware that there’s a threshold you should never exceed. The more aggres-
sive you are with caching, the more you should be concerned about the invisible memory
threshold that suddenly turns good things into bad things.

In ASP.NET, caching comes in two complementary forms: page output caching and the
 application cache. The former is a relatively quick and simple approach to apply caching
rules to a page including client, downstream, and server caches. The benefit is that a request
can be served without spinning up the ASP.NET pipeline. Using page output caching doesn’t
 necessarily make your application faster, but it reduces the load on the server.

Application cache refers to a comprehensive caching API designed to let you place a caching
layer inside your business or data tier. The application cache relies on the machine-specific
Cache object as well as the distributed AppFabric Caching Services or analogous open-
source or commercial products. Also, in this cache the primary goal is to reduce the load on
 databases and services, minimizing roundtrips and increasing scalability. No serious Web
 application today can do without a good layer of caching—at all possible levels.

 779

Chapter 19

ASP.NET Security
Beware of the man who won’t be bothered with details.

—William Feather

By nature, Web applications are subject to several types of attacks whose damage and
 impact can vary quite a bit, depending on the characteristics of the application itself.
The most secure Web application is the application that actually resists attacks, not the
 application just designed to. Security is a rather intricate puzzle whose solution varies from
one application to another. The important thing to remember is that, more often than
not, security is manifested through a successful mix of application-level and system-level
measures.

Many developers have learned on their own that security is not a feature that can be easily
added to existing applications or introduced late in the development stage. Security is
 inherently tied to the functions of an application and should be planned as one of the
first features, very early at the design level. For example, isolating modules of the applica-
tion particularly sensitive to security would greatly simplify using stricter security measures
 without impacting the rest of the application.

ASP.NET simplifies programming secure applications by providing a built-in infrastructure
that supplies application-level protection against unauthorized access to Web pages. Be
aware, though, that this kind of security is only one side of the coin. A really secure Web site
is especially well protected against server attacks, which can sneakily be used to scale the
highest protective walls of the application logic.

In this chapter, we will discuss the security context of ASP.NET, including its relationship with
server-side Internet Information Services (IIS) authentication mechanisms and best coding
practices to fend off Web attacks.

 Where the Threats Come From
The concept of security implies the presence of an enemy we’re protecting against. In
Table 19-1, you find summarized the most common types of Web attacks.

780 Part IV Infrastructure of the Application

TABLE 19-1 Common Web Attacks
Attack Description
Cross-site scripting (XSS) The attacker exploits user input blindly echoed to the page to add

malicious behavior to the page such as capturing sensitive data.

Denial of service (DoS) The attacker floods the network with fake requests, overloading the
system and blocking regular traffic.

Eavesdropping The attacker uses a sniffer to read unencrypted network packets as
they are transported on the network.

Hidden-field tampering The attacker compromises unchecked (and trusted) hidden fields
stuffed with sensitive data.

One-click Malicious HTTP posts are sent via script.

Session hijacking The attacker guesses or steals a valid session ID and connects over
another user’s session.

SQL injection The attacker inserts malicious input that the code blissfully concat-
enates to form dangerous SQL commands.

The bottom line is that whenever you insert any sort of user input into the browser’s markup,
you potentially expose yourself to a code-injection attack (that is, any variations of SQL injec-
tion and XSS). In addition, sensitive data should never be sent across the wire (let alone as
clear text) and must be stored safely on the server.

If there’s a way to write a bulletproof and tamper-resistant application, it can consist only of
the combination of the following aspects:

■ Coding practices Data validation, type and buffer-length checking, and antitampering
measures

■ Data access strategies Using roles to ensure the weakest possible account is used
on the server to limit server resource access, and using stored procedures or, at least,
 parameterized commands

■ Effective storage and administration No sending of critical data down to the client,
using hashed values to detect manipulation, authenticating users and protecting
 identities, and applying rigorous policies for passwords

As you can see from this list, a secure application can result only from the combined
 efforts of developers, architects, and administrators. Don’t imagine that you can get it right
otherwise.

 Chapter 19 ASP.NET Security 781

The ASP.NET Security Context
From an application point of view, security is mostly a matter of authenticating users and
authorizing actions on the system’s resources. ASP.NET provides a range of authentication
and authorization mechanisms implemented in conjunction with IIS, the Microsoft .NET
Framework, and the underlying security services of the operating system. The overall security
context of an ASP.NET application is composed of three distinct levels:

■ The IIS level associates a valid security token with the sender of the request. The
 security token is determined according to the current IIS authentication mechanism.

■ The ASP.NET worker process level determines the identity of the thread in the ASP.NET
worker process serving the request. If enabled, impersonation settings can change the
security token associated with the thread. The identity of the process model is deter-
mined by settings in the configuration file or the IIS metabase, according to the process
model in use. These two levels are unified if the ASP.NET application runs in integrated
mode on IIS 7 and later.

■ The ASP.NET pipeline level gets the credentials of the application-specific user who is
using the application. The way this task is accomplished depends on the application
settings in the configuration files for authentication and authorization. A common
 setting for most ASP.NET applications is choosing to use Forms Authentication.

Among other things, the identity of the ASP.NET worker process influences access to local
files, folders, and databases.

Who Really Runs My ASP.NET Application?
When an ASP.NET request arrives at the Web server machine, IIS picks it up and assigns the
request to one of its pooled threads. IIS runs under the SYSTEM account—the most power-
ful account in Microsoft Windows. From this point forward when processing this request, the
three security contexts of ASP.NET applications I mentioned execute one after the other.

IIS Thread Security Context
The thread that physically handles the request impersonates an identity according to the
current IIS authentication setting, whether it is Basic, Windows, or Anonymous. If the site is
configured for anonymous access, the identity impersonated by the thread is the one you
set through the dialog box shown in Figure 19-1. By default, it is named IUSR_xxx, where xxx
stands for the machine name.

782 Part IV Infrastructure of the Application

FIGURE 19-1 Enabling anonymous access.

Basic authentication is an HTTP standard supported by virtually any browser (and disabled
by default in IIS 7). With this type of authentication, a request bounces back with a par-
ticular HTTP status code (HTTP 401) that the browser understands as a demand to display
a standard dialog box to request the user’s credentials. The information gathered is sent
to IIS, which attempts to match it with any of the Web server’s accounts. Because creden-
tials are sent out as Base64-encoded text, essentially in clear text, Basic authentication is
 recommended only for use over HTTPS secure channels.

Note that the default installation of IIS 7 doesn’t include Digest authentication. Digest
 authentication differs from Basic authentication mostly because it hashes credentials before
sending. Digest authentication is an HTTP 1.1 feature and, as such, is not supported by some
old browsers. Both Basic and Digest authentication work well through firewalls and proxy
servers. To use Digest authentication on IIS 7, you must install the appropriate Digest role
service and disable anonymous authentication.

Integrated Windows authentication sets up a conversation between the browser and the
Web server. The browser passes the credentials of the currently logged-on user, who is not
required to type anything. The user needs to have a valid account on the Web server or in a
trusted domain to be successfully authenticated. The authentication can take place through
the NTLM challenge/response method or by using Kerberos. The technique has limited
browser support and is impractical in the presence of firewalls. It is designed for intranet use.

Note Yet another type of authentication mode exists and is based on certificates. You can use
the Secure Sockets Layer (SSL) security features of IIS and use client certificates to authenticate
users requesting information on your Web site. SSL checks the contents of the certificate submit-
ted by the browser for the user during the logon. Users obtain client certificates from a trusted
third-party organization. In an intranet scenario, users can also get their certificate from an
 authority managed by the company itself.

 Chapter 19 ASP.NET Security 783

In IIS 7, you can also leverage ASP.NET Forms authentication at the IIS level as well as ASP.NET
impersonation. ASP.NET Forms authentication essentially redirects to an application-specific
login page. If you enable impersonation, instead, your ASP.NET application will run under the
security context of the user authenticated by IIS 7 or under the specific account you indicate
by editing the impersonation settings in the IIS manager.

After authentication, the thread dispatches the request to the appropriate module. For
an ASP.NET application, the request is queued to the application pool and picked up by
the copy of the w3wp.exe IIS worker process that serves that application pool. What is the
 identity of the worker process?

Worker Process Security Context
As you saw in Chapter 2, “ASP.NET and IIS,” the worker process typically runs under the
 identity of the NETWORK SERVICE account or under a virtual account associated with
the application pool. You can change it through the Advanced Settings dialog box of the
 application pool as shown in Figure 19-2.

FIGURE 19-2 Changing the identity for the worker process.

Inside the worker process, a pooled thread picks up the request to serve it. What’s the
 identity of this thread? If impersonation is disabled in the ASP.NET application, this thread
will inherit the identity of the worker process. This is what happens by default. If imperson-
ation is enabled, the worker thread will inherit the security token passed by IIS.

When impersonation is active, the worker process account doesn’t change. The worker
process still compiles pages and reads configuration files using the original account.
Impersonation is used only with the code executed within the page, not for all the

784 Part IV Infrastructure of the Application

 preliminary steps that happen before the request is handed to the page handler. For
 example, this means that any access to local files or databases occur using the impersonated
account, not the worker process’s account.

ASP.NET Pipeline Security Context
The third security context indicates the identity of the user making the request. The point
here is authenticating the user and authorizing access to the page and its embedded re-
sources. Obviously, if the requested page is freely available, no further step is performed;
the page output is generated and served to the user.

To protect pages against unauthorized access, an ASP.NET application needs to define
an authentication policy—typically Forms authentication. Authentication modules hook
up requests for protected pages and manage to obtain the user’s credentials. The user is
 directed to the page only if the credentials are deemed valid and authorize access to the
 requested resource.

Changing the Identity of the ASP.NET Process
In a situation in which you want to change the default ASP.NET account to give it more
 privileges, how should you proceed? Is it preferable to create a custom account and use it for
the worker process, or should you opt for the worker process to impersonate a fixed identity?

Note You’ll find that it’s difficult to create a new, functional account with less than the privileges
granted to NETWORK SERVICE or the virtual account of the application pool. If you give it a
try, make sure you pass through a careful testing phase and ensure it really works for your
 application.

Setting the Process Account
Using the dialog box shown in Figure 19-2 is the only way to change the real identity of the
ASP.NET process. If you change the process identity, all threads in the process will use this
as the base identity and no extra work is needed on thread switches. More importantly, you
should make sure the new account has at least full permissions on the Temporary ASP.NET
Files folder. (Review carefully the list of permissions granted to the standard ASP.NET ac-
counts, which you can find in the “Privileges of the ASP.NET Default Account” section.)

Alternatively, you can require the worker process to impersonate a fixed identity through
the <identity> section of the web.config file. Note that when fixed impersonation is used,
every worker thread processing a request needs to impersonate the specified account.
Impersonation will then be performed for each thread switch because a thread switch event
takes the thread identity back to the process identity.

 Chapter 19 ASP.NET Security 785

Impersonating a Fixed Identity
To impersonate a fixed identity, you first define the user account and then add a setting to
the web.config file. The following snippet shows an example:

<identity impersonate="true"
 userName="MyAspNetAccnt" password="ILoveA$pnet*SinceVer1.0" />

As mentioned earlier, impersonation doesn’t really change the physical identity of the pro-
cess running ASP.NET. More simply, all threads serving in the context of the ASP.NET worker
process always impersonate a given user for the duration of the application.

Impersonating a fixed identity is different from classic, per-request impersonation such as
impersonating the identity of the Windows user making the request. Per-request imperson-
ation refers to the situation in which you enable impersonation without specifying a fixed
identity. In this case, the security token with identity information is created by IIS and in-
herited by the worker process. When a fixed identity is involved, the security token must be
generated by the ASP.NET worker process. When running under a poorly privileged account,
though, the ASP.NET worker process sometimes lacks the permission to do that.

Impersonating Through the Anonymous Account
A third possibility to change the identity of the ASP.NET worker process is by impersonating
through the anonymous account. The idea is that the ASP.NET application grants access to
anonymous users, and the anonymous account is configured to be the desired account for
the application.

In this case, the application uses per-request impersonation and the ASP.NET code executes
as the impersonated account. The process account remains set to NETWORK SERVICE or the
virtual account, which means you don’t have to worry about replicating into the new account
the minimum set of permissions on folders that allow ASP.NET to work.

Privileges of the ASP.NET Default Account
Of all the possible user rights assignments, ASPNET and NETWORK SERVICE are granted only
the following five:

■ Access this computer from the network

■ Deny logon locally

■ Deny logon through Terminal Services

■ Log on as a batch job

■ Log on as a service

786 Part IV Infrastructure of the Application

In addition, the accounts are given some NTFS permissions to oper ate on certain folders and
create temporary files and assemblies. The folders involved are these:

■ .NET Framework Root Folder This folder contains some .NET Framework system as-
semblies that ASP.NET must be able to access. The physical folder is normally Microsoft.
NET\Framework\[version] and is located under the Windows folder. ASP.NET has only
read and list permissions on this folder.

■ Temporary ASP.NET Files This folder represents the file system subtree in which all
temporary files are generated. ASP.NET is granted full control over the entire subtree.

■ Global Assembly Cache ASP.NET needs to gain read permissions on the assemblies in
the global assembly cache (GAC). The GAC is located in the Windows\Assembly\GAC
folder. The GAC folder is not visible in Windows Explorer, but you can view the installed
assemblies by opening the Windows\Assembly folder.

■ Windows System Folder The ASP.NET process needs to access and read the System32
Windows folder to load any necessary Win32 DLLs.

■ Application Root Folder The ASP.NET process needs to access and read the files that
make up the Web application. The folder is typically located under Inetpub\wwwroot.

■ Web Site Root ASP.NET might have the need to scan the root of the Web server—
typically, Inetpub\wwwroot—looking for configuration files to read.

An ASP.NET application running under an account that lacks some of these permissions
might fail. Granting at least all these permissions is highly recommended for all accounts
used for fixed-account impersonation.

The Trust Level of ASP.NET Applications
ASP.NET applications are made of managed code and run inside the common language
 runtime (CLR). In the CLR, running code is assigned to a security zone based on the evi-
dence it provides about its origin—for example, the originating URL. Each security zone
corresponds to a set of permissions. Each set of permissions corresponds to a trust level. By
default, ASP.NET applications run from the MyComputer zone with full trust. Is this default
setting just evil?

An ASP.NET application runs on the Web server and doesn’t hurt the user that connects to it
via the browser. An ASP.NET application cannot be consumed in ways other than through the
browser. So why do some people feel cold shivers down their spine when they think of using
ASP.NET full trust?

The problem is not with the ASP.NET application itself, but with the fact that it is publicly
exposed over the Internet—one of the most hostile environments for computer security you
can imagine. If a fully trusted ASP.NET account is hijacked, a hacker can perform restricted

 Chapter 19 ASP.NET Security 787

actions from within the worker thread. In other words, a publicly exposed, fully trusted
 application is a potential platform for hackers to launch attacks. The less an application is
trusted, the more secure that application happens to be.

The <trust> Section
By default, ASP.NET applications run unrestricted and are allowed to do whatever their
 account is allowed to do. The actual security restrictions that sometimes apply to ASP.NET
applications (for example, the inability to write files) are not a sign of partial trust, but more
simply the effect of the underprivileged account under which ASP.NET applications normally
run.

By tweaking the <trust> section in the root web.config file, you can configure code access
security permissions for a Web application and decide whether it has to run fully or partially
trusted:

<trust level="Medium" originUrl="" />

Table 19-2 describes the levels of trust available.

TABLE 19-2 Levels Permitted in the <trust> Section
Level Description
Full Applications run fully trusted and can execute arbitrary native code in the process

context in which they run. This is the default setting.

High Code can use most permissions that support partial trust. This level is appropriate for
applications you want to run with least privilege to mitigate risks.

Medium Code can read and write its own application directories and can interact with
 databases.

Low Code can read its own application resources but can’t interact with resources located
outside of its application space.

Minimal Code can’t interact with any protected resources. Appropriate for nonprofessional
hosting sites that simply intend to support generic HTML code and highly isolated
business logic.

Admittedly, restricting the set of things an application can do might be painful at first.
However, in the long run (read, if you don’t just give up and deliver the application), it
 produces better and safer code.

Note The <trust> section supports an attribute named originUrl. The attribute is a sort
of misnomer. If you set it, the specified URL is granted the permission to access an HTTP
 resource using either a Socket or WebRequest class. The permission class involved with this is
WebPermission. Of course, the Web permission is granted only if the specified <trust> level
 supports that. Medium and higher trust levels do.

788 Part IV Infrastructure of the Application

ASP.NET Permissions
Let’s review in more detail the permission granted to ASP.NET applications when the
 various trust levels are applied. Key ASP.NET permissions for each trust level are outlined in
Table 19-3.

TABLE 19-3 Main Permissions in ASP.NET Trust Levels
High Medium Low Minimal

FileIO Unrestricted Read/Write to applica-
tion’s space

Read None

IsolatedStorage Unrestricted ByUser ByUser
(maximum of
1 MB)

None

Printing DefaultPrinting Same as High None None

Security Assertion, Execution,
ControlThread,
ControlPrincipal

Same as High Execution Execution

SqlClient Unrestricted Unrestricted (no blank
password allowed)

None None

Registry Unrestricted None None None

Environment Unrestricted None None None

Reflection ReflectionEmit None None None

Socket Unrestricted None None None

Web Unrestricted Connect to origin host,
if configured

Same as
Medium

None

More detailed information about the permissions actually granted to the default trust levels
are available in the security configuration files for each level. The name of the file for each
level is stored in the <trustLevel> section.

In the end, full-trust applications run unrestricted. High-trust applications have read/write
permission for all the files in their application space. However, the physical access to files
is still ruled by the NTFS access control list on the resource. High-trust applications have
unrestricted access to Microsoft SQL Server but not, for example, to OLE DB classes. (The
OleDbPermission and other managed provider permissions are denied to all but fully trusted
applications.) Reflection calls are denied, with the exception of those directed at classes in the
System.Reflection.Emit namespace.

Medium applications have unrestricted access to SQL Server, but only as long as they don’t
use blank passwords for accounts. The WebPermission is granted to both medium-trust
and low-trust applications, but it requires that the URL be configured in the <trust> section
through the originUrl attribute. Low-trust applications have read-only permission for files in
their application directories. Isolated storage is still permitted but limited to a 1-MB quota.

 Chapter 19 ASP.NET Security 789

A rule of thumb is that Medium trust should be fine for most ASP.NET applications and
 applying it shouldn’t cause significant headaches, provided that you don’t need to access
legacy Component Object Model (COM) objects or databases exposed via OLE DB providers.
However, there are a few common situations in which adapting an application to Medium
trust requires some configuration work. A popular example is setting NHibernate to work in
a Medium-trust environment. (See http://blog.yeticode.co.uk/2010/03/running-nhibernate-in-
medium-trust for details.)

Granting Privileges Beyond the Trust Level
What if one of the tasks to perform requires privileges that the trust level doesn’t grant?
There are two basic approaches. The simplest approach is to customize the policy file for the
trust level and add any permissions you need. The solution is easy to implement and doesn’t
require code changes. It does require administrator rights to edit the security policy files.
From a pure security perspective, it is not a great solution because you’re just adding to the
whole application the permissions you need for a particular method of a particular page or
assembly.

The second approach requires a bit of refactoring but leads to better and safer code. The
idea is to sandbox the server-side code and make it delegate to external components (for
 example, serviced components or command-line programs) the execution of any tasks
that exceed the application’s permission set. Obviously, the external component will be
 configured to have all required permissions.

Note Code sandboxing is the only option you have if your partially trusted ASP.NET applica-
tion is trying to make calls into an assembly that doesn’t include the AllowPartiallyTrustedCallers
attribute. For more information on programming for medium trust, check out the contents at
the following URL: http://msdn2.microsoft.com/en-us/library/ms998341.aspx. In spite of the title,
which refers to ASP.NET 2, the content is still up to date.

ASP.NET Authentication Methods
Depending on the type of the requested resource, IIS might or might not be able to handle
the request itself. If the resource needs the involvement of ASP.NET (for example, it is an .aspx
file), IIS hands the request over to ASP.NET along with the security token of the authenticat-
ed, or anonymous, user. What happens next depends on the ASP.NET configuration.

Originally, ASP.NET supported three types of authentication methods: Windows, Passport,
and Forms. A fourth possibility is None, meaning that ASP.NET does not even attempt to
perform its own authentication and completely relies on the authentication already carried
out by IIS. In this case, anonymous users can connect and resources are accessed using the

http://blog.yeticode.co.uk/2010/03/running-nhibernate-in-medium-trust
http://blog.yeticode.co.uk/2010/03/running-nhibernate-in-medium-trust
http://blog.yeticode.co.uk/2010/03/running-nhibernate-in-medium-trust
http://msdn2.microsoft.com/en-us/library/ms998341.aspx

790 Part IV Infrastructure of the Application

default ASP.NET account. In ASP.NET 4, Passport authentication is marked as obsolete. It is
largely replaced by oAuth. In particular, you can use your Windows Live ID with oAuth.

You choose the ASP.NET authentication mechanism using the <authentication> section in
the root web.config file. Child subdirectories inherit the authentication mode chosen for
the application. By default, the authentication mode is set to Windows. Let’s briefly ex-
amine Windows authentication and reserve wider coverage for the most commonly used
 authentication method—Forms authentication.

Windows Authentication
When using Windows authentication, ASP.NET works in conjunction with IIS. The real
 authentication is performed by IIS, which uses one of its authentication methods: Basic or
Integrated Windows. When IIS has authenticated the user, it passes the security token on
to ASP.NET. When in Windows authentication mode, ASP.NET does not perform any further
 authentication steps and limits its use of the IIS token to authorizing access to the resources.

Typically, you use the Windows authentication method in intranet scenarios when the users
of your application have Windows accounts that can be authenticated only by the Web serv-
er. Let’s assume that you configured the Web server to work with the Integrated Windows
authentication mode and that you disabled anonymous access. The ASP.NET application
works in Windows authentication mode. What happens when a user connects to the
 application? First, IIS authenticates the user (popping up a dialog box if the account of the
local user doesn’t match any accounts on the Web server or in the trusted domain) and then
hands the security token over to ASP.NET.

Using ACLs to Authorize Access
In most cases, Windows authentication is used in conjunction with file authorization—via
the FileAuthorizationModule HTTP module. User-specific pages in the Web application can
be protected from unauthorized access by using access control lists (ACLs) on the file. When
ASP.NET is about to access a resource, the FileAuthorizationModule HTTP module is called
into action. File authorization performs an ACL check on ASP.NET files using the caller’s
 identity. For example, it will be sure that the user Joe will never be able to access an .aspx
page whose ACL doesn’t include an entry for him.

Note, though, that file authorization does not require impersonation at the ASP.NET level
and, more importantly, it works regardless of whether the impersonation flag is turned on.
Once you’ve set an appropriately configured ACL on an ASP.NET resource, you’re pretty
much done. Nobody will be able to access the resource without permission.

 Chapter 19 ASP.NET Security 791

Note Windows authentication also works with URL authorization implemented by the HTTP
module named URLAuthorizationModule. This module allows or denies access to URL resources
to certain users and roles. (I’ll talk more about URL authorization later while discussing Forms
authentication.)

Windows CardSpace
The .NET Framework (starting with 3.0) contains a new technology that can be used with
ASP.NET Web sites to authenticate users: Windows CardSpace. Any page that includes the
Identity Selector object, uses the identity cards of the connected user to send credentials to
the server. Each user can manage her own cards by using the Windows CardSpace applet in
Control Panel of any client machines equipped with the .NET Framework 3.0 or later.

The Identity Selector is an <object> tag of type application/x-informationcard. By requesting
the value property of this object, you force an enabled browser to bring up the CardSpace
applet. The user then picks up the right card to send. The server-side login page will then
access the content of the card and make any necessary checks to authorize the request. If it
becomes widely accepted, Windows CardSpace could be the perfect tool for authentication
over the Internet. For more information, you can start reading the following MSDN article:
http://msdn.microsoft.com/en-us/magazine/cc163434.aspx.

Using Forms Authentication
Windows authentication is seldom practical for real-world Internet applications. Windows
 authentication is based on Windows accounts and NTFS ACL tokens and, as such, as-
sumes that clients are connecting from Windows-equipped machines. Useful and effec-
tive in intranet and possibly in some extranet scenarios, Windows authentication is simply
 unrealistic in more common situations because the Web application users are required to
have Windows accounts in the application’s domain. So what is the ideal authentication
 mechanism for real Web developers?

Today, Forms authentication is the most commonly used way to collect and validate user
 credentials—for example, against a database of user accounts. The login pattern implement-
ed by Forms authentication doesn’t look radically different from Windows authentication.
The key difference is that with Forms authentication everything happens under the strict
control of the Web application.

http://msdn.microsoft.com/en-us/magazine/cc163434.aspx

792 Part IV Infrastructure of the Application

You set up an ASP.NET application for Forms authentication by tweaking its root web.config
file. You enter the following script:

<system.web>
 <authentication mode="Forms">
 <forms loginUrl="login.aspx" />
 </authentication>
 <authorization>
 <deny users="?" />
 </authorization>
</system.web>

The <authentication> section indicates the URL of the user-defined login form. ASP.NET
 displays the form only to users who have explicitly been denied access in the <authorization>
section. The ? symbol indicates any anonymous, unauthenticated users. Note that the
 anonymous user here is not the IIS anonymous user but simply a user who has not been
 authenticated through your login form.

All blocked users are redirected to the login page, where they are asked to enter their
credentials.

Note The Forms authentication mechanism protects any ASP.NET resource located in a folder
for which Forms authentication and authorization is enabled. Note that only resource types ex-
plicitly handled by ASP.NET are protected. The list includes .aspx, .asmx, and .ashx files, but not
plain HTML pages or classic ASP pages. In IIS 7.0, though, you are given the tools to change this
by setting a Web server-level web.config file where you assign new resources to the ASP.NET
standard HTTP handler.

Forms Authentication Control Flow
Form-based authentication is governed by an HTTP module implemented in the
FormsAuthenticationModule class. The behavior of the component is driven by the contents
of the web.config file. When the browser attempts to access a protected resource, the module
kicks in and attempts to locate an authentication ticket for the caller. By default, a ticket is
merely a cookie with a particular (and configurable) name. However, it can be configured to
be a value embedded in the URL. In this case, we talk about cookieless Forms authentication.

If no valid ticket is found, the module redirects the request to a login page. Information
about the originating page is placed in the query string. The login page is then displayed.
The programmer creates this page, which, at a minimum, contains text boxes for the user-
name and the password and a button for submitting credentials. The handler for the button
click event validates the credentials using an application-specific algorithm and data store.
If the credentials are authenticated, the user code redirects the browser to the original URL.

 Chapter 19 ASP.NET Security 793

The original URL is attached to the query string of the request for the login page, as shown
here:

http://YourApp/login.aspx?ReturnUrl=original.aspx

Authenticating a user means that an authentication ticket is issued and attached to the
 request. When the browser places its second request for the page, the HTTP module retrieves
the authentication ticket and lets the request pass.

Let’s see how Forms-based authentication works in practice and consider a scenario in which
users are not allowed to connect anonymously to any pages in the application. The user
types the URL of the page—say welcome.aspx—and goes. As a result, the HTTP module
 redirects to the login page any users for which an authentication ticket does not exist, as
shown in Figure 19-3.

FIGURE 19-3 A sample login page.

Important There are inherent security concerns that arise with Forms authentication related to
the fact that any data is transmitted as clear text. Unfortunately, with today’s browser technology,
these potential security concerns can be removed only by resorting to secure channels (HTTPS).
I’ll return to this topic later in the “General Security Issues” section.

http://YourApp/login.aspx?ReturnUrl=original.aspx

794 Part IV Infrastructure of the Application

Collecting Credentials Through Login
The layout of a login page is nearly the same—a couple of text boxes for the user name and
password, a button to confirm, and perhaps a label to display error messages. However, you
can make it as complex as needed and add as many graphics as appropriate. The user enters
the credentials, typically in a case-sensitive way, and then clicks the button to log on. When
the login page posts back, the following code runs:

void LogonUser(object sender, EventArgs e)
{
 string user = userName.Text;
 string pswd = passWord.Text;

 // Custom authentication
 bool bAuthenticated = AuthenticateUser(user, pswd);
 if (bAuthenticated)
 FormsAuthentication.RedirectFromLoginPage(user, false);
 else
 errorMsg.Text = "Sorry, yours seems not to be a valid account.";
}

The event handler retrieves the strings typed in the user name and password fields and calls
into a local function named AuthenticateUser. The function verifies the supplied credentials
and returns a Boolean value. If the user has been successfully authenticated, the code invokes
the RedirectFromLoginPage static method on the FormsAuthentication class to inform the
browser that it’s time to issue a new request to the original page.

The RedirectFromLoginPage method redirects an authenticated user back to the originally
requested URL. It has two overloads with the following prototypes:

public static void RedirectFromLoginPage(string, bool);
public static void RedirectFromLoginPage(string, bool, string);

The first argument is the name of the user to store in the authentication ticket. The second
argument is a Boolean value that denotes the duration of the cookie, if any, being created for
the authentication ticket. If this argument is true, the cookie is given a duration that equals
the number of minutes set by the timeout attribute (which is 30 minutes by default). In this
way, you get a cookie that persists across browser sessions. Otherwise, your authentication
cookie will last for the current session only. Finally, the third argument optionally specifies the
cookie path.

Authenticating the User
The authenticating algorithm—that is, the code inside the AuthenticateUser method seen
earlier—is entirely up to you. For example, you might want to check the credentials against
a database or any other user-defined storage device. The following listing shows a (rather
 naïve) function that compares the user name and password against the firstname and
 lastname columns of the Northwind Employees table in SQL Server:

 Chapter 19 ASP.NET Security 795

private bool AuthenticateUser(string username, string pswd)
{
 // Performs authentication here
 string connString = "...";
 string cmdText = "SELECT COUNT(*) FROM employees " +
 "WHERE firstname=@user AND lastname=@pswd";

 int found = 0;
 using(SqlConnection conn = new SqlConnection(connString))
 {
 SqlCommand cmd = new SqlCommand(cmdText, conn);
 cmd.Parameters.Add("@user",
 SqlDbType.NVarChar, 10).Value = username;
 cmd.Parameters.Add("@pswd",
 SqlDbType.NVarChar, 20).Value = pswd;
 conn.Open();
 found = (int)cmd.ExecuteScalar();
 conn.Close();
 }
 return (found > 0);
}

The query is configured to return an integer that represents the number of rows in the table
that match the specified user name and password. Notice the use of typed and sized param-
eters in the SQL command as a line of defense against possible injection of malicious code.
Notice also that the SQL code just shown does not support strong passwords because the
SQL = operator in the WHERE clause doesn’t perform case-sensitive comparisons. To make
provisions for that, you should rewrite the command as follows:

SELECT COUNT(*) FROM employees WHERE
 CAST(RTRIM(firstname) AS VarBinary)=CAST(RTRIM(@user) AS VarBinary)
 AND
 CAST(RTRIM(lastname) AS VarBinary)=CAST(RTRIM(@pswd) AS VarBinary)

The CAST operator converts the value into its binary representation, while the RTRIM
 operator removes trailing blanks. To capture the name of the currently logged-in user, a page
should just use the following code block:

 Welcome, <%= User.Identity.Name %>.

Signing Out
While an explicit sign-in is always required by Web sites that need authentication, an explicit
sign-out is less common but legitimate nonetheless. The Forms authentication module pro-
vides an explicit method to sign out. The SignOut method on the FormsAuthentication class
takes no argument and resets the authentication ticket. In particular, when cookies are used,
the SignOut method removes the current ticket from the Cookies collection of the current
HttpResponse object and replaces it with an empty and expired cookie.

796 Part IV Infrastructure of the Application

After you call SignOut, you might want to redirect the application to another page. The
FormsAuthentication class has a method—RedirectToLoginPage—that provides the described
functionality and transfers the user to a given page using Response.Redirect.

Let’s now take a look at the methods of the FormsAuthentication class and the configurable
parameters you find in the web.config file. After this, I’ll move on to introduce the
 membership API and role management.

The FormsAuthentication Class
The FormsAuthentication class supplies some static methods you can use to manipulate
authentication tickets and execute basic authentication operations. You typically use the
RedirectFromLoginPage method to redirect an authenticated user back to the originally
 requested URL; likewise, you call SignOut to remove the authentication ticket for the current
user. Other methods and properties are for manipulating and renewing the ticket and the
associated cookie.

Properties of the FormsAuthentication Class
Table 19-4 lists the properties of the FormsAuthentication class. As you can see, many of
them deal with cookie naming and usage and expose the content of configuration attributes
in the <forms> section. We’ll look at the underpinnings of the <forms> XML configuration
element in the next section. All the properties of the FormsAuthentication class shown in the
table are static.

TABLE 19-4 Properties of the FormsAuthentication Class
Property Description
CookieDomain Returns the domain set for the authentication ticket. This property is

equal to the value of the domain attribute in the <forms> section.

CookieMode Indicates whether Forms authentication is implemented with or
 without cookies.

CookiesSupported Returns true if the current request supports cookies.

DefaultUrl Returns the URL for the page to return after a request has been
 successfully authenticated. It matches the defaultUrl attribute in the
<forms> section.

EnableCrossAppRedirects Indicates whether redirects can span different Web applications.

FormsCookieName Returns the configured cookie name used for the current application.
The default name is .ASPXAUTH.

FormsCookiePath Returns the configured cookie path used for the current application.
The default is the root path (/).

LoginUrl Returns the configured or default URL for the login page. It matches
the loginUrl attribute in the <forms> section.

 Chapter 19 ASP.NET Security 797

Property Description
RequireSSL Indicates whether a cookie must be transmitted using only HTTPS.

SlidingExpiration Indicates whether sliding expiration is enabled.

Most of the properties are initialized with the values read from the <forms> configuration
section of the web.config file when the application starts up.

Methods of the FormsAuthentication Class
Table 19-5 details the methods supported by the FormsAuthentication class. All the methods
listed in the table are static.

TABLE 19-5 Methods of the FormsAuthentication Class
Method Description
Authenticate Attempts to validate the supplied credentials against those

contained in the configured <credentials> section. (I’ll say
more about this later.)

Decrypt Given a valid authentication ticket, it returns an instance of
the FormsAuthenticationTicket class.

Encrypt Produces a string containing the printable representation
of an authentication ticket. The string contains, encoded to
URL-compliant characters, the user’s credentials optionally
hashed and encrypted.

GetAuthCookie Creates an authentication ticket for a given user name.

GetRedirectUrl Returns the redirect URL for the original request that caused
the redirect to the login page.

HashPasswordForStoringInConfigFile Given a password and a string identifying the hash type, the
method hashes the password for storage in the web.config
file.

Initialize Initializes the FormsAuthentication class.

RedirectFromLoginPage Redirects an authenticated user back to the originally
 requested URL.

RedirectToLoginPage Performs a redirect to the configured or default login page.

RenewTicketIfOld Conditionally updates the sliding expiration on an
 authentication ticket.

SetAuthCookie Creates an authentication ticket, and attaches it to the
outgoing response. It does not redirect to the originally
 requested URL.

SignOut Removes the authentication ticket.

The Initialize method is called only once in the application’s lifetime and initializes the
 properties in Table 19-4 by reading the configuration file. The method also gets the cookie
values and encryption keys to be used for the application.

798 Part IV Infrastructure of the Application

Note In spite of their names, in ASP.NET both the GetAuthCookie method and the
SetAuthCookie method get and set an authentication ticket, regardless of what it means to the
application. If the application is configured to do Forms authentication in a cookieless manner,
the two methods read and write ticket information from and to the URL of the request. They
read and write a cookie if the authentication method is configured to use cookies.

Configuration of Forms Authentication
Although ASP.NET Forms authentication is fairly simple to understand, it still provides a rich
set of options to deal with to fine-tune the behavior of the authentication mechanism. Most
of the settable options revolve around the use of cookies for storing the authentication
 ticket. All of them find their place in the <forms> section under the <authentication> section.

The <forms> Section
Forms authentication is driven by the contents of the <forms> section child of the
 <authentication> section. The overall syntax is shown here:

<forms name="cookie"
 loginUrl="url"
 protection="All|None|Encryption|Validation"
 timeout="30"
 requireSSL="true|false"
 slidingExpiration="true|false"
 path="/"
 enableCrossAppsRedirects="true|false"
 cookieless="UseCookies|UseUri|AutoDetect|UseDeviceProfile"
 defaultUrl="url"
 domain="string">
</forms>

The various attributes are described in Table 19-6.

TABLE 19-6 Attributes for Forms Authentication
Attribute Description
cookieless Defines if and how cookies are used for authentication tickets. Possible

values are UseCookies, UseUri, AutoDetect, and UseDeviceProfile.

defaultUrl Defines the default URL to redirect after authentication. The default is
default.aspx.

domain Specifies a domain name to be set on outgoing authentication cookies.
(I’ll say more about this later.)

enableCrossAppRedirects Indicates whether users can be authenticated by external applications
when authentication is cookieless. The setting is ignored if cookies are
enabled. When cookies are enabled, cross-application authentication is
always possible. (I’ll cover more issues related to this as we go along.)

 Chapter 19 ASP.NET Security 799

Attribute Description
loginUrl Specifies the URL to which the request is redirected for login if no valid

authentication cookie is found.

name Specifies the name of the HTTP cookie to use for authentication. The
 default name is .ASPXAUTH.

path Specifies the path for the authentication cookies issued by the applica-
tion. The default value is a forward slash (/). Note that some browsers
are case-sensitive and will not send cookies back if there is a path case
mismatch.

protection Indicates how the application intends to protect the authentication
 cookie. Feasible values are All, Encryption, Validation, and None. The
 default is All.

requireSSL Indicates whether an SSL connection is required to transmit the
 authentication cookie. The default is false. If true, ASP.NET sets the Secure
property on the authentication cookie object so that a compliant browser
does not return the cookie unless the connection is using SSL.

slidingExpiration Indicates whether sliding expiration is enabled. The default is false,
 meaning that the cookie expires at a set interval from the time it was
originally issued. The interval is determined by the timeout attribute.

timeout Specifies the amount of time, in minutes, after which the authentication
cookie expires. The default value is 30.

The defaultUrl attribute lets you set the default name of the page to return after a request
has been successfully authenticated. This URL is configurable. But isn’t the URL of the return
page embedded in the query string, in the ReturnUrl parameter? So when is defaultUrl
useful?

If a user is redirected to the login page by the authentication module, the ReturnUrl variable
is always correctly set and the value of defaultUrl is blissfully ignored. However, if your page
contains a link to the login page, or if it needs to transfer programmatically to the login
page (for example, after the current user has logged off), you are responsible for setting the
ReturnUrl variable. If it is not set, the URL stored in the defaultUrl attribute will be used.

Cookie-Based Forms Authentication
The default way of putting Forms authentication at work is through cookies. The content of
the authentication ticket is stored in a cookie named after the value of the name attribute
in the <forms> section. The cookie contains any information that helps to identify the user
making the request.

By default, a cookie used for authentication lasts 30 minutes and is protected using both
data validation and encryption. Data validation ensures that the contents of the cookie
have not been tampered with along the way. Encryption uses the Rijndael encryption
 algorithm (also known as AES) to scramble the content. You can force it to use DES or 3DES if
you like, however.

800 Part IV Infrastructure of the Application

When validation is turned on, the cookie is created by concatenating a validation key with
the cookie data, computing a Machine Authentication Code (MAC) and appending the MAC
to the outgoing cookie. The validation key, as well as the hash algorithm to use for the MAC,
are read out of the <machineKey> section in the web.config file. The same section also speci-
fies the cryptographic key for when encryption is enabled.

Cookieless Forms Authentication
Cookies are not the only way of putting Forms authentication to work. ASP.NET can offer an
alternative API that exposes a nearly identical programming interface but makes no use of
cookies.

When cookieless authentication is on, the ticket it is incorporated into the URL in much the
same way as for cookieless sessions. The URL of the page served to an authenticated user
follows the pattern shown here:

http://YourApp/(F(XYZ...1234))/samples/default.aspx

The ticket, properly encoded to a URL-compliant alphabet, is inserted in the URL right after
the server name.

Note No matter which settings you might have for validation and encryption, or whether your
authentication scheme is cookied or cookieless, the information stored in the authentication tick-
et is encoded so that it is not immediately human-readable. Forms authentication uses a URI-safe
derivative of the Base64 encoding that carries six bits of encoding per character.

Cookieless authentication requires an ISAPI filter to intercept the request, extract the ticket,
and rewrite the correct path to the application. The filter also exposes the authentica-
tion ticket as another request header. The same aspnet_filter.dll component that we saw in
Chapter 17, “ASP.NET State Management,” for cookieless sessions is used to parse the URL
when cookieless authentication is used. To avoid confusion, each extra piece of information
stuffed in the URL is wrapped by unique delimiters: S(...) for a session ID and F(...) for an au-
thentication ticket. The filter extracts the information, removes URL adornments, and places
the ticket information in a header named AspAuthenticationTicket.

Options for Cookieless Authentication
To enable cookieless authentication, you set the cookieless attribute in the <forms> section of
the configuration file to a particular value. The attribute specifies if and how cookies are used
to store the authentication ticket. It can take any of the values listed in Table 19-7.

http://YourApp/

 Chapter 19 ASP.NET Security 801

TABLE 19-7 Values for the cookieless Attribute
Value Description
AutoDetect Uses cookies if the browser has cookie support currently enabled. It uses the

cookieless mechanism otherwise.

UseCookie Always uses cookies, regardless of the browser capabilities.

UseDeviceProfile Uses cookies if the browser supports them, and uses the cookieless mechanism
otherwise. When this option is used, no attempt is made to check whether
cookie support is really enabled for the requesting device. This is the default
option.

UseUri Never uses cookies, regardless of the browser capabilities.

There’s a subtle difference between UseDeviceProfile and AutoDetect. Let’s make it clear
with an example. Imagine a user making a request through Internet Explorer. The browser
does have support for cookies as reported in the browser capabilities database installed
with ASP.NET. However, a particular user might have disabled cookies support for her own
browser. AutoDetect can correctly handle the latter scenario, and it will opt for cookieless
 authentication. UseDeviceProfile doesn’t probe for cookies being enabled, and it stops at
what’s reported by the capabilities database. It will incorrectly opt for cookied authentication,
causing an exception to be thrown.

The default value for the cookieless attribute is UseDeviceProfile. You should consider
 changing it to AutoDetect.

Note When assigning a value to the cookieless attribute in the <forms> section, pay attention
to how you type any of the possible values in Table 19-7. Case does matter here—for instance,
UseUri is a different thing than useuri. Only the former will work.

Advanced Forms Authentication Features
Let’s tackle a few less obvious issues that might arise when working with Forms
authentication.

Applications to Share Authentication Cookies
HTTP cookies support a path attribute to let you define the application path the cookie
is valid within. Pages outside of that path cannot read or use the cookie. If the path is not
set explicitly, it defaults to the URL of the page creating the cookie. For authentication
 cookies, the path defaults to the root of the application so that it is valid for all pages in the
 application. So far, so good.

In ASP.NET, two applications in the same Internet domain can share their own authentication
cookies, implementing a sort of single sign-on model. Typically, both applications provide

802 Part IV Infrastructure of the Application

their own login pages, and users can log on using any of them and then freely navigate
 between the pages of both. For this to happen, you only have to ensure that some settings in
the root web.config files are the same for both applications. In particular, the settings for the
name, protection, and path attributes in the <forms> section must be identical. Moreover, a
<machineKey> section should be added to both web.config files with explicit validation and
decryption keys:

<machineKey
 validationKey="C50B3C89CB21F4F1422FF158A5B42D0…E"
 decryptionKey="8A9BE8FD67AF6979E7D20198C…D"
 validation="SHA1" />

Read Knowledge Base article 312906 (located at http://support.microsoft.com/default.
aspx?scid=kb;en-us;312906) for suggestions on how to create machine keys. Note that, by
default, validation and decryption keys are set to AutoGenerate. The keyword indicates that
a random key has been generated at setup time and stored in the Local Security Authority
(LSA). LSA is a Windows service that manages all the security on the local system. If you leave
the AutoGenerate value, each machine will use distinct keys and no shared cookie can be
read.

Suppose now you run two ASP.NET Web sites, named www.contoso.com and
blogs.contoso.com. Each of these sites generates authentication cookies not usable by the
other. This is because, by default, authentication cookies are associated with the originating
domain. All HTTP cookies, though, support a domain attribute, which takes the flexibility of
their path attribute to the next level. If set, the domain attribute indicates the domain the
cookie is valid for. Cookies can be assigned to an entire Internet domain, a subdomain, or
even multiple subdomains.

In ASP.NET, the domain attribute in the <forms> section determines the value of the domain
attribute on the authentication cookie being created.

<forms domain="contoso.com" />

Add the preceding script to the web.config file of the Web sites named www.contoso.com
and blogs.contoso.com and you’ll have them share the authentication cookies (if the client
 browser recognizes the domain attribute of the cookie, which most modern browsers do).

The effect of the setting is that the primary domain (www) and any other subdomains will be
able to handle each other’s authentication cookies, always with the proviso that their web.
config files are synchronized on the machine key values.

Note Setting the domain attribute doesn’t cause anything to be emitted into the authentica-
tion ticket; it simply forces all Forms authentication methods to properly set the domain property
on each issued or renewed ticket. The attribute is ignored if cookieless authentication is used.
The domain attribute of the <forms> section takes precedence over the domain field used in the
<httpCookies> section and is valid for all cookies created in the ASP.NET application.

http://support.microsoft.com/default
http://www.contoso.com
http://www.contoso.com

 Chapter 19 ASP.NET Security 803

External Applications to Authenticate Users
Forms authentication also supports having the login page specified in another application in
the same Web site:

<forms loginUrl="/anotherApp/login1.aspx" />

The two applications must have identical machine keys configured for this to work. If the
 application is using cookied authentication tickets, no additional work is necessary. The
 authentication ticket will be stored in a cookie and sent back to the original application.

If cookieless authentication is used, some extra work is required to enable the external
 application to authenticate for us. You need to set the enableCrossAppRedirects attribute in
<forms> in the web.config file of both applications.

<forms ... enableCrossAppRedirects="true" />

Upon successful authentication, the ticket is generated and attached to a query string
 parameter to be marshaled back to the original application.

If the enableCrossAppRedirects attribute is missing and cookieless authentication is used, the
external application will throw an exception.

Note To test this feature in practice, ensure that the <machineKey> section in the web.config
file of both applications contains the same values. They need to be explicit keys, not just the
AutoGenerate command.

Forms Authentication and Secured Sockets
A hacker who manages to steal a valid authentication ticket is in a position to perpetrate
a replay attack for the lifetime of the ticket. To mitigate the risk of replay attacks, you can
 perform authentication over a secured socket. Using secured sockets also removes the threat
represented by applications such as Firesheep (http://en.wikipedia.org/wiki/Firesheep) that
can sniff unencrypted cookies.

This means that first you must deploy your login page on an HTTPS-capable server, and
second you need to set the requireSSL attribute to true in the <forms> section. This setting
causes the ASP.NET application to enable the Secure attribute on the HTTP cookie being
created. When the Secure attribute is set, compliant browsers send back only the cookie
containing the ticket over a resource that is protected with SSL. In this way, you can still use a
broad cookie scope, such as the whole application (‘/’) while providing a reasonable security
level for the ticket in transit.

If you don’t want to use SSL to protect the ticket, the best you can do to alleviate the risk
of replay attacks is set the shortest lifetime for the authentication ticket to a value that is

http://en.wikipedia.org/wiki/Firesheep

804 Part IV Infrastructure of the Application

reasonable for the application. Even if the ticket is intercepted, there won’t be much time
 remaining for the attacker to do his or her (bad) things.

As a final note regarding SSL, consider the following. If requireSSL is set and the user
 attempts to log in on a request not made over SSL, an exception is thrown. If requireSSL is
set and an authentication cookie (a possibly stolen one at that) is provided over a non-SSL
request, no exception is thrown; however, the cookie is wiped out and a regular login page is
displayed through the browser.

Note that if the same happens with cookieless authentication, no protocol check is made and
the request is served to the user…or the attacker.

General Security Issues
Functionally speaking, Forms authentication is the most appropriate authentication method
for Web and ASP.NET applications. However, a few general security issues shouldn’t pass
without comment.

To start with, Forms authentication credentials are sent out as clear text from the client. SSL
can be used to protect the communication, but in the end Forms authentication is as weak as
IIS Basic authentication.

As mentioned, a stolen authentication cookie can be used to plan replay attacks as long as
it is valid. This risk can be partially mitigated by reducing the lifetime of the ticket. Requiring
an SSL connection for the cookie transmission resolves the issue if cookied authentication is
used, but not if a cookieless solution is employed.

Finally, Forms authentication is based on application code, which is good news and bad
news at the same time. It is good because you can keep everything under control. It is bad
because any bug you leave in your code opens a security hole. A way to mitigate the risk of
vulnerabilities stemming from incorrect code is to resort to the membership API.

Creating a Custom Principal
The User property on the HttpContext object is of type IPrincipal—the public contract that
all principal objects must fulfill. Most of the time, the real type behind the User property is
GenericPrincipal. If role management is enabled at the application level, instead, the type is
RolePrincipal. (We’ll cover role management in just a few moments.)

Common principal classes are certainly useful but may prove to be quite generic in most
 applications. In real-world scenarios, you sometimes need to add some custom information
to the security context so that once you have authenticated a user you know much more
about him than just the user name and roles. Let’s see how to tweak the authentication pro-
cess to create a custom cookie and then how to retrieve that information and pack it into a
custom principal object.

 Chapter 19 ASP.NET Security 805

In the event handler responsible for validating credentials, you add the following code:

var customInfo = "some|value";
var ticket = new FormsAuthenticationTicket(
 4, // Version number
 userName, // Username
 DateTime.Now, // Issue date
 DateTime.Now.AddMinutes(30), // Expiration date
 createPersistentCookie, // Is it persistent?
 customInfo // User data
);
var encTicket = FormsAuthentication.Encrypt(ticket);

// Store the ticket into a cookie
var cookie = FormsAuthentication.GetAuthCookie(
 FormsAuthentication.FormsCookieName,
 createPersistentCookie);
cookie.Value = encTicket;

// Append the cookie to the response and redirect
HttpContext.Current.Response.Cookies.Add(cookie);
HttpContext.Response.Redirect(FormsAuthentication.DefaultUrl);

You create your own ticket and stuff some custom data in it. You must get your own instance
of the FormsAuthenticationTicket class in order to do so. Next, you encrypt the ticket and
write it to a cookie with the default name of authentication cookies. The preceding code
 replaces the following call, which is what would happen by default:

FormsAuthentication.SetAuthCookie(userName, createPersistentCookie);

The next step is retrieving the custom information stored in the authentication cookie. You
can do that in the authentication step of global.asax, as shown here:

protected void Application_PostAuthenticateRequest()
{
 // Collect current security information
 var principal = HttpContext.Current.User as GenericPrincipal;
 if (principal == null)
 return;
 var identity = principal.Identity as FormsIdentity;
 if (identity == null)
 return;

 // Extract user data in the authentication ticket
 var customInfo = identity.Ticket.UserData;
 var tokens = customInfo.Split('|');

 // Build a richer principal object
 var myPrincipal = new MyPrincipal(identity, roles)
 {
 CurrentTime = tokens[0],
 Number = tokens[1]
 };

806 Part IV Infrastructure of the Application

 // Store the new principal in the HttpContext
 HttpContext.Current.User = myPrincipal;
}

Having done all of this, you can now cast the HttpContext.User object to your principal type
(MyPrincipal in the example) and use the additional properties in any page. MyPrincipal is a
plain class that inherits from GenericPrincipal:

public class MyPrincipal : GenericPrincipal
{
 public MyPrincipal(IIdentity identity, String[] roles) :
 base(identity, roles)
 { }

 // Extra properties
 public String CurrentTime { get; set; }
 public String Number { get; set; }
}

The Membership and Role Management API
The membership API provides a set of classes to let you manage users and roles. Partnered
with the FormsAuthentication class, the Membership and Roles classes form a complete secu-
rity toolkit for ASP.NET developers. The Membership class supplies methods to manage user
accounts—for adding or deleting a new user and editing any associated user information,
such as the e-mail address and password. The Roles class creates and manages associations
between users and roles.

What does the expression “managing user accounts” mean exactly? Simply put, it states that
the Membership class knows how to create a new user or change his or her password. How
do you create a user? Typically, you add a new record to some sort of data store. If that’s
the case, who is in charge of deciding which data store to use and how to actually write the
new user information? These tasks represent the core functionality the membership API is
 designed to provide.

The membership API doesn’t bind you to a fixed data store and data scheme. Quite the
 reverse, I’d say. It leaves you free to choose any data store and scheme you want, but it binds
you to a fixed API through which users and roles are managed. The membership API is based
on a provider model, and it delegates to the selected provider the implementation of all the
features defined by the API itself. The provider component is only bound to implementing a
contracted interface.

 Chapter 19 ASP.NET Security 807

The Membership Class
Centered on the Membership static class, the membership API shields you from the details of
how the credentials and other user information are retrieved and compared. The Membership
class contains a few methods that you use to obtain a unique identity for each connected
user. This information can also be used with other ASP.NET services, including role-based
function enabling and personalization.

Among the members of the class are methods for creating, updating, and deleting users, but
not methods for managing roles and programmatically setting what a user can and cannot
do. For that, you have to turn to the Roles class, which we’ll cover later.

The Membership class defaults to a provider that stores user information in a SQL Express
database in a predefined format. If you want to use a custom data store (such as a personal
database), you can create your own provider and just plug it in.

The Programming Interface of the Membership Class
Table 19-8 lists the properties exposed by the Membership class.

TABLE 19-8 Properties of the Membership Class
Property Description
ApplicationName A string to identify the application. It defaults to the

application’s root path.

EnablePasswordReset Returns true if the provider supports password reset.

EnablePasswordRetrieval Returns true if the provider supports password
 retrieval.

MaxInvalidPasswordAttempts Returns the maximum number of invalid password
 attempts allowed before the user is locked out.

MinRequiredNonAlphanumericCharacters Returns the minimum number of punctuation
 characters required in the password.

MinRequiredPasswordLength Returns the minimum required length for a password.

PasswordAttemptWindow Returns the number of minutes in which a maximum
number of invalid password or password answer
 attempts are allowed before the user is locked out.

PasswordStrengthRegularExpression Returns the regular expression that the password must
comply with.

Provider Returns an instance of the provider being used.

Providers Returns the collection of all registered providers.

RequiresQuestionAndAnswer Returns true if the provider requires a password ques-
tion/answer when retrieving or resetting the password.

UserIsOnlineTimeWindow Number of minutes after the last activity for which the
user is considered on line.

808 Part IV Infrastructure of the Application

The Provider property returns a reference to the membership provider currently in use. As
you’ll see in a moment, the provider is selected in the configuration file. ASP.NET comes
with a couple of predefined providers that target MDF files in SQL Server Express and Active
Directory. However, many more membership providers are in the works from Microsoft and
third-party vendors, or you can even derive your own. You can obtain the list of installed
providers for a given application through the Providers collection.

All properties are static and read-only. All of them share a pretty simple implementation.
Each property just accesses the corresponding member on the current provider, as shown
here:

public static int PasswordAttemptWindow
{
 get
 {
 Membership.Initialize();
 return Membership.Provider.PasswordAttemptWindow;
 }
}

As the name suggests, the Initialize method ensures that the internal structure of the
Membership class is properly initialized and that a reference to the provider exists.

The class supports fairly advanced functionality, such as estimating the number of users
currently using the application. It uses the value assigned to the UserIsOnlineTimeWindow
property to determine this number. A user is considered on line if he has done some-
thing with the application during the previous time window. The default value for the
UserIsOnlineTimeWindow property is 15 minutes. After 15 minutes of inactivity, a user is con-
sidered off line.

Table 19-9 details the methods supported by the Membership class. This list clarifies the tasks
the class accomplishes.

TABLE 19-9 Methods of the Membership Class

Member Description
CreateUser Creates a new user and fails if the user already exists. The method

returns a MembershipUser object representing any available
 information about the user.

DeleteUser Deletes the user corresponding to the specified name.

FindUsersByEmail Returns a collection of MembershipUser objects whose e-mail address
corresponds to the specified e-mail.

FindUsersByName Returns a collection of MembershipUser objects whose user name
matches the specified user name.

GeneratePassword Generates a random password of the specified length.

GetAllUsers Returns a collection of all users.

 Chapter 19 ASP.NET Security 809

Member Description
GetNumberOfUsersOnline Returns the total number of users currently on line.

GetUser Retrieves the MembershipUser object associated with the current or
specified user.

GetUserNameByEmail Obtains the user name that corresponds to the specified e-mail. If
more users share the same e-mail, the first is retrieved.

UpdateUser Takes a MembershipUser object and updates the information stored
for the user.

ValidateUser Authenticates a user by using supplied credentials.

Setting Up Membership Support
To build an authentication layer based on the membership API, you start by choosing the de-
fault provider and establish the data store. In the simplest case, you can stay with the default
predefined provider, which saves user information in a local MDF file in SQL Server Express.

The Web Site Administration Tool (WSAT) in Microsoft Visual Studio provides a user interface
for creating and administering the registered users of your application. Figure 19-4 provides
a glimpse of the user interface.

FIGURE 19-4 Configure the membership data model.

To add a new user or to edit properties of an existing one, you use the links shown in the
 figure. When you edit the properties of a new user, you use the page in Figure 19-5.

810 Part IV Infrastructure of the Application

FIGURE 19-5 Choosing a user to edit or delete through the WSAT tool.

Validating Users
At this point, we’re ready to write some code that uses the membership API. Let’s start
with the most common operation—authenticating credentials. Using the features of the
 membership subsystem, you can rewrite the code in the login page you saw previously to
authenticate a user as follows:

void LogonUser(Object sender, EventArgs e)
{
 var user = userName.Text;
 var pswd = passWord.Text;

 if (Membership.ValidateUser(user, pswd))
 FormsAuthentication.RedirectFromLoginPage(user, false);
 else
 errorMsg.Text = "Sorry, yours seems not to be a valid account.";
}

This code doesn’t look much different from what you would write without providers,
but there’s one big difference: the use of the built-in ValidateUser function. Here is the
 pseudocode of this method as it is implemented in the system.web assembly:

public static Boolean ValidateUser(String username, String password)
{
 return Membership.Provider.ValidateUser(username, password);
}

 Chapter 19 ASP.NET Security 811

As you can see, all the core functionality that performs the authentication lives in the
 provider. What’s nice is that the name of the provider is written in the web.config file and
can be changed without touching the source code of the application. The overall schema is
 illustrated in Figure 19-6.

Provider-based
Membership Scenario

Display login page

login

Membership Class
ValidateUser method Membership Provider

Authentication

Access a data source

Validate credentials

Fixed behavior Custom schema
Custom storage

FIGURE 19-6 Membership using the provider model.

Managing Users and Passwords
The Membership class provides easy-to-use methods for creating and managing user
data. For example, to create a new user programmatically, all you do is place a call to the
CreateUser method:

Membership.CreateUser(userName, pswd);

To delete a user, you call the DeleteUser method:

Membership.DeleteUser(userName);

You can just as easily get information about a particular user by using the GetUser method.
The method takes the user name and returns a MembershipUser object:

var user = Membership.GetUser("DinoE");

812 Part IV Infrastructure of the Application

Once you’ve got a MembershipUser object, you know all you need to know about a particular
user, and you can, for example, programmatically change the password (or other user-
specific information). An application commonly needs to execute several operations on
passwords, including changing the password, sending a user her password, or resetting the
password, possibly with a question/answer challenge protocol. Here is the code that changes
the password for a user:

var user = Membership.GetUser("DinoE");
user.ChangePassword(user.GetPassword(), newPswd);

To use the ChangePassword method, you must pass in the old password. In some cases, you
might want to allow users to simply reset their password instead of changing it. You do this
by using the ResetPassword method:

MembershipUser user = Membership.GetUser("DinoE");
string newPswd = user.ResetPassword();

In this case, the page that calls ResetPassword is also in charge of sending the new password
to the user—for example, via e-mail. Both the GetPassword and ResetPassword methods have
a second overload that takes a string parameter. If specified, this string represents the answer
to the user’s “forgot password” question. The underlying membership provider matches the
supplied answer against the stored answers; if a user is identified, the password is reset or
returned as appropriate.

Note It goes without saying that the ability to reset the password, as well as support for the
password’s question/answer challenge protocol, is specific to the provider. You should note
that not all the functions exposed by the membership API are necessarily implemented by the
 underlying provider. If the provider does not support a given feature, an exception is thrown if
the method is invoked.

The Membership Provider
The beauty of the membership model lies not merely in the extremely compact code you
need to write to validate or manage users but also in the fact that the model is abstract and
extensible. For example, if you have an existing data store filled with user information, you
can integrate it with the membership API without much effort. All you have to do is write a
custom data provider—that is, a class that inherits from MembershipProvider which, in turn,
inherits from ProviderBase:

public class MyAppMembershipProvider : MembershipProvider
{
 // Implements all abstract members of the class and, if
 // needed, defines custom functionality
 ...
}

 Chapter 19 ASP.NET Security 813

This approach can be successfully employed to migrate existing authentication code to
newer versions of ASP.NET applications and, perhaps more importantly, to link a custom and
existing data store to the membership API. We’ll return to this subject in a moment.

The ProviderBase Class
All the providers used in ASP.NET—not just membership providers—implement a common
set of members: the members defined by the ProviderBase class. The class comes with one
method, Initialize, and one property, Name. The Name property returns the official name
of the provider class. The Initialize method takes the name of the provider and a name/
value collection object packed with the content of the provider’s configuration section.
The method is supposed to initialize its internal state with the values just read out of the
web.config file.

The MembershipProvider Class
Many of the methods and properties used with the Membership class are actually
 implemented by calling into a corresponding method or property in the underlying provider.
It comes as no surprise, then, that many of the methods listed in Table 19-10, which are
 defined by the MembershipProvider base class, support the functions you saw in Table 19-9
that are implemented by the dependent Membership class. However, note that Table 19-9
and Table 19-10 are very similar but not identical.

TABLE 19-10 Methods of the MembershipProvider Class
Method Description
ChangePassword Takes a user name in addition to the old and new

 password, and changes the user’s password.

ChangePasswordQuestionAndAnswer Takes a user name and password, and changes the pair
of question/answer challenges that allows reading and
changing the password.

CreateUser Creates a new user account, and returns a
MembershipUser-derived class. The method takes the user
name, password, and e-mail address.

DeleteUser Deletes the record that corresponds to the specified user
name.

FindUsersByEmail Returns a collection of membership users whose e-mail
address corresponds to the specified e-mail.

FindUsersByName Returns a collection of membership users whose user
name matches the specified user name.

GetAllUsers Returns the collection of all users managed by the
 provider.

GetNumberOfUsersOnline Returns the number of users that are currently considered
to be on line.

814 Part IV Infrastructure of the Application

Method Description
GetPassword Takes the user name and the password’s answer, and

 returns the current password for the user.

GetUser Returns the information available about the specified user
name.

GetUserNameByEmail Takes an e-mail address, and returns the corresponding
user name.

ResetPassword Takes the user name and the password’s answer, and resets
the user password to an auto-generated password.

UpdateUser Updates the information available about the specified user.

ValidateUser Validates the specified credentials against the stored list of
users.

All these methods are marked as abstract virtual in the class (must-inherit, overridable in
Visual Basic .NET jargon). The MembershipProvider class also features a few properties. They
are listed in Table 19-11.

TABLE 19-11 Properties of the MembershipProvider Class

Property Description
ApplicationName Returns the provider’s nickname.

EnablePasswordReset Indicates whether the provider supports password
reset.

EnablePasswordRetrieval Indicates whether the provider supports password
retrieval.

MaxInvalidPasswordAttempts Returns the maximum number of invalid password
 attempts allowed before the user is locked out.

MinRequiredNonAlphanumericCharacters Returns the minimum number of punctuation
 characters required in the password.

MinRequiredPasswordLength Returns the minimum required length for a password.

PasswordAttemptWindow Returns the number of minutes in which a maximum
number of invalid password attempts are allowed
 before the user is locked out.

PasswordStrengthRegularExpression Returns the regular expression that the password must
comply with.

RequiresQuestionAndAnswer Indicates whether the provider requires a question/
answer challenge to enable password changes.

RequiresUniqueEmail Indicates whether the provider is configured to require
a unique e-mail address for each user name.

 Chapter 19 ASP.NET Security 815

Extending the Provider’s Interface
The provider can also store additional information with each user. For example, you can
 derive a custom class from MembershipUser, add any extra members, and return an instance
of that class via the standard GetUser method of the membership API.

To use the new class, you cast the object returned by GetUser to the proper type, as shown
here:

var user = Membership.GetUser(name) as MyCompanyUser;

In addition to the members listed in Table 19-10 and Table 19-11, a custom membership
 provider can add new methods and properties. These are defined outside the official schema
of the provider base class and are therefore available only to applications aware of this
 custom provider.

var provider = Membership.Provider as MyCompanyProvider;

Note The Providers collection property allows you to use a dynamically selected provider:

var prov = Membership.Providers["ProviderName"];

This feature allows applications to support multiple providers simultaneously. For example,
you can design your application to support a legacy database of users through a custom
 provider, while storing new users in a standard SQL Server table. In this case, you use different
 membership providers for different users.

A Custom Provider for Legacy Code
Unless you’re building an ASP.NET application entirely from scratch with total freedom to
decide where and how to store settings and data, you have some legacy code or schema to
deal with. A savvy strategy, then, is creating a custom membership provider to provide access
to legacy data via a canonical programming interface. I would even say that almost any
ASP.NET application needs its own membership provider. Here’s some sample code:

public class MyMembershipProvider : MembershipProvider
{
 public MyMembershipProvider()
 {
 }
 public override bool ChangePassword(string username,
 string oldPassword, string newPassword)
 {
 // If you don't intend to support a given method
 // just throw an exception
 throw new NotSupportedException();
 }

 ...

816 Part IV Infrastructure of the Application

 public override bool ValidateUser(string username, string password)
 {
 return AuthenticateUser(username, password);
 }

 private bool AuthenticateUser(string username, string pswd)
 {
 // Place here any code that would use the existing API/schema
 // and authenticate against the provided credentials
 }
}

You define a new class derived from MembershipProvider. In this class definition, you have
to override all the members in Table 19-10 and Table 19-11. If you don’t intend to support
a given method or property, for that method just throw a NotSupportedException excep-
tion. For the methods you do plan to support—which for the previous example included
only ValidateUser—you write the supporting code. At this point, nothing prevents you from
 reusing code from your old application. There are two key benefits with this approach: you
reuse most of your code (perhaps with a little bit of refactoring), and your application now
fully embraces the membership model of ASP.NET.

Generally speaking, when writing providers, there are three key issues to look at: the lifetime
of the provider, thread-safety, and atomicity. The provider is instantiated as soon as it proves
necessary, but only once per ASP.NET application. This fact gives the provider the status of
a stateful component, but it does so at the price of protecting that state from cross-thread
access. A provider is not thread-safe, and it will be your responsibility to guarantee that any
critical data is locked before use. Finally, some functions in a provider can be made of mul-
tiple steps. Developers are responsible for ensuring the atomicity of the operations either
through database transactions (whenever possible) or through locks.

Configuring a Membership Provider
You register a new provider through the <membership> section of the web.config file.
The section contains a child <providers> element under which additional providers are
configured:

<membership>
 <providers>
 <add name="MyMembershipProvider"
 type="Samples.MyMembershipProvider" />
 </providers>
</membership>

You can change the default provider through the defaultProvider attribute of the
 <membership> section.

 Chapter 19 ASP.NET Security 817

With the new provider in place, the code to verify credentials reduces to the following code,
which is the same as you saw earlier in the chapter:

void LogonUser(object sender, EventArgs e)
{
 string user = userName.Text;
 string pswd = passWord.Text;
 if (Membership.ValidateUser(user, pswd))
 FormsAuthentication.RedirectFromLoginPage(user, false);
 else
 errorMsg.Text = "Sorry, yours seems not to be a valid account.";
}

There’s more than just this with the membership API. Now a login page has a relatively
 standard structure and relatively standard code attached. At least in the simplest scenarios,
it can be reduced to a composite control with no binding code. This is exactly what security
controls do. Before we get to cover this new family of server controls, though, let’s review
roles and their provider-based management.

Managing Roles
Roles in ASP.NET simplify the implementation of applications that require authorization. A
role is just a logical attribute assigned to a user. An ASP.NET role is a plain string that refers
to the logical role the user plays in the context of the application. In terms of configuration,
each user can be assigned one or more roles. This information is attached to the identity
 object, and the application code can check it before the execution of critical operations.

For example, an application might define two roles—Admin and Guest, each representative
of a set of application-specific permissions. Users belonging to the Admin role can perform
tasks that other users are prohibited from performing. Assigning roles to a user account
doesn’t add any security restrictions by itself. It is the responsibility of the application to
 ensure that authorized users perform critical operations only if they are members of a
certain role.

In ASP.NET, the role manager feature simply maintains the relationship between users and
roles.

Note The Role Management API, although it consists of different methods and properties,
works like the Membership API from a mechanical standpoint. Many of the concepts you read in
the previous section also apply to role management.

818 Part IV Infrastructure of the Application

The Role Management API
The role management API lets you define roles as well as specify programmatically which
 users are in which roles. The easiest way to configure role management, define roles, add
users to roles, and create access rules is to use WSAT. (See Figure 19-4.) You enable role
 management by adding the following script to your application’s web.config file:

<roleManager enabled="true" />

You can use roles to establish access rules for pages and folders. The following
 <authorization> block states that only Admin members can access all the pages controlled
by the web.config file:

<configuration>
<system.web>
 <authorization>
 <allow roles="Admin" />
 <deny users="*" />
 </authorization>
</system.web>
</configuration>

The order in which you place <allow> and <deny>tags is important. Permissions and denies
are processed in the order in which they appear in the configuration file.

WSAT provides a visual interface for creating associations between users and roles. If
 necessary, you can instead perform this task programmatically by calling various role
 manager methods. The following code snippet demonstrates how to create the Admin and
Guest roles and populate them with user names:

Roles.CreateRole("Admin");
Roles.AddUsersToRole("DinoE", "Admin");
Roles.CreateRole("Guest");
var guests = new String[2];
guests[0] = "JoeUsers";
guests[1] = "Godzilla";
Roles.AddUsersToRole(guests, "Guest")

At run time, information about the logged-in user is available through the HTTP context User
object. The following code demonstrates how to determine whether the current user is in a
certain role and subsequently enable specific functions:

if (User.IsInRole("Admin"))
{
 // Enable functions specific to the role
 ...
}

 Chapter 19 ASP.NET Security 819

When role management is enabled, ASP.NET looks up the roles for the current user and binds
that information to the User object.

The Roles Class
When role management is enabled, ASP.NET creates an instance of the Roles class and adds it
to the current request context—the HttpContext object. The Roles class features the methods
listed in Table 19-12.

TABLE 19-12 Methods of the Roles Class
Method Description
AddUsersToRole Adds an array of users to a role.

AddUsersToRoles Adds an array of users to multiple roles.

AddUserToRole Adds a user to a role.

AddUserToRoles Adds a user to multiple roles.

CreateRole Creates a new role.

DeleteCookie Deletes the cookie that the role manager used to cache all the role
data.

DeleteRole Deletes an existing role.

FindUsersInRole Retrieves all the user names in the specified role that match the
 provider user name string. The user names found are returned as a
string array.

GetAllRoles Returns all the available roles.

GetRolesForUser Returns a string array listing the roles that a particular member
 belongs to.

GetUsersInRole Returns a string array listing the users who belong to a particular role.

IsUserInRole Determines whether the specified user is in a particular role.

RemoveUserFromRole Removes a user from a role.

RemoveUserFromRoles Removes a user from multiple roles.

RemoveUsersFromRole Removes multiple users from a role.

RemoveUsersFromRoles Removes multiple users from multiple roles.

RoleExists Returns true if the specified role exists.

Table 19-13 lists the properties available in the Roles class. All the properties are static and
read-only. They owe their value to the settings in the <roleManager> configuration section.

820 Part IV Infrastructure of the Application

TABLE 19-13 Properties of the Roles Class
Property Description
ApplicationName Returns the provider’s nickname.

CacheRolesInCookie Returns true if cookie storage for role data is enabled.

CookieName Specifies the name of the cookie used by the role manager to store
the roles. It defaults to .ASPXROLES.

CookiePath Specifies the cookie path.

CookieProtectionValue Specifies an option for securing the roles cookie. Possible values are
All, Clear, Hashed, and Encrypted.

CookieRequireSSL Indicates whether the cookie requires SSL.

CookieSlidingExpiration Indicates whether the cookie has a fixed expiration time or a sliding
expiration.

CookieTimeout Returns the time, in minutes, after which the cookie will expire.

CreatePersistentCookie Creates a role cookie that survives the current session.

Domain Indicates the domain of the role cookie.

Enabled Indicates whether role management is enabled.

MaxCachedResults Indicates the maximum number of roles that can be stored in a cookie
for a user.

Provider Returns the current role provider.

Providers Returns a list of all supported role providers.

Some methods in the Roles class need to query continuously for the roles associated with a
given user, so when possible, the roles for a given user are stored in an encrypted cookie. On
each request, ASP.NET checks to see whether the cookie is present; if so, it decrypts the role
ticket and attaches any role information to the User object. By default, the cookie is a session
cookie and expires as soon as the user closes the browser.

Note that the cookie is valid only if the request is for the current user. When you request role
information for other users, the information is read from the data store using the configured
role provider.

Note Role management passes through the role manager HTTP module. The module is
 responsible for adding the appropriate roles to the current identity object, such as the User
 object. The module listens for the AuthenticateRequest event and does its job.

The Role Provider
For its I/O activity, the role manager uses the provider model and a provider component. The
role provider is a class that inherits the RoleProvider class. The schema of a role provider is
not much different from that of a membership provider. Table 19-14 details the members of
the RoleProvider class.

 Chapter 19 ASP.NET Security 821

TABLE 19-14 Methods of the RoleProvider Class
Method Description
AddUsersToRoles Adds an array of users to multiple roles.

CreateRole Creates a new role.

DeleteRole Deletes the specified role.

FindUsersInRole Returns the name of users in a role matching a given user name pattern.

GetAllRoles Returns the list of all available roles.

GetRolesForUser Gets all the roles a user belongs to.

GetUsersInRole Gets all the users who participate in the given role.

IsUserInRole Indicates whether the user belongs to the role.

RemoveUsersFromRoles Removes an array of users from multiple roles.

RoleExists Indicates whether a given role exists.

You can see the similarity between some of these methods and the programming interface
of the Roles class. As you saw for membership, this is not just coincidental.

ASP.NET ships with a few built-in role providers—SqlRoleProvider (default),
WindowsTokenRoleProvider, and AuthorizationStoreRoleProvider. The SqlStoreProvider class
stores role information in the same MDF file in SQL Server Express as the default membership
provider. For WindowsTokenRoleProvider, role information is obtained based on the settings
defined for the Windows domain (or Active Directory) the user is authenticating against. This
provider does not allow for adding or removing roles. The AuthorizationStoreRoleProvider
class manages storage of role information for an authorization manager (AzMan) policy
store. AzMan is a Windows download that enables you to group individual operations to-
gether to form tasks. You can then authorize roles to perform specific tasks, individual op-
erations, or both. AzMan provides an MMC snap-in to manage roles, tasks, operations, and
users. Role information is stored in a proper policy store, which can be an XML file, an Active
Directory, or an ADAM server.

Custom role providers can be created deriving from RoleProvider and registered using the
child <providers> section in the <roleManager> section. Note that the process for doing this
is nearly identical to the process you saw for the custom membership provider we explored
previously.

Quick Tour of Claims-Based Identity
Unlike many other aspects of programming, authentication has always been devoid of any
level of indirection. This means that developers have always taken care of any details of
the authentication API at quite a low level of abstraction and with deep knowledge of the
 technical aspects.

822 Part IV Infrastructure of the Application

A key challenge, then, is carrying the world of security toward a different model, where the
concept of outsourcing is central and development teams can focus on selecting the best
provider for authentication. The new model is centered on Windows Identity Foundation
(WIF) and uses claims instead of direct management of user credentials to implement
 authentication-based features.

Claims-Based Identity
Classic authentication is based on two steps: getting the user credentials and validating them
against some known values. If the provided information matches the stored information,
the user is recognized and authenticated and can gain access to specific features of the
application.

Getting user credentials, however, often requires dealing with different technologies and
possessing a wide range of skills. You can use, for example, certificate, Forms, or Windows
authentication. In any of these cases, you must be familiar with technical details. As a result,
your application recognizes the identity of a user from provided credentials that hopefully
have been validated successfully.

Claims-based identity is something different.

Claims and Identity Providers
The key idea behind claims-based identity is that an application (and not just an ASP.NET
application) uses a third-party provider that assumes responsibility for returning a few true
statements about a user. These statements are known as claims. The calling application gets
the list of claims and, based on that, decides which sections of the site should be unveiled to
the user and which features should be enabled.

For developers, the biggest change is that you don’t include in your codebase anything that
deals with authentication and authorization. You simply arrange a conversation with an ex-
ternal identity provider, tell it about the statements you’re interested in verifying, and wait
for a response. The user is redirected somewhere else (presumably to the identity provider
site), provides requested credentials, and gets authenticated.

So, in the end, it is still about having a piece of code that collects and verifies credentials, isn’t
it? Ultimately, it has to be this way because this is the only way in which authentication works.
As a developer, though, you just outsource authentication to an external provider that you
trust and that you have explicitly selected.

The Authentication Workflow
Figure 19-7 illustrates the typical workflow that characterizes a claims-based authentication
process. The user initially connects to the application and attempts to log in. If all goes well,

 Chapter 19 ASP.NET Security 823

the user is ultimately redirected to the requested (and protected) page—nearly the same as
in the authentication process we just reviewed. However, everything else is different under
the surface.

Your
Application

Visit

Identity
Provider

Security
TokenRedirect

Credentials Security token

FIGURE 19-7 The typical flow of claims-based authentication.

An application designed to take advantage of claims-based identity redirects the user to
the identity provider of choice. The user interacts with the site of the provider and enters
any information that the provider reckons to be useful to authenticate the request. If the
 operation is successful, the identity provider issues a security token and redirects back to the
application. The security token that is then handed over to the application contains claims
about the user. These claims are trusted by the application.

Claims and Policies
So a claim is nothing more than a statement that has been verified by the identity provider,
and the identity provider guarantees it is true. What kind of statements are we talking about,
however? A claim is strictly bound to the provider. Different providers can issue different
claims, and not all providers can validate a given claim.

A canonical example often discussed to introduce the concept of a claim is an online wine
shop that needs to be sure about the age of the people placing orders. In this case, the
 classic approach of having users register with the site, provide a birth date, and proceed with
purchasing products doesn’t work. Who can reliably prove that the user is really of the legal
age for purchasing alcohol? Certainly not the user himself!

In a claims-based system, the wine shop application might rely on an identity provider
that “claims” to be able to verify the age of a user. The provider can ask for a driver’s li-

824 Part IV Infrastructure of the Application

cense number and cross check that number with the database of the Driving and Licensing
 department. Any identity provider must expose a policy document that lists its requirements
(protocols, endpoints, data formats) and the list of claims it can support. An application must
likewise incorporate a policy document with the list of security requirements—facts the
 application needs to know for sure in order to proceed. Furthermore, the application must
include a list of valid and trusted providers.

Issued by the identity provider, a security token travels the network to reach the requesting
application and carry information. The security token is digitally signed, can’t be tampered
with, and can be related to the issuing provider.

Strictly related to identity providers are the Security Token Service (STS). An STS provides a
standards-based method of authenticating users and completely hides the details of how this
is done internally.

Using Claims in ASP.NET Applications
To use claims-based identity in your ASP.NET application, you must pick up an STS and
 understand what it can do for you. Next, you disable any classic security and add code talk to
the selected STS.

As mentioned, WIF is the Microsoft infrastructure for working with claims-based identity.
You can download the WIF runtime from http://www.microsoft.com/ downloads/en/
details.aspx?FamilyID=EB9C345F-E830-40B8-A5FE-AE7A864C4D76. The WIF SDK, instead,
is available here: http://www.microsoft.com/downloads/en/details.aspx?FamilyID=
c148b2df-c7af-46bb-9162-2c9422208504.

Picking Up the STS
To make an ASP.NET application claims-aware, you first need to get an STS. To start, you can
use SelfSTS—a utility that emulates the minimal behavior of a realistic STS. You can get the
STS from http://code.msdn.microsoft.com/SelfSTS.

If you use a Microsoft-provided project template for WIF, you then can rely on some tooling
made to measure to add an STS reference and generate proper changes to code and con-
figuration. At the end of the procedure, your authentication mode in the web.config file is
probably set to None and a few HTTP modules have been added to the application’s runtime
environment.

http://www.microsoft.com/�downloads/en/
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=
http://code.msdn.microsoft.com/SelfSTS

 Chapter 19 ASP.NET Security 825

Configuring the ASP.NET Application
With STS configured and WIF modules in place, the type behind the HttpContext.User
p roperty is IClaimsPrincipal:

var claimsPrincipal = HttpContext.Current.User as IClaimsPrincipal;
var claimsIdentity = (IClaimsIdentity) claimsPrincipal.Identity;

You now own all claims as issued by the sample STS. You can enumerate claims with a plain
loop, as shown here:

foreach(var claim in claimsIdentity.Claims)
{
 // Use claims. Properties are ClaimType and Value
}

You use claims to enable or disable the various features of the application on a per-user
basis.

For a lot more information about WIF and motivation to use it, I invite you to read Vittorio
Bertocci’s excellent book, “Programming Windows Identity Foundation” (Microsoft Press,
2010).

Compared to classic Forms authentication, claims-based identity has one noticeable
 difference for developers that can influence your decision to go with it or stick to more
traditional solutions. You usually can’t have a list of all the users that could log into your
application.

All that your application can do is make public the list of claims it needs. After that, the
 selected (and trusted) STS gains control over the implementation of user accounts, and all
your application has to do is check claims presented by users and reject users who don’t
match requested claims. In this way, you should never be required to modify the application
to accommodate new users, even when these new users come from other sites as might be
the case with federated sites.

Security-Related Controls
ASP.NET offers several server controls that make programming security-related aspects
of a Web application quick and easy: Login, LoginName, LoginStatus, LoginView,
PasswordRecovery, ChangePassword, and CreateUserWizard. These are composite controls,
and they provide a rich, customizable user interface. They encapsulate a large part of the
boilerplate code and markup you would otherwise have to write repeatedly for each Web
application you developed. Figure 19-8 offers a comprehensive view of the membership
platform and illustrates the role of the login controls.

826 Part IV Infrastructure of the Application

Controls
CreateUserWizardChangePasswordLoginViewLogin

Membership
API

Providers

Data Stores

PasswordRecoveryLoginNameLoginStatus

MembershipUserMembership

ActiveDirectoryMembershipProviderSqlMembershipProvider
Others

SQL Server Express Active Directory SQL Server
and other RDBMS

FIGURE 19-8 The big picture of ASP.NET membership and login controls.

The Login Control
An application based on the Forms authentication model always needs a login page. Aside
from the

 quality of the graphics, all login pages look alike. They contain a couple of text boxes (for
username and password), a button to validate credentials, plus perhaps a Remember Me
check box, and possibly links to click if the user has forgotten his or her password or needs
to create a new account. The Login control provides all this for free, including the ability to
 validate the user against the default membership provider.

Setting Up the Login Control
The Login control is a composite control that provides all the common user interface
 elements of a login form. To use it, you simply drop the control from the toolbox onto the
Web form, or you just type the following code:

<asp:login runat="server" id="MyLoginForm" />

The Login control also has optional user-interface elements for functions such as password
reminders, new user registration, help links, error messages, and a custom action used in
the case of a successful login. When you drop the control onto a Visual Studio form, the
AutoFormat verb lets you choose among a few predefined styles, as shown in Figure 19-9.

 Chapter 19 ASP.NET Security 827

FIGURE 19-9 The predefined styles of the Login control.

The appearance of the control is fully customizable through templates and style settings. All
user-interface text messages are also customizable through properties of the class.

The Programming Interface of the Control
The control is modularized, and each constituent part can be individually customized. The
parts include the Username and Password text boxes, the Submit button, the button to
 create a new user, the Remember Me check box, and instructions with guidance to the user.

If you don’t like the standard user interface of the control, you can define your own template
too:

<asp:login runat="server" id="MyLoginForm">
 <layouttemplate>
 ...
 </layouttemplate>
</asp:login>

Your template can include new elements, and you can recycle default components. To do
the latter, you should use the same ID for the controls as in the default template. To simplify
this operation, right-click on the control in the Visual Studio designer, choose Convert To
Template, and switch to the Source view. The markup you see is the default template of the
control expressed as ASP.NET code. Use it as a starting point for creating your own template.

828 Part IV Infrastructure of the Application

Events of the Control
The Login control fires the server events listed in Table 19-15.

TABLE 19-15 Events of the Login Control
Event Description
Authenticate Fires when a user is authenticated.

LoggedIn Fires when the user logs in to the site after a successful authentication.

LoggingIn Fires when a user submits login information but before the authentication takes
place. At this time, the operation can still be canceled.

LoginError Fires when a login error is detected.

In most common cases, though, you don’t need to handle any of these events, nor will you
likely find it necessary to programmatically access any of the numerous properties of the
control.

The most common use for the Login control is to use it as a single-control page to set up the
user interface of the login page for use with Forms authentication. The control relies entirely
on the membership API (and the selected provider) to execute standard operations, such as
validating credentials, displaying error messages, and redirecting to the originally requested
page in the case of a successful login.

If you have a provider with custom capabilities that you want to be reflected by the Login
control, you need to modify the layout to add new visual elements bound to a code-be-
hind method. In the code-behind method, you invoke the custom method on the custom
provider.

The LoginName Control
The LoginName control is an extremely simple but useful server control. It works like a sort of
label control and displays the user’s name on a Web page:

<asp:loginname runat="server" />

The control captures the name of the currently logged-in user from the User intrinsic ob-
ject and outputs it using the current style. Internally, the control builds a dynamic instance
of a Label control, sets fonts and color accordingly, and displays the text returned by the
 following expression:

string name = HttpContext.Current.User.Identity.Name;

 Chapter 19 ASP.NET Security 829

The LoginName control has a pretty slim programming interface that consists of only one
property—FormatString. FormatString defines the format of the text to display. It can contain
only one placeholder, as shown here:

myLogin.FormatString = "Welcome, {0}";

If Dino is the name of the current user, the code generates a “Welcome, Dino” message.

The LoginStatus Control
The LoginStatus control indicates the state of the authentication for the current user. Its user
interface consists of a link button to log in or log out, depending on the current user logon
state. If the user is acting as an anonymous user—that is, he or she never logged in—the
control displays a link button to invite the user to log in. Otherwise, if the user successfully
passed through the authentication layer, the control displays the logout button.

Setting Up the LoginStatus Control
The LoginStatus control is often used in conjunction with the LoginName control to dis-
play the name of the current user (if any), plus a button to let the user log in or out. The
style, text, and action associated with the button changes are conveniently based on the
 authentication state of the user.

The following code creates a table showing the name of the current user and a button to log
in or log out:

<table width="100%" border="0"><tr>
 <td>
 <asp:loginname runat="server" FormatString="Welcome, {0}" />
 </td>
 <td align="right">
 <asp:loginstatus runat="server" LogoutText="Log off" />
 </td>
 </tr>
</table>

To detect whether the current user is authenticated and adapt the user interface, you can use
the IsAuthenticated property of the User object:

void Page_Load(object sender, EventArgs e)
{
 if (User.Identity.IsAuthenticated)
 // Adjust the UI by outputting some text to a label
 Msg.Text = "Enjoy more features";
 else
 Msg.Text = "Login to enjoy more features.";
}

830 Part IV Infrastructure of the Application

The Programming Interface of the Control
Although the LoginStatus control is quite useful in its default form, it provides a bunch of
properties and events you can use to configure it. The properties are listed in Table 19-16.

TABLE 19-16 Properties of the LoginStatus Control
Property Description
LoginImageUrl Gets or sets the URL of the image used for the login link.

LoginText Gets or sets the text used for the login link.

LogoutAction Determines the action taken when a user logs out of a Web site. Possible
values are Refresh, Redirect, and RedirectToLoginPage. Refresh reloads the
current page with the user logged out. The other two values redirect the
user to the logout page or the login page, respectively.

LogoutImageUrl Gets or sets the URL of the image used for the logout button.

LogoutPageUrl Gets or sets the URL of the logout page.

LogoutText Gets or sets the text used for the logout link.

The control also features a couple events: LoggingOut and LoggedOut. The former fires
 before the user clicks to log off. The latter is raised immediately after the logout process has
completed.

The LoginView Control
The LoginView control allows you to aggregate the LoginStatus and LoginName controls to
display a custom user interface that takes into account the authentication state of the user as
well as the user’s role or roles. The control, which is based on templates, simplifies creation of
a user interface specific to the anonymous or connected state and particular roles to which
they are assigned. In other words, you can create as many templates as you need, one per
state or per role.

The Programming Interface of the Control
Table 19-17 lists the properties of the user interface of the LoginView control.

TABLE 19-17 Properties of the LoginView Class
Property Description
AnonymousTemplate Gets or sets the template to display to users who are not logged in to the

application.

LoggedInTemplate Gets or sets the template to display to users who are logged in to the
application.

RoleGroups Returns the collection of templates defined for the supported roles.
Templates can be declaratively specified through the <roleGroups>
child tag.

 Chapter 19 ASP.NET Security 831

Note that the LoggedInTemplate template is displayed only to logged-in users who are not
members of one of the role groups specified in the RoleGroups property. The template (if
any) specified in the <roleGroups> tag always takes precedence.

The LoginView control also fires the ViewChanging and ViewChanged events. The former
reaches the application when the control is going to change the view (such as when a user
logs in). The latter event fires when the view has changed.

Creating a Login Template
The LoginView control lets you define two distinct templates to show to anonymous and
logged-in users. You can use the following markup to give your pages a common layout and
manage the template to show when the user is logged in:

<asp:loginview runat="server">
 <anonymoustemplate>
 <table width="100%" border="0"><tr><td>
 To enjoy more features,
 <asp:loginstatus runat="server">
 </td></tr></table>
 </anonymoustemplate>
 <loggedintemplate>
 <table width="100%" border="0"><tr>
 <td><asp:loginname runat="server" /></td>
 <td align="right"><asp:loginstatus runat="server" /></td>
 </tr></table>
 </loggedintemplate>
</asp:loginview>

Basically, the LoginView control provides a more flexible, template-based programming
 interface to distinguish between logged-in and anonymous scenarios, as we did in the
 previous example by combining LoginStatus and LoginName.

Creating Role-Based Templates
The LoginView control also allows you to define blocks of user interface to display to all
logged-in users who belong to a particular role. As mentioned, these templates take
 precedence over the <loggedintemplate> template, if both apply.

<asp:loginview runat="server">
 <rolegroups>
 <asp:rolegroup roles="Admin">
 <contenttemplate>
 ...
 </contenttemplate>
 </asp:rolegroup>
 <asp:rolegroup roles="Guest">
 <contenttemplate>
 ...
 </contenttemplate>

832 Part IV Infrastructure of the Application

 </asp:rolegroup>
 </rolegroups>
</asp:loginview>

The content of each <contenttemplate> block is displayed only to users whose role matches
the value of the roles attribute. You can use this feature to create areas in a page whose con-
tents are strictly role-specific. For the LoginView control to work fine, role management must
be enabled, of course. The control uses the default provider.

The PasswordRecovery Control
The PasswordRecovery control is another server control that wraps a common piece of Web
user interface in an out-of-the-box component. The control represents the form that enables
a user to recover or reset a lost password. The user will receive the password through an
e-mail message sent to the e-mail address associated with his or her account.

The control supports three views, depending on the user’s password recovery stage, as fol-
lows. The first view is where the user provides the user name and forces the control to query
the membership provider for a corresponding membership user object. The second view is
where the user must provide the answer to a predetermined question to obtain or reset the
password. Finally, the third view is where the user is informed of the success of the operation.

Requirements for Password Retrieval
For the control to work properly, you must first ensure that the selected membership
 provider supports password retrieval. The password retrieval also requires the provider to
define a MembershipUser object and implement the GetUser methods. Remember that the
membership provider decides how to store passwords: clear text, hashed, or encrypted.
Best practice, of course, is to only store hashed passwords.

If passwords are stored as hashed values, the control doesn’t work. Hash algorithms are not
two-way algorithms. In other words, the hash mechanism is great at encrypting and compar-
ing passwords, but it doesn’t retrieve the clear text. If you plan to use the PasswordRecovery
control, you must ensure that the provider stores passwords as clear text or encrypted data.

Retrieving a Password
The PasswordRecovery control supports a child element named MailDefinition:

<asp:passwordrecovery runat="server">
 <maildefinition from="admin@contoso.com" />
</asp:passwordrecovery>

mailto:admin@contoso.com

 Chapter 19 ASP.NET Security 833

The <MailDefinition> element configures the e-mail message and indicates the sender as
well as the format of the body (text or HTML), priority, subject, and carbon-copy (CC). For
the same settings, you can also use a bunch of equivalent properties on the associated
Framework class and set values programmatically.

If the user who has lost the password has a question/answer pair defined, the
PasswordRecovery control changes its user interface to display the question and ask for the
answer before the password is retrieved and sent back.

The control first asks the user to provide the user name; next it retrieves associated infor-
mation and displays the security question, if any is defined for the user. Finally, if an e-mail
address is known, the control sends a message with details. Bear in mind that you need to
have proper e-mail settings in the web.config file, specifically in the <system.net> section, as
shown here:

<system.net>
 <mailSettings>
 <smtp deliveryMethod="Network">
 <network host="your.smtp.server" />
 </smtp>
 </mailSettings>
</system.net>

The ChangePassword Control
The ChangePassword control provides an out-of-the-box and virtually codeless solution that
enables end users to change their password to the site. The control supplies a modifiable and
customizable user interface and built-in behaviors to retrieve the old password and save a
new one:

<asp:ChangePassword ID="ChangePassword1" runat="server" />

The underlying API for password management is the same membership API we discussed
earlier in this chapter.

User Authentication
The ChangePassword control will work in scenarios where a user might or might not be
 already authenticated. However, note that the User Name text box is optional. If you choose
not to display the user name and still permit nonauthenticated users to change their
 password, the control will always fail.

If the user is not authenticated but the User Name text box is displayed, the user will be able
to enter his or her user name, current password, and new password at the same time.

834 Part IV Infrastructure of the Application

Password Change
The change of the password is performed using the ChangePassword method on the
MembershipUser object that represents the user making the attempt. Note that the provider
might pose an upper limit to the invalid attempts to change or reset the password. If set, this
limit affects the ChangePassword control. The control won’t work any longer after the limit
has been exceeded.

After the password has been successfully changed, the control can send—if properly
 configured—a confirmation e-mail to the user. The e-mail message is configured through the
same <MailDefinition> element you saw earlier for the PasswordRecovery control.

The Continue button points the page with the control to a new destination URL to let users
continue working. If you don’t set the ContinuePageDestinationUrl property, clicking the
 button simply refreshes the current page.

The CreateUserWizard Control
The CreateUserWizard control is designed to provide a native functionality for creating and
configuring a new user using the membership API. The control offers a basic behavior that
the developer can extend to send a confirmation e-mail to the new user and add steps to the
wizard to collect additional information, such as address, phone number, or perhaps roles.

Customization is supported in two ways: by customizing one of the default steps, and by
adding more user-defined steps. Figure 19-10 shows the control in action in the Create User
page of the WSAT tool.

FIGURE 19-10 The CreateUserWizard control in action within WSAT.

 Chapter 19 ASP.NET Security 835

The difference between this control and the CreateUser method on the membership provider
is that the method just adds the user name and password. The wizard provides a user
 interface and lets you add more information in a single shot.

Summary
How can we design and code secure ASP.NET applications? First of all, security is strictly
 related to the application’s usage, its popularity, and the type of users who connect to it
and work with it. Paradoxically, a poorly secured application that isn’t attractive to hack-
ers can be perceived as being much more secure than a well-armored application with just
one loophole or two. Successful attacks are possible through holes in the system-level and
 application-level security apparatus.

When it comes to security, don’t look for a magic wand to do the job for you. Security is a
state of mind, and insecurity is often the result of loose coding styles, if not true program-
ming laziness. Never blindly trust anything regarding Web and ASP.NET security. Always keep
in mind that security for Web applications is mostly about raising the bar higher and higher
to make it hard for bad guys to jump over.

Programming Microsoft® ASP.NET 4

 837

Part V

The Client Side
In this part:
Chapter 20: Ajax Programming . 839
Chapter 21: jQuery Programming . 899

 839

Chapter 20

Ajax Programming
The free thinking of one age is the common sense of the next.

—Matthew Arnold

Gone are the days when a Web application could be architected and implemented as a
 collection of static and dynamic pages served from the server for each and every request.
In today’s Web, a lot of work is done on the client using JavaScript libraries or richer engines
such as Adobe Flash or Microsoft Silverlight.

Having rich client-side functionality is no longer a brilliant exception as it was only a few
years ago; this is now going to be the rule. On the other hand, what’s your knee-jerk reac-
tion when you run across a Web site that requires you to pick up an item from a drop-down
list and refreshes the entire page afterward? More or less, you hate it and wish they could
 update the site as soon as possible. In the end, using server-side programming to generate
the page markup is more and more becoming a thing of the past.

Server-side programming is still an important piece of the Web, but these days it’s different.
For a Web site (a plain collection of mostly read-only pages), you leverage server-side pro-
gramming to generate markup and serve it to the browser over an out-of-band, script-led
request. For a Web application (a more sophisticated composition of functions exposed
through pages), you tend to expose a URL-based API from the server that JavaScript code
calls back to build and refresh the view dynamically.

The history of Web is full of cycles in which the focus shifts from the client to the server and
then back. We had Dynamic HTML (DHTML) in 1997, but only for a subset of browsers—well,
mostly Internet Explorer 4. There was no immediate and general consensus around that in-
novation, which remained confined to a small percentage of browsers for years. Then the
hype returned to server programming with ASP.NET Web Forms. It’s odd, when you think of
it, how shielding developers from JavaScript and HTML was one of the best-selling points of
ASP.NET. Around 2005, people started moving back toward client-side programming with
Ajax.

Ajax is an acronym that stands for Asynchronous JavaScript and XML. It’s a blanket term used
to describe applications that extensively use the client-side capabilities of the Web browser.
The browser is not simply a dummy HTML-based terminal; it gains the power of a real tier
that hosts a part of the application’s presentation logic. So how do you do Ajax in ASP.NET?

Pattern-wise, there are two main approaches to Ajax. One consists of serving markup to
the browser over a script-led request. Known as HTML Message (HM), this pattern is akin
to the classic browser-to-server model except that the request is placed via user-defined

840 Part V The Client Side

script rather than the hard-coded browser’s machinery. As a developer, you make yourself
 responsible for deciding how to run the request and how to process the returned markup.
On the server side, however, any URL you invoke always returns plain HTML markup.

The other pattern is Browser-Side Templating (BST) and is based on the idea that the browser
places script-led requests for raw data to be incorporated in the user interface by some
script-based presentation logic.

In this chapter, I’ll dig out these two patterns and explore technologies related to ASP.NET
Web Forms that make it work.

The Ajax Infrastructure
Typically, Web applications work by submitting user-filled forms to the Web server and
 displaying the markup returned by the Web server. The client-to-server communication
 employs the HTTP protocol and is usually conducted by the browser. The new model
 heralded by Ajax is based on an alternate engine that can be driven by some script code
 embedded in the page.

There are many benefits to writing Ajax applications. First and foremost, the page that
 triggers the call remains up and running and refreshes its Document Object Model (DOM)
with the freshly downloaded data. No page replacement occurs, and the overall user
 experience is smooth and continual. In addition, you can fire and control asynchronous and
potentially lengthy operations without freezing the current UI. An Ajax application minimizes
user frustration, provides timely feedback about what’s going on, and can deliver great
mashed-up content.

The Hidden Engine of Ajax
Let’s find out more about the internal HTTP engine that makes it possible to create and
 execute script-led HTTP requests. The key to the success of Ajax is that at some point around
2005, perhaps because of a rare astral conjunction, nearly all browsers on the marketplace
happened to support the same component with a common API—the XMLHttpRequest
 object. This is the real hidden engine of Ajax applications, whatever browser you pick up and
whatever the underlying platform might be.

The Classic Browser-Led Model
Using the local Domain Name System (DNS) resolver in the operating system, the browser
resolves the requested URL to an IP address and opens a socket. An HTTP packet travels over
the wire to the given destination. The packet includes the form and all its fields. The request
is captured by the Web server and typically forwarded to an internal module for further

 Chapter 20 Ajax Programming 841

 processing. At the end of the process, an HTTP response packet is prepared and the return
value for the browser is inserted in the body. If the response contains an HTML page, the
browser replaces the current contents entirely with the new chunk of markup.

While the request is being processed on the server, the “old” page is frozen but still displayed
to the client user. As soon as the “new” page is downloaded, the browser clears the display
and renders the page.

This model was just fine in the beginning of the Web age when pages contained little more
than formatted text, hyperlinks, and some images. The success of the Web has prompted
 users to ask for increasingly more powerful features, and it has led developers and design-
ers to create more sophisticated services and graphics. The net effect is that pages are heavy
and cumbersome—even though we still insist on calling them “rich” pages. Regardless of
whether they’re rich or just cumbersome, these are the Web pages of today’s applications.
And nobody really believes that we’re going to return to the scanty and spartan HTML pages
of a decade ago.

Given the current architecture of Web applications, each user action requires a complete
redraw of the page. Subsequently, richer and heavier pages render slowly and, as a result,
produce a good deal of flickering. Projected to the whole set of pages in a large, portal-like
application, this mechanism is perfect for unleashing the frustrations of the poor end user.

The New Out-of-Band Model
The chief factor that enables Ajax functionality in a Web page is the ability to issue out-of-
band HTTP requests. In this context, an out-of-band call indicates an HTTP request placed
using a component different from the browser. This component is the XMLHttpRequest
object.

Historically speaking, the first version of this object saw the light of day in 1998 as part of
the Microsoft Outlook Web Access subsystem within Microsoft Exchange. Later on, the
 component was embedded as an ActiveX component in Internet Explorer 5 and then was
integrated in other browsers.

Note In the mid-1990s, there was a team at Microsoft working on a technology called Remote
Scripting (RS). RS never reached the stage of a version 1.0, but it had a lot in common with
 today’s AJAX hidden engine. In RS, the proxy component was a Java applet managing the
 browser-to-server communication.

XMLHttpRequest is a browser object that is scriptable through JavaScript. It sends a regular
HTTP request to the specified URL and waits, either synchronously or asynchronously, for
it to be fully served. When the response data is ready, the proxy invokes a user-defined

842 Part V The Client Side

JavaScript callback to refresh any portion of the page that needs updating. Figure 20-1
 provides a graphical overview of the model.

XMLHttpRequest

Http RequestURL, params
Browser

JS
Data

DOM

Http Response

FIGURE 20-1 Out-of-band calls are sent through a proxy component.

All browsers know how to replace an old page with a new page; until a few years ago,
though, not all of them provided an object model to represent the current contents of the
page. (Today, I can hardly mention a single modern, commercially available browser that
doesn’t expose a read/write page DOM.) For browsers that supply an updatable object
 model for HTML pages, the JavaScript callback function can refresh specific portions of the
old page, thus making them look updated, without a full reload.

There’s a World Wide Web Consortium (W3C) ratified standard for the updatable DOM you
can find at http://www.w3.org/TR/DOM-Level-3-Core. A W3C document for the proxy com-
ponent is currently being developed. It takes the form of the existing XMLHttpRequest object
and is devised as an interface exposed by the browser to allow script code to perform HTTP
client functionality, such as submitting form data or loading data from a remote Web site.
The latest candidate recommendation is at http://www.w3.org/TR/XMLHttpRequest.

From Dynamic HTML to the Standard DOM
About ten years ago, with Internet Explorer 4.0, Microsoft introduced a proprietary object
model named Dynamic HTML (DHTML) to enable page authors to update the current page
dynamically using JavaScript. The success of DHTML led to the definition of a standard docu-
ment object model—the W3C’s DOM. Quite obviously, the DOM evolved from DHTML and
became much more generalized than DHTML.

Today most browsers support a mix of DOM and DHTML. Which one should you use? In
 particular, to update certain content, should you obtain a reference to the textual child node
of the node that matches the intended HTML tag (the DOM way), or just grab a reference
to a node and use the innerHTML property as you would do in the DHTML way? Likewise,
to add a new element, should you create a new element or just stuff in a chunk of updated
HTML via innerHTML? Admittedly, one of the most interesting debates in the community is
whether to use DHTML to manipulate pages or opt for the cleaner approach propounded by
the DOM API.

http://www.w3.org/TR/DOM-Level-3-Core
http://www.w3.org/TR/XMLHttpRequest

 Chapter 20 Ajax Programming 843

The key fact is that the DOM API is significantly slower than using innerHTML. If you go
through the DOM to generate some user interface dynamically, you have to create every
 element, append each into the proper container, and then set properties. The alternative
entails only that you define the HTML you want and render it into the page using innerHTML.
The browser then does the rest by rendering your markup into direct graphics.

Overall, DHTML and DOM manipulation are both useful depending on the context. There are
many Web sites that discuss performance tests, and DHTML is always the winner. Anyway,
DOM is still perfectly fast as long as you use it the right way—that is, create HTML fragments
and append them to the proper container only as the final step.

The XMLHttpRequest Object
Created by Microsoft and adopted soon thereafter by Mozilla, the XMLHttpRequest object
is fully supported these days by the majority of Web browsers. The implementation can vary
from one browser to the next, even though the top-level interface is nearly identical. For this
reason, a W3C committee is at work with the goal of precisely documenting a minimum set
of interoperable features based on existing implementations. An excellent presentation on
the component can be found here: http://developer.mozilla.org/en/docs/XMLHttpRequest.

Note When the XMLHttpRequest object was first released, the Component Object Model
(COM) was ruling the world at Microsoft. The extensibility model of products and applications
was based on COM and implemented through COM components. In the late 1990s, the right
and natural choice was to implement this new component as a reusable automation COM object,
named Microsoft.XmlHttp.

COM objects are external components that require explicit permission—safe for scripting—to
run inside of a Web browser. The XMLHttpRequest object is certainly a safe component, but
to enable it users need to decrease their security settings and accept any other component
“ declared” safe for scripting that is hanging around the Web sites they visit. The XMLHttpRequest
object has finally become a browser object with Internet Explorer 7.0. All potential security
 concerns are therefore removed at the root.

Today, the XMLHttpRequest object is part of the browser object model and is exposed out of
the window object. As a result, it can be instantiated through the classic new operator:

// The object name requires XML in capital letters
var proxy = new XMLHttpRequest();

When the browser is Internet Explorer (up to version 6.0), the XMLHttpRequest object must
be instantiated using the ActiveXObject wrapper, as shown here:

var proxy = new ActiveXObject("Microsoft.XmlHttp");

Generally, Ajax frameworks (and JavaScript libraries with Ajax support, such as jQuery) check
the current browser and then decide which route to take.

http://developer.mozilla.org/en/docs/XMLHttpRequest

844 Part V The Client Side

Using the XMLHttpRequest Object
The XMLHttpRequest object is designed to perform one key operation: send an HTTP
 request. The request can be sent either synchronously or asynchronously. The following bit of
code shows the programming interface of the object as it results from the W3C working draft
at the time of this writing:

interface XMLHttpRequest
{
 function onreadystatechange;
 readonly unsigned short readyState;
 void open(string method, string url);
 void open(string method, string url, bool async);
 void open(string method, string url, bool async, string user);
 void open(string method, string url, bool async,
 string user, string pswd);
 void setRequestHeader(string header, string value);
 void send(string data);
 void send(Document data);
 void abort();
 string getAllResponseHeaders();
 string getResponseHeader(string header);
 string responseText;
 Document responseXML;
 unsigned short status;
 string statusText;
};

Using the component is a two-step operation. First, you open a channel to the URL and
 specify the method (GET, POST, or other) to use and specify whether you want the request
to execute asynchronously. Next, you set any required header and send the request. If the
 request is a POST, you pass to the send method the body of the request.

The send method returns immediately in the case of an asynchronous operation. You write
an onreadystatechange function to check the status of the current operation and, using
that function, figure out when it is done. The following code shows how to carry on a POST
 request using the XMLHttpRequest object:

var xmlRequest, e;
try
{
 xmlRequest = new XMLHttpRequest();
}
catch(e)
{
 try
 {
 xmlRequest = new ActiveXObject("Microsoft.XMLHTTP");

 Chapter 20 Ajax Programming 845

 }
 catch(e)
 {
 }
}

// Prepare for a synchronous POST request
var body = null; // An empty request body this time...
xmlRequest.open("POST", pageUrl, false);
xmlRequest.setRequestHeader("Content-Type",
 "application/x-www-form-urlencoded");
xmlRequest.send(body);

In a synchronous call, the send method returns when the response has been fully
 downloaded and parsed by the object. You can access it as a plain string using the
 responseText property. If the response is an XML stream, you can have it exposed as an XML
DOM object using the responseXml property.

Important If you’re going to use any Ajax-enabled framework for building Web applications,
you’ll hardly hear anything about the XMLHttpRequest object, much less use it directly in your
own code. An Ajax framework completely encapsulates this object and shields page authors and
application designers from it. You don’t need to know about XMLHttpRequest to write great Ajax
applications, no matter how complex and sophisticated they are. However, knowing the funda-
mentals of XMLHttpRequest can lead you to a better and more thorough understanding of the
platform and to more effective diagnoses of problems.

JavaScript and Ajax
Ajax applications require you to write a lot of JavaScript code. Most of the time, you are
called upon to write simple UI-driven code that refreshes the user interface following the
state of the application and maps pieces of downloaded data to UI elements. If all you need
to write is a few event handlers, any approach does work. When the quantity of code grows
beyond a certain threshold, however, you need to lay out your client code using abstractions
not unlike those you might use in a classic programming language—functions and objects.

I won’t stray too far from the truth if I state that JavaScript is such a flexible language that
it can be used to write code that follows two radically different programming paradigms—
functional programming and object-oriented programming (OOP). Which one should you
choose and when?

Functional Programming in JavaScript
In functional programming, the building block of code is the “function,” as opposed to the
“class” in object-oriented programming and the “subroutine” in procedural programming.

846 Part V The Client Side

A function is a unit of code that describes only the operations to be performed on the input.
A function gets some input and returns some output; everything else is hidden from view.

As a functional programmer, you build your applications by pipelining function calls to create
a super function that just gets the program’s input and returns the program’s output. There’s
typically no layer where you process the input, store state, arrange a sequence of statements,
update the state, and decide about the next step. A function is a like a value, and it can be
used as an argument and be passed to other functions as well as used in any other context
where values can be used.

In JavaScript, anonymous functions are the pillar of functional programming. An anonymous
function is a direct offshoot of lambda calculus or, if you prefer, a language adaptation of
old-fashioned function pointers. Here’s an example:

function(x, y) {
 return x + y;
}

The only difference between a regular function and an anonymous function is in the name.
In a functional context, you don’t strictly need to name a function, especially if you’re using it
as a value that you pass around.

The jQuery library, which we’ll cover in the next chapter, more than ever called people’s
 attention to functional programming. In a Web environment, all you do is manipulate DOM
elements. The jQuery library is effective because it allows you to manipulate DOM elements
while enjoying the power (and to some extent the cleanness) of functional programming.

Objects in JavaScript
There’s a significant difference between objects in a qualified OOP language and JavaScript.
In OOP languages, the class is a blueprint for actual objects you use. In JavaScript, you just
have objects whose blueprint is that of a dictionary of data and functions. When you create a
new object in JavaScript, you have an empty dictionary you can fill with anything you like.

Having said that, with a bit of work you can create (and reuse) custom objects and manage
for them to inherit from existing objects and also behave polymorphically. This work is just
what JavaScript object-oriented libraries do.

When it comes to adding layers to JavaScript to make it closer to a qualified OOP language
and gain some more programming power and code reusability, you have to choose from two
main approaches for extending the capabilities of the native JavaScript objects: closures and
prototypes.

Before we get to that, however, a few words about the native Object type in JavaScript and
its usage. You can use the new keyword to create a new dictionary-like object in JavaScript.

 Chapter 20 Ajax Programming 847

Next, you stuff data into it, and you can add methods by wiring functions to property names.
Here’s an example:

var person = new Object();
person.Name = "Dino";
person.LastName = "Esposito";
person.BirthDate = new Date(1992,10,17)
person.getAge = function() {
 var today = new Date();
 var thisDay = today.getDate();
 var thisMonth = today.getMonth();
 var thisYear = today.getFullYear();
 var age = thisYear-this.BirthDate.getFullYear()-1;
 if (thisMonth > this.BirthDate.getMonth())
 age = age +1;
 else
 if (thisMonth == this.BirthDate.getMonth() &&
 thisDay >= this.BirthDate.getDate())
 age = age +1;
 return age;
}

What we have is an object modeled after a person; we don’t have a Person object. A possible
way to define the layout of a type is to create a new, all-encompassing function that exposes
just the members we like. In addition, in JavaScript all intrinsic objects have a read-only prop-
erty named prototype. You can use the prototype property to provide a base set of function-
ality shared by any new instance of an object of that type. These two are the mechanisms to
leverage for using OOP in JavaScript.

Using Closures
A closure is a general concept of programming languages. Applied to JavaScript, a closure is
a function that can have variables and methods defined together within the same context.
In this way, the outermost (anonymous or named) function “closes” the expression. Here’s an
example of the closure model for a function that represents a Person type:

var Person = function(name, lastname, birthdate)
{
 this.Name = name;
 this.LastName = lastname;
 this.BirthDate = birthdate;

 this.getAge = function() {
 var today = new Date();
 var thisDay = today.getDate();
 var thisMonth = today.getMonth();
 var thisYear = today.getFullYear();
 var age = thisYear-this.BirthDate.getFullYear()-1;
 if (thisMonth > this.BirthDate.getMonth())
 age = age +1;
 else
 if (thisMonth == this.BirthDate.getMonth() &&

848 Part V The Client Side

 thisDay >= this.BirthDate.getDate())
 age = age +1;
 return age;
 }
}

As you can see, the closure is nothing more than the constructor of the pseudo-class. In a
closure model, the constructor contains the member declarations and members are truly
 encapsulated and private to the class. In addition, members are instance based, which
 increases the memory used by the class. Here’s how you use the object:

var p = new Person("Dino", "Esposito", new Date(...);
alert(p.Name + " is " + p.getAge());

The closure model gives full encapsulation, but nothing more. To compose objects, you can
only resort to aggregation.

Using Prototypes
The prototype model entails that you define the public structure of the class through the
JavaScript prototype object. The following code sample shows how to rewrite the preceding
Person class to avoid a closure:

// Pseudo constructor
var Person = function(name, lastname, birthdate)
{
 this.initialize(name, lastname, birthdate);
}

// Members
Person.prototype.initialize(name, lastname, birthdate)
{
 this.Name = name;
 this.LastName = lastname;
 this.BirthDate = birthdate;
}

Person.prototype.getAge = function()
{
 var today = new Date();
 var thisDay = today.getDate();
 var thisMonth = today.getMonth();
 var thisYear = today.getFullYear();
 var age = thisYear-this.BirthDate.getFullYear()-1;
 if (thisMonth > this.BirthDate.getMonth())
 age = age +1;
 else
 if (thisMonth == this.BirthDate.getMonth() &&
 thisDay >= this.BirthDate.getDate())
 age = age +1;
 return age;
}

 Chapter 20 Ajax Programming 849

In the prototype model, the constructor and members are clearly separated and a
 constructor is always required. As for private members, you just don’t have them. The var
keyword that would keep them local in a closure doesn’t apply in the prototype model.
So you can define getter/setter for what you intend to be properties, but the backing field
will remain accessible from the outside, anyway. You can resort to some internal (and docu-
mented) convention, such as prefixing with an underscore the name of members you intend
as private. That’s just a convention, however.

By using the prototype feature, you can achieve inheritance by simply setting the prototype
of a derived object to an instance of the “parent” object:

Developer = function Developer(name, lastname, birthdate)
{
 this.initialize(name, lastname, birthdate);
}
Developer.prototype = new Person();

Note that you always need to use this to refer to members of the prototype from within any
related member function.

In the prototype model, members are shared by all instances as they are invoked on the
shared prototype object. In this way, the amount of memory used by each instance is
 reduced, which also provides for faster object instantiation. Aside from syntax peculiarities,
the prototype model makes defining classes much more similar to the classic OOP model
than the closure model.

The choice between closure and prototype should also be guided by performance
 considerations and browser capabilities. Prototypes have a good load time in all browsers;
indeed, they have excellent performance in Firefox. (In contrast, closures have a better load
time than prototypes in Internet Explorer.) Prototypes provide better support for IntelliSense,
and they allow for tool-based statement completion when used in tools that support this
 feature, such as Microsoft Visual Studio. Prototypes can also help you obtain type informa-
tion by simply using reflection. You won’t have to create an instance of the type to query for
type information, which is unavoidable if closures are used. Finally, prototypes allow you to
easily view private class members when debugging. Debugging objects derived using the
closure model requires a number of additional steps.

Note Whether you opt for closure or prototype, writing complex JavaScript code requires
a lot of discipline. An interesting pattern to explore is the Module Pattern, which essentially
 introduces the concepts of namespaces and dependencies in JavaScript code where no such
 elements exist natively. A good introduction to the pattern can be found here:
http://www.adequatelygood.com/2010/3/JavaScript-Module-Pattern-In-Depth.

http://www.adequatelygood.com/2010/3/JavaScript-Module-Pattern-In-Depth

850 Part V The Client Side

Cross-Domain Ajax
For security reasons, all XMLHttpRequest calls within all browsers are restricted to the Same
Origin Policy (SOP). In other words, all browsers proceed with an XMLHttpRequest call only if
the destination URL is within the same origin as the calling page. Because XMLHttpRequest
uploads cookies, a user authenticated on a site (say, contoso.com) might end up on another
site (say, thebadguy.com) and leave there her authentication cookie. At this point, from the
thebadguy.com site an attacker could make an XMLHttpRequest request to contoso.com
and behave as if it were the original user. In a nutshell, script-led cross-domain calls are
forbidden.

The problem is that sometimes cross-domain calls are useful and entirely legitimate. How to
work around the limitation? Generally speaking, there are four possible approaches:

■ Using a server-side proxy

■ Using Silverlight or Flash applets and their native workarounds to bypass SOP

■ Leveraging cross-domain-enabled HTML tags such as <script> and <iframe>

■ Using ad hoc browser extensions specifically created to enable cross-domain
XMLHttpRequest calls

These are the various options you might want to consider first as a software architect. These
are the options that would work without requiring each user to tweak security settings on
her browser.

Note, however, that most browsers let you disable the SOP policy through the dialog box
for the security settings. If you, as a user, proceed with and enable cross-domain calls, all
XMLHttpRequest calls magically work, regardless of their final destination. From a design
perspective, however, this solution has a strong prerequisite: it requires you to exercise
strict control over all possible machines that will be using the site. For Internet Explorer, you
select the Security tab from the Internet Options dialog box and then scroll down to the
Miscellaneous section, as shown in Figure 20-2.

Be aware that a similar option might not exist for other browsers.

I’ll return to cross-domain calls in the next chapter with a few concrete examples. For now,
suffice it to say that two approaches are the most commonly used today: server-side proxies
and JSON with Padding (JSONP) over the <script> tag.

 Chapter 20 Ajax Programming 851

FIGURE 20-2 Tweaking the cross-domain call setting of Internet Explorer.

Partial Rendering in ASP.NET
You do much of your ASP.NET Web Forms programming using server controls. A server
control normally emits HTML markup. In an Ajax scenario, a server control emits markup
plus some script code to support Ajax requests. This is not exactly a change of paradigm in
the name of Ajax, but it is a good compromise between the classic Web and requested Ajax
capabilities.

ASP.NET partial rendering works according to this idea. It provides a new container control—
the UpdatePanel control—that you use to surround portions of existing pages, or portions of
new pages developed with the usual programming model of ASP.NET. A postback that origi-
nates within any of these updatable regions is intercepted by some JavaScript code that the
UpdatePanel control has injected in the page. As a result, only the controls in a given region
are updated.

The UpdatePanel control, however, requires the use of another server control—the
ScriptManager control—which is responsible, among other things, for injecting in the page
any required script code.

852 Part V The Client Side

The ScriptManager Control
The main control in the server infrastructure of ASP.NET for Ajax is the ScriptManager
 control and its twin, the ScriptManagerProxy control. You will find just one instance of the
ScriptManager control in each ASP.NET Ajax page. The ScriptManagerProxy control is used
only in master pages scenarios to reference the original script manager from content pages.

The ScriptManager control manages and delivers script resources, thus enabling client scripts
to make use of the JavaScript type system extensions and other JavaScript features that
we covered earlier in this chapter. The ScriptManager control also enables features such as
partial-page rendering and service and page method calls. The following code shows the
simplest and most common way to insert the script manager in an ASP.NET page:

<asp:ScriptManager runat="server" ID="ScriptManager1" />

The control produces no user interface, works exclusively on the server, and doesn’t add any
extra bytes to the page download.

Properties of the ScriptManager Control
The ScriptManager control features a number of properties for you to configure its expected
behavior. Table 20-1 details the supported properties.

TABLE 20-1 Properties of ScriptManager
Property Description
AjaxFrameworkAssembly Gets the Ajax framework assembly that components on the page

are currently using.

AjaxFrameworkMode Gets or sets how client scripts of the Microsoft Ajax client library will
be included on the client: as local scripts, from ASP.NET assemblies,
or nothing.

AllowCustomErrorsRedirect Indicates whether custom error redirects will occur during an
 asynchronous postback. The property is set to true by default.

AsyncPostBackErrorMessage Gets and sets the error message to be sent to the client when an
unhandled exception occurs on the server during an asynchronous
postback. If this property is not set, the native exception’s message
will be used.

AsyncPostBackSourceElementID Gets the ID of the server control that triggered the asynchronous
postback. If there’s no ongoing asynchronous postback, the
 property is set to the empty string.

AsyncPostBackTimeout Gets and sets the timeout period in seconds for asynchronous
 postbacks. A value of zero indicates no timeout. The property is set
to 90 by default.

 Chapter 20 Ajax Programming 853

Property Description
AuthenticationService Gets an object through which you can set preferences for the

 client-side authentication service.

ClientNavigateHandler Indicates the name of the JavaScript method that handles the
Sys.Application.navigate event on the client when the user navigates
back to a page from the history list.

CompositeScript Gets a reference to the composite script (if any) for the current
page.

EmptyPageUrl The URL to use if the target Web page is empty during a history
navigation.

EnableCdn Indicates whether client script references are loaded from a content
delivery network (CDN) path.

EnableHistory Indicates whether the page supports history point management.

EnablePageMethods Indicates whether static page methods on an ASP.NET page can be
called from client script. The property is set to false by default.

EnablePartialRendering Indicates whether partial rendering is enabled for the page. The
property is set to true by default.

EnableScriptGlobalization Indicates whether the ScriptManager control renders script in the
client that supports the parsing and formatting of culture-specific
information. The property is set to false by default.

EnableScriptLocalization Indicates whether the ScriptManager control retrieves script files
for the current culture, if they exist. The property is set to false by
default.

EnableSecureHistoryState Indicates whether to encrypt the history state string.

IsDebuggingEnabled Indicates whether the debug versions of client script libraries will be
rendered. The debug attribute on the @Page directive doesn’t affect
this property.

IsInAsyncPostBack Indicates whether the current page request is the result of an
 asynchronous postback.

IsNavigating Indicates whether a Navigate event is currently being handled.

LoadScriptsBeforeUI Indicates whether scripts are loaded before or after markup for the
page UI is loaded.

ProfileService Gets an object through which you can set preferences for the
 client-side profile service.

RoleService Gets an object through which you can set preferences for the
 client-side role service.

ScriptMode Gets and sets the type (debug or retail) of scripts to load when
more than one type is available. Possible values come from the
ScriptMode enumeration type: Auto, Inherit, Debug, or Release. The
default value is Auto, meaning that the type of script is determined
on the fly.

854 Part V The Client Side

Property Description
ScriptPath Indicates that scripts should be loaded from this path instead of

from assembly Web resources.

Scripts Gets a collection of script references that the ScriptManager control
should include in the page.

Services Gets a collection of service references that the ScriptManager
 control should include in the page.

SupportsPartialRendering Indicates whether a particular browser or browser version can
 support partial page rendering. If this property is set to false,
 regardless of the value of the EnablePartialRendering property, no
partial rendering will be supported on the page. The property is set
to true by default.

The script manager is the nerve center of any ASP.NET AJAX pages and does all the work
that is necessary to make AJAX features function as expected. Enabling AJAX features mostly
means injecting the right piece of script in the right place. The script manager saves ASP.NET
developers from dirtying their hands with JavaScript.

Methods of the ScriptManager Control
Table 20-2 lists the methods defined on the ScriptManager control.

TABLE 20-2 Methods of ScriptManager
Method Description
AddHistoryPoint Creates a history point, and adds it to the browser’s history

stack.

GetCurrent Static method, returns the instance of the ScriptManager
 control active on the current page.

GetRegisteredArrayDeclarations Returns a read-only collection of ECMAScript array
 declarations that were previously registered with the page.

GetRegisteredClientScriptBlocks Returns a read-only collection of client script blocks that were
previously registered with the ScriptManager control.

GetRegisteredDisposeScripts Returns a read-only collection of dispose scripts that were
previously registered with the page.

GetRegisteredExpandoAttributes Returns a read-only collection of custom (expando) attributes
that were previously registered with the page.

GetRegisteredHiddenFields Returns a read-only collection of hidden fields that were
 previously registered with the page.

GetRegisteredOnSubmitStatements Returns a read-only collection of onsubmit statements that
were previously registered with the page.

GetRegisteredStartupScripts Returns a read-only collection of startup scripts that were
previously registered with the page.

GetStateString Retrieves a string that contains key/value pairs that represent
the state of the page from the browser’s history.

 Chapter 20 Ajax Programming 855

RegisterArrayDeclaration Static method, ensures that an ECMAScript array is emitted in
a partial rendering page.

RegisterAsyncPostBackControl Takes note that the specified control can trigger an
 asynchronous postback event from within an updatable
panel.

RegisterClientScriptBlock Static method, ensures that the specified script is emitted in a
partial rendering page.

RegisterClientScriptInclude Static method, ensures that the markup to import an external
script file through the src attribute of the <script> tag is
 emitted in a partial rendering page.

RegisterClientScriptResource Static method, ensures that the markup to import an external
script from the page’s resources is emitted in a partial
 rendering page.

RegisterDataItem Registers a string of data that will be sent to the client along
with the output of a partially rendered page.

RegisterDispose Registers controls that require a client script to run at the end
of an asynchronous postback to dispose of client resources.

RegisterExpandoAttribute Static method, ensures that the markup to import a custom,
nonstandard attribute is emitted in a partial rendering page.

RegisterExtenderControl Registers an extender control with the current ASP.NET AJAX
page.

RegisterHiddenField Static method, ensures that the specified hidden field is
 emitted in a partial rendering page.

RegisterOnSubmitStatement Static method, ensures that that client-side script associated
with the form’s OnSubmit event is emitted in a partial
 endering page.

RegisterPostBackControl Takes note that the specified control can trigger a full
 postback event from within an updatable panel.

RegisterScriptControl Registers a script control with the current ASP.NET AJAX page.

RegisterScriptDescriptors Registers a script descriptor with the current ASP.NET AJAX
page.

RegisterStartupScript Static method, ensures that client-side script is emitted at the
end of the <form> tag in a partial rendering page. In this way,
the script will execute as the page refresh is completed.

SetFocus Allows you to move the input focus to the specified client
 element after an asynchronous postback.

All static methods emit some form of script and markup in the client page. These static
 methods are the AJAX counterpart of similar methods defined on the page’s ClientScript
object that you should know from earlier versions of ASP.NET. The static RegisterXXX meth-
ods on the ScriptManager class ensure that the given piece of script and markup is properly
emitted only once in each partial update of the ASP.NET AJAX page. Similarly, other nonstatic
RegisterXXX methods should be seen as tools to emit proper script code in ASP.NET AJAX
pages—especially script code that is associated with custom controls.

856 Part V The Client Side

Note What’s the difference between RegisterXXX methods in the ScriptManager control and the
page’s ClientScript object, which is an instance of the ClientScriptManager class? The registration
methods of ClientScriptManager and ScriptManager serve the same purpose but in radically
 different scenarios.

You need to use the ScriptManager’s methods only if you need to emit script code during
an AJAX partial rendering postback operation. An AJAX partial-rendering postback opera-
tion is processed by the run time as usual, except for the rendering stage. At this time, the
markup is generated and any registered script is emitted. Because during AJAX postbacks the
ScriptManager is responsible for the markup rendering, it’s the ScriptManager that needs to
know about registered scripts to emit.

If you stick to using ClientScriptMananager’s methods in an AJAX page, you risk the possibility
that no script will be emitted during the refresh of an updatable panel. As a result, a portion of
your page might display strange behaviors.

Events of the ScriptManager Control
Table 20-3 details the events fired by the ScriptManager control.

TABLE 20-3 Events of ScriptManager
Event Description
AsyncPostBackError Occurs when an exception goes unhandled on the server during

an asynchronous postback.

Navigate Occurs when the user clicks the browser’s Back or Forward
 button.

ResolveCompositeScriptReference Occurs when the ScriptManager control is going to resolve a
 composite script reference.

ResolveScriptReference Occurs when the ScriptManager control is going to resolve a
script reference.

These events are much more than mere notifications of something that has happened on the
server. Both give you good chances to intervene effectively in the course of the application.
For example, by handling the ResolveScriptReference event, you can change the location from
where the script is going to be downloaded on the client:

protected void ResolveScript(object sender, ScriptReferenceEventArgs e)
{
 // Check Path or Name on the e.Script object based on what you’ve put in Scripts.
 // Next, you specify the real file to load
 if (String.Equals(e.Script.Path, "personal.js", StringComparison.OrdinalIgnoreCase))
 e.Script.Path = "person.js";
}

 Chapter 20 Ajax Programming 857

By handling the AsyncPostBackError event, you can edit the error message being returned to
the client during a partial rendering operation. Here’s an example:

protected void AsyncPostBackError(object sender, AsyncPostBackErrorEventArgs e)
{
 ScriptManager sm = sender as ScriptManager;
 if (Request.UserHostAddress == "127.0.0.1")
 {
 sm.AsyncPostBackErrorMessage = String.Format(
 "An error occurred.
{0}",
 e.Exception.Message);
 }
 else
 {
 sm.AsyncPostBackErrorMessage = String.Format(
 "An error occurred.
{0}",
 "Please contact your Web master.");
 }
}

What if you want to redirect the user to an error page instead?

In this case, you configure the page to use the traditional error-handling mechanism for
ASP.NET pages. You configure the <customErrors> section in the web.config file and indicate
HTML error pages to reach in case of specific errors. This behavior can be disabled by setting
to false the value of the AllowCustomErrorRedirects property of the ScriptManager object.

Note When an exception is thrown during a partial rendering operation, the HTTP request
 returns a regular HTTP 200 status code, but instead of including the updated markup, it in-
cludes a message in which a flag indicates the success or failure of the operation. In addition, the
message includes the full description of the error or the updated markup. In case of error, the
client-side default error handler throws a JavaScript exception passing the error message as an
argument.

The ScriptManagerProxy Control
Only one instance of the ScriptManager control can be added to an ASP.NET AJAX page.
However, there are two ways in which you can do this. You can add it directly on the page
using the <asp:ScriptManager> tag or indirectly by importing a component that already
contains a script manager. Typically, you can accomplish the second alternative by importing
a user control, creating a content page for a master page, or authoring a nested master page.

What if a content page needs to add a new script reference to the manager? In this case, you
need a reference to the script manager. Although it’s defined in the master page (or in a user

858 Part V The Client Side

control), the script manager might not be publicly exposed to the content page. You can use
the static method GetCurrent on the class ScriptManager to get the right instance:

// Retrieve the instance of the ScriptManager active on the page
var manager = ScriptManager.GetCurrent(this.Page);

The ScriptManagerProxy class saves you from this sort of coding. In general, in cases where
you need features of the ScriptManager control but lack a direct reference to it, you can
 instead include a ScriptManagerProxy control in the content page.

You can’t have two script managers in the context of the same page; however, you can have
a script manager and a proxy to retrieve it. The ScriptManagerProxy control enables you to
add scripts and services to nested components, and it enables partial page updates in user
controls and nested master pages. When you use the proxy, the Scripts and Services collec-
tions on the ScriptManager and ScriptManagerProxy controls are merged at run time.

Note The ScriptManagerProxy class is a simple wrapper around the GetCurrent method of the
ScriptManager class, and its programming interface is not an exact clone of the ScriptManager.
From within the proxy, you have access only to a limited number of properties, including Scripts,
Services, AuthenticationService, RoleService, and ProfileService. If you need to modify anything
else, refer to the GetCurrent static method of the ScriptManager class.

Script Binding and Loading
By extensively relying on client capabilities, an Ajax page requires a lot of script code. The
framework itself links a lot of code, as do custom controls and actual user pages. The only
HTML-supported way of linking script files is the <script> tag and its src attribute. The
ScriptManager control can be used to save you from having to directly manipulate quite a
few <script> tags and also to obtain richer features, such as built-in management of localized
scripts.

You use the Scripts collection to tell the ScriptManager about the scripts you want to add to
the page. The collection can be accessed either declaratively or programmatically. In addi-
tion to the user-requested scripts, the ScriptManager control automatically emits in the client
page any ASP.NET AJAX required script. The following example illustrates the script loading
model you can use to load optional and custom scripts, even when the script is embedded in
an assembly:

<asp:ScriptManager runat="server" ID="ScriptManager1">
 <Scripts>
 <asp:ScriptReference
 Name="YourCompany.ScriptLibrary.CoolUI.js"
 Assembly="YourCompany.ScriptLib" />
 <asp:ScriptReference
 Path="~/Scripts/MyLib.js" />
 </Scripts>
</asp:ScriptManager>

 Chapter 20 Ajax Programming 859

Table 20-4 lists the properties of the ScriptReference class by means of which you can control
the loading of scripts.

TABLE 20-4 Properties to Control Script Loading
Property Description
Assembly Indicates the assembly that contains in its resources the script to download on

the client.

IgnoreScriptPath Boolean value, indicates whether the ScriptPath value optionally set at the top
ScriptManager level has to be ignored. This property is set to false by default.

Name Name of the script to download on the client.

You can reference script files from an assembly or from a disk file. There’s a benefit in using
disk files. You gain something in performance because less work is required to load the script
in memory directly from a file.

Script references obtained from embedded Web resources are served by the ScriptResource.
axd HTTP handler. In ASP.NET, this handler replaces an old acquaintance, the WebResource.
axd handler—a native component of ASP.NET. What’s the difference? In addition to serv-
ing script references, the ScriptResource.axd handler also appends any localized JavaScript
 resource types for the file and supports composite scripts.

ScriptManager allows you to combine in a single download multiple JavaScript files that you
register through the <compositescript> section of the control’s markup:

<asp:ScriptManager ID="ScriptManager1" runat="server">
 <CompositeScript>
 <Scripts>
 <asp:ScriptReference Path="~/Scripts/Script1.js" />
 <asp:ScriptReference Path="~/Scripts/Script2.js" />
 <asp:ScriptReference Path="~/Scripts/Script3.js" />
 </Scripts>
 </CompositeScript>
</asp:ScriptManager>

Composite scripts reduce the number of browser requests and result in faster download time
and less workload on the Web server.

Handling Debug and Release Script Files
One of the additional free services offered by ScriptManager that isn’t offered by the classic
<script> tag is the ability to automatically link debug or release script files, as appropriate.
ASP.NET uses a special naming convention to distinguish between debug and release script
files. Given a release script file named script1.js, its debug version is expected to be filed as
script1.debug.js.

In general, the main difference between debug and release scripts is that the release scripts
remove unnecessary blank characters, comments, trace statements, and assertions. Normally,
the burden of switching the links to debug and release scripts is left to the developer.

860 Part V The Client Side

The ScriptManager control takes on this burden and, based on the aforementioned naming
convention, distinguishes between debug and release scripts. The ScriptManager control
picks debug scripts when the debug attribute of the <compilation> section in the web.config
file is true.

Script Globalization
Globalization is a programming feature that refers to the code’s ability to support multiple
cultures. A request processed on the server has a number of ways to get and set the current
culture settings. For example, you can use the Culture attribute on the @Page directive, the
Culture property on the Page class, or perhaps the <globalization> section in the web.config
file. How can you access the same information on the client from JavaScript?

When the EnableScriptGlobalization property is true, the ScriptManager emits proper
script code that sets up a client-side global Sys.CultureInfo object that JavaScript classes
can consume to display their contents in a culture-based way. Only a few methods and a
few JavaScript objects support globalization. In particular, it will work for the localeFormat
method of Date, String, and Number types. Custom JavaScript classes, though, can be made
global by simply calling into these methods or accepting a Sys.CultureInfo object in their
signatures.

The UpdatePanel Control
Partial rendering is the programming technique centered on the UpdatePanel control. In
ASP.NET, the UpdatePanel control represents the shortest path to Ajax. It allows you to add
effective Ajax capabilities to sites written according to the classic programming model of
ASP.NET Web Forms. As a developer, you have no new skills to learn, except the syntax and
semantics of the UpdatePanel control. The impact on existing pages is very limited, and the
exposure to JavaScript is very limited—even null in most common situations.

You might wonder how partial rendering differs from classic postbacks. The difference is in
how the postback is implemented—instead of letting the browser perform a full-page re-
fresh, the UpdatePanel control intercepts any postback requests and sends an out-of-band
request for fresh markup to the same page URL. Next, it updates the DOM tree when the
response is ready. Let’s investigate the programming interface of the control.

The UpdatePanel Control at a Glance
The UpdatePanel control is a container control defined in the System.Web.Extensions
 assembly. It belongs specifically to the System.Web.UI namespace. Although it’s logically
 similar to the classic ASP.NET Panel control, the UpdatePanel control differs from the clas-
sic panel control in a number of respects. In particular, it doesn’t derive from Panel and,

 Chapter 20 Ajax Programming 861

 subsequently, it doesn’t feature the same set of capabilities as ASP.NET panels, such as scroll-
ing, styling, wrapping, and content management.

The UpdatePanel control derives directly from Control, meaning that it acts as a mere
 Ajax-aware container of child controls. It provides no user-interface-related facilities. Any
 required styling and formatting should be provided through the child controls. In con-
trast, the control sports a number of properties to control page updates and also exposes a
 client-side object model. Consider the following classic ASP.NET code:

<asp:GridView ID="GridView1" runat="server"
 DataSourceID="ObjectDataSource1"
 AllowPaging="True"
 AutoGenerateColumns="False">
 <Columns>
 <asp:BoundField DataField="ID" HeaderText="ID" />
 <asp:BoundField DataField="CompanyName" HeaderText="Company" />
 <asp:BoundField DataField="Country" HeaderText="Country" />
 </Columns>
</asp:GridView>
<asp:ObjectDataSource ID="ObjectDataSource1" runat="server"
 TypeName="YourApp.DAL.Customers"
 SelectMethod="LoadAll" />

This code causes a postback each time you click to view a new page, edit a record, or sort
by a column. As a result, the entire page is redrawn even though the grid is only a small
 fragment of it. With partial rendering, you take the preceding markup and just wrap it with
an UpdatePanel control, as shown here:

<asp:UpdatePanel ID="UpdatePanel1" runat="server">
 <ContentTemplate>
 ...
 </ContentTemplate>
</asp:UpdatePanel>

In addition, you need to add a ScriptManager control to the page. That’s the essence of
 partial rendering. And it magically just works. Well, not just magically, but it works.

Note From this simple but effective example, you might be led to think that you surround the
whole body of the page with an UpdatePanel control and you’re done. If you do it this way, it
certainly works. It might not be particularly efficient though. In the worst case, you need the
same bandwidth as you do with classic ASP.NET; however, you still give your users an infinitely
better experience because only a portion of the page actually refreshes. As we’ll learn in the rest
of the chapter, partial rendering offers a number of attributes to optimize the overall behavior
and performance. However, the majority of users are more than happy with the sole effect of a
partial page rendering.

862 Part V The Client Side

The Programming Interface of the Control
Table 20-5 details the properties defined on the UpdatePanel control that constitute the
 aspects of the control’s behavior that developers can govern.

TABLE 20-5 Properties of the UpdatePanel Control
Property Description
ChildrenAsTriggers Indicates whether postbacks coming from child controls will cause the

UpdatePanel to refresh. This property is set to true by default. When
this property is false, postbacks from child controls are ignored. You
can’t set this property to false when the UpdateMode property is set to
Always.

ContentTemplate A template property, defines what appears in the UpdatePanel when it
is rendered.

ContentTemplateContainer Retrieves the dynamically created template container object. You
can use this object to programmatically add child controls to the
UpdatePanel.

IsInPartialRendering Indicates whether the panel is being updated as part of an
 asynchronous postback. Note that this property is designed for control
developers. Page authors should just ignore it.

RenderMode Indicates whether the contents of the panel will be rendered as a block
<div> tag or as an inline tag. The feasible values for the prop-
erty—Block and Inline—are defined in the UpdatePanelRenderMode
enumeration. The default is Block.

UpdateMode Gets or sets the rendering mode of the control by determining under
which conditions the panel gets updated. The feasible values—
Always and Conditional—come from the UpdatePanelUpdateMode
 enumeration. The default is Always.

Triggers Defines a collection of trigger objects, each representing an event that
causes the panel to refresh automatically.

A bit more explanation is needed for the IsInPartialRendering read-only Boolean property. It
indicates whether the contents of an UpdatePanel control are being updated. From this de-
scription, it seems to be a fairly useful property. Nonetheless, if you read its value from within
any of the handlers defined in a code-behind class, you’ll find out that the value is always
false.

As mentioned, IsInPartialRendering is a property designed for control developers only. So
it is assigned its proper value only at rendering time—that is, well past the PreRender event
you can capture from a code-behind class. Developers creating a custom version of the
UpdatePanel control will likely override the Render method. From within this context, they
can leverage the property to find out whether the control is being rendered in a full-page
refresh or in a partial rendering operation.

 Chapter 20 Ajax Programming 863

As a page author, if you just need to know whether a portion of a page is being updated
as a result of an AJAX postback, you use the IsInAsyncPostBack Boolean property on the
ScriptManager control.

Note Like any other ASP.NET AJAX feature, partial rendering requires a ScriptManager control
in the page. It is essential, though, that the EnablePartialRendering property on the manager
be set to true—which is the default case. If this property is set to false, the UpdatePanel control
works like a regular panel.

Populating the Panel Programmatically
The content of an updatable panel is defined through a template property—the
ContentTemplate property. Just like any other template property in ASP.NET controls,
ContentTemplate can be set programmatically. Consider the following page fragment:

<asp:ScriptManager ID="ScriptManager1" runat="server" />
<asp:UpdatePanel ID="UpdatePanel1" runat="server">
 <%-- Left empty deliberately. Will be filled out programmatically --%>
</asp:UpdatePanel>

In the PreInit event of the code-behind page, you can set the ContentTemplate
 programmatically, as shown here:

protected void Page_PreInit(object sender, EventArgs e)
{
 // You could also read the URL of the user control from a configuration file
 string ascx = "customerview.ascx";
 UpdatePanel1.ContentTemplate = this.LoadTemplate(ascx);
}

You are not allowed to set the content template past the PreInit event. However, at any time
before the rendering stage, you can add child controls programmatically. In ASP.NET, to add
or remove a child control, you typically use the Controls property of the parent control, as
shown here:

UpdatePanel1.Controls.Add(new LiteralControl("Test"));

If you try to add a child control programmatically to the Controls collection of an
UpdatePanel—as in the preceding code snippet—all that you get is a run-time exception.
You should use the ContentTemplateContainer property instead. The reason is that what you
really want to do is add or remove controls to the content template, not to the UpdatePanel

864 Part V The Client Side

directly. That’s why Controls doesn’t work and you have to opt for the actual container of the
template. The following code shows how to populate the content template programmatically:

public partial class _Default : System.Web.UI.Page
{
 private Label Label1;

 protected void Page_Load(object sender, EventArgs e)
 {
 var updatePanel = new UpdatePanel();
 updatePanel.ID = "UpdatePanel1";

 // Define the button
 var button1 = new Button();
 button1.ID = "Button1";
 button1.Text = "What time is it?";
 button1.Click += new EventHandler(Button1_Click);

 // Define the literals
 var lit = new LiteralControl("
");

 // Define the label
 var label1 = new Label();
 label1.ID = "Label1";
 label1.Text = "[time]";

 // Link controls to the UpdatePanel
 updatePanel.ContentTemplateContainer.Controls.Add(button1);
 updatePanel.ContentTemplateContainer.Controls.Add(lit);
 updatePanel.ContentTemplateContainer.Controls.Add(label1);

 // Add the UpdatePanel to the list of form controls
 this.Form.Controls.Add(updatePanel);
 }

 protected void Button1_Click(object sender, EventArgs e)
 {
 Label1.Text = DateTime.Now.ToShortTimeString();
 }
}

You can add an UpdatePanel control to the page at any time in the life cycle. Likewise,
you can add controls to an existing panel at any time. However, you can’t set the content
 template programmatically past the page’s PreInit event.

Master Pages and Updatable Regions
You can safely use UpdatePanel controls from within master pages. Most of the time, the use
of updatable panels is easy and seamless. There are a few situations, though, that deserve a
bit of further explanation.

 Chapter 20 Ajax Programming 865

If you add a ScriptManager control to a master page, partial rendering is enabled by default
for all content pages. In addition, initial settings on the script manager are inherited by all
content pages. What if you need to change some of the settings (for example, add a new
script file or switch on script localization) for a particular content page? You can’t have a new
script manager, but you need to retrieve the original one defined on the master page.

In the content page, you can declaratively reference a ScriptManagerProxy and change some
of its settings. The proxy retrieves the script manager currently in use and applies changes to
it.

The ScriptManagerProxy control, though, is mostly designed to let you edit the list of scripts
and services registered with the manager in a declarative manner, and it doesn’t let you
customize, say, error handling or script localization. You can do the same (and indeed much
more) by programmatically referencing the script manager in the master page. Here’s how:

protected void Page_Init(object sender, EventArgs e)
{
 // Work around the limitations in the API of the ScriptManagerProxy control
 ScriptManager.GetCurrent(this).EnableScriptLocalization = true;
}

In the content page, you create a handler for the page’s Init event, retrieve the script
 manager instance using the static GetCurrent method on the ScriptManager class, and apply
any required change.

Considerations Regarding Partial Rendering
Partial rendering divides the page into independent regions, each of which controls its own
postbacks and refreshes without causing, or requiring, a full-page update. This behavior is
highly desirable when only a portion—and perhaps only a small portion—of the page needs
to change during a postback. An ASP.NET page can contain any number of UpdatePanel
 controls. This is a key point to understand to make effective use of the UpdatePanel control.

The first practical step for successfully migrating page behavior to partial rendering entails
that you, given the expected behavior of the page, identify the portions of the page subject
to refresh. If you have, say, a complex table layout but only a small fragment of only one cell
changes in the page lifetime, there’s no reason to keep the whole table in an UpdatePanel
control. Only the server-side control that displays the modifiable text should be wrapped by
the panel.

The portions of the page that you should consider to be candidates to be wrapped by an
UpdatePanel control should be as small as possible. They also should include the minimum
amount of markup and ASP.NET controls.

866 Part V The Client Side

The second step consists of associating each candidate region with a list of refresh
 conditions. You basically answer the question, “When does this region get updated?” After
you have compiled a list of candidate regions, and for each you have a list of refresh events,
you’re pretty much done.

The final step is mapping this information to UpdatePanel controls and triggers. If all the
regions you have identified are disjointed, you’re fine. If not, you use properties and triggers
on the UpdatePanel control to obtain the expected page behavior, thereby minimizing the
impact of postbacks and page flickering.

If needed, updatable panels can be nested. There’s no syntax limitation to the levels of
 nesting allowed. Just consider that any nested panel refreshes when its parent is refreshed,
regardless of the settings.

Let’s be honest. It might not be a trivial task, and getting a disjoint set of regions is not
 always possible. However, given the number of properties supported by the UpdatePanel
control, there’s always room for a good compromise between user experience and
performance.

Configuring for Conditional Refresh
An UpdatePanel control refreshes its content under the following conditions:

■ When another UpdatePanel control in the same page refreshes

■ When any of the child controls originates a postback (for example, a button click or a
change of selection in a drop-down list with AutoPostBack=true)

■ When handling a postback event the page invokes the Update method on the
UpdatePanel control

■ When the UpdatePanel control is nested inside another UpdatePanel control and the
parent update panel is updated

■ When any of the trigger events for the UpdatePanel occur

You can control these conditions through a number of properties such as UpdateMode and
ChildrenAsTriggers, as well as the collection Triggers. To minimize the total number of post-
backs and the amount of data being roundtripped, you should pay a lot of attention to the
values you assign to these properties. Let’s delve deeper into this topic.

Detecting Postbacks from Child Controls
By default, all updatable panels in a page are synchronized and refresh at the same time.
To make each panel refresh independently from the others, you change the value of the
UpdateMode property. The default value is Always, meaning that the panel’s content is
 updated on every postback that originates from anywhere in the page, from inside and
 outside the updatable region.

 Chapter 20 Ajax Programming 867

By changing the value of the UpdateMode property to Conditional, you instruct the
 updatable panel to update its content only if it is explicitly ordered to refresh. This includes
calling the Update method, intercepting a postback from a child control, or handling any of
the events declared as triggers.

Normally, any control defined inside of an UpdatePanel control acts as an implicit trigger
for the panel. You can stop all child controls from being triggers by setting the value of
ChildrenAsTriggers to false. In this case, a button inside an updatable panel, if clicked,
 originates a regular full postback.

What if you want only a few controls within an UpdatePanel to act as triggers?
You can define them as triggers of a particular UpdatePanel, or you can use the
RegisterAsyncPostBackControl method on the ScriptManager class.

The RegisterAsyncPostBackControl method enables you to register controls to perform an
asynchronous postback instead of a synchronous postback, which would update the entire
page. Here is an example of the RegisterAsyncPostBackControl method:

protected void Page_Load(Object sender, EventArgs e)
{
 ScriptManager1.RegisterAsyncPostBackControl(Button1);
}

The control object you pass as an argument will be a control not included in any updatable
panels and not listed as a trigger. The effects of the postback that originates from the
 control differ with regard to the number of UpdatePanel controls in the page. If there’s
only one UpdatePanel in the page, the script manager can easily figure out which one to
 update. The following code shows a page whose overall behavior might change if one or two
UpdatePanel controls are used:

protected void Button1_Click(Object sender, EventArgs e)
{
 // If there’s only one UpdatePanel in the page, and it includes this Label control,
 // the panel is refreshed automatically.
 Label1.Text = "Last update at: " + DateTime.Now.ToLongTimeString();

 // This Label control, not included in any UpdatePanel, doesn’t have its UI
 // refreshed. Its state, though, is correctly updated.
 Label2.Text = "Last update at: " + DateTime.Now.ToLongTimeString();
}

When multiple panels exist, to trigger the update you have to explicitly invoke the Update
method on the panel you want to refresh:

protected void Button1_Click(object sender, EventArgs e)
{
 Label1.Text = "Last update at: " + DateTime.Now.ToLongTimeString();
 UpdatePanel1.Update();
}

868 Part V The Client Side

All controls located inside of an UpdatePanel control are automatically passed as an
 argument to the RegisterAsyncPostBackControl method when ChildrenAsTriggers is true.

Note A postback that originates from within an UpdatePanel control is often referred to as an
asynchronous postback or an AJAX postback. Generally, these expressions are used to reference a
postback conducted via a script taking advantage of XMLHttpRequest.

Programmatic Updates
I’ve already mentioned the Update method quite a few times. It’s time to learn more about it,
starting with its signature:

public void Update()

The method doesn’t take any special action itself, but is limited to requiring that the child
controls defined in the content template of the UpdatePanel control be refreshed. By using
the Update method, you can programmatically control when the page region is updated in
response to a standard postback event or perhaps during the initialization of the page.

An invalid operation exception can be thrown from within the Update method in a couple
of well-known situations. One situation is if you call the method when the UpdateMode
 property is set to Always. The exception is thrown in this case because a method invocation
prefigures a conditional update—you do it when you need it—which is just the opposite of
what the Always value of the UpdateMode property indicates. The other situation in which
the exception is thrown is when the Update method is called during or after the page’s ren-
dering stage.

So when should you use the Update method in your pages?

You resort to the method if you have some server logic to determine whether an
UpdatePanel control should be updated as the side effect of an asynchronous postback—
whether it is one that originated from another UpdatePanel in the page or a control
 registered as an asynchronous postback control.

Using Triggers
As mentioned, you can associate an UpdatePanel control with a list of server-side events.
Whenever a registered event is triggered over a postback, the panel is updated. Triggers can
be defined either declaratively or programmatically. You add an event trigger declaratively
using the <Triggers> section of the UpdatePanel control:

<asp:UpdatePanel runat="server" ID="UpdatePanel1">
 <ContentTemplate>
 ...
 </ContentTemplate>

 Chapter 20 Ajax Programming 869

 <Triggers>
 <asp:AsyncPostBackTrigger
 ControlID="DropDownList1"
 EventName="SelectedIndexChanged" />
 </Triggers>
</asp:UpdatePanel>

You need to specify two pieces of information for each trigger: the ID of the control to
 monitor, and the name of the event to catch. Note that the AsyncPostBackTrigger compo-
nent can catch only server-side events. Both ControlID and EventName are string properties.
For example, the panel described in the previous code snippet is refreshed when any of the
 controls in the page posts back (that is, its UpdateMode property defaults to Always) or when
the selection changes on a drop-down list control named DropDownList1. (Obviously, the
DropDownList1 control must have the AutoPostBack property set to true.)

Note You can also add triggers programmatically by using the Triggers collection of the
UpdatePanel control. The collection accepts instances of the AsyncPostBackTrigger class.

Full Postbacks from Inside Updatable Panels
By default, all child controls of an UpdatePanel that post back operate as implicit
 asynchronous postback triggers. You can prevent all of them from triggering a panel update
by setting ChildrenAsTriggers to false. Note that when ChildrenAsTriggers is false, postbacks
coming from child controls are processed as asynchronous postbacks and they modify the
state of involved server controls, but they don’t update the user interface of the panel.

There might be situations in which you need to perform full, regular postbacks from
 inside an UpdatePanel control in response to a control event. In this case, you use the
PostBackTrigger component, as shown here:

<asp:UpdatePanel runat="server" ID="UpdatePanel1">
 <ContentTemplate>
 ...
 </ContentTemplate>
 <Triggers>
 <asp:AsyncPostBackTrigger ControlID="DropDownList1"
 EventName="SelectedIndexChanged" />
 <asp:PostBackTrigger ControlID="Button1" />
 </Triggers>
</asp:UpdatePanel>

The preceding panel features both synchronous and asynchronous postback triggers. The
panel is updated when the user changes the selection on the drop-down list; the whole host
page is refreshed when the user clicks the button.

870 Part V The Client Side

A PostBackTrigger component causes referenced controls inside an UpdatePanel control
to perform regular postbacks. These triggers must be child elements of the affected
UpdatePanel.

The PostBackTrigger object doesn’t support the EventName property. If a control with that
name is causing the form submission, the ASP.NET AJAX client script simply lets the request
go as usual. The ASP.NET runtime then figures out which server postback event has to be
raised for the postback control by looking at its implementation of IPostBackEventHandler.

Note When should you use a PostBackTrigger component to fire a full postback from inside an
updatable panel? If you need, say, a button to refresh a given panel, why not list the Click event
of the button as an asynchronous trigger and leave the button outside the panel?

Especially when complex and templated controls are involved, it might not be easy to separate
blocks of user interface in distinct panels and single controls. So the easiest, and often the only,
solution is wrapping a whole block of user interface in an updatable panel. If a single control in
this panel needs to fire a full postback, you need to use the PostBackTrigger component.

Giving Feedback to the User
The mechanics of the asynchronous postback keeps the displayed page up and running. So
having the computer engaged in a potentially long task might be problematic. Will the user
resist the temptation of clicking that button over and over again? Will the user patiently wait
for the results to show up? Finally, will the user be frustrated and annoyed by waiting without
any clue of what’s going on? After all, if the page is sustaining a full postback, the browser
itself normally provides some user feedback that this is happening. Using ASP.NET AJAX, the
callback doesn’t force a browser-led postback and the browser’s visual feedback system is
not called upon to inform the user things are happening.

The continuous experience raises new issues. Feedback should be given to users to let them
know that an operation is taking place. In addition, user-interface elements should be dis-
abled if the user starts new operations by clicking on the element. ASP.NET AJAX supplies the
UpdateProgress control to display a templated content while any of the panels in the page
are being refreshed.

The UpdateProgress Control
The UpdateProgress control is designed to provide any sort of feedback on the browser
while one or more UpdatePanel controls are being updated. If you have multiple panels in
the page, you might want to find a convenient location in the page for the progress control
or, if possible, move it programmatically to the right place with respect to the panel being
updated. You can use cascading style sheets (CSSs) to style and position the control at your
leisure.

 Chapter 20 Ajax Programming 871

The user interface associated with an UpdateProgress control is displayed and hidden by
the ASP.NET AJAX framework and doesn’t require you to do any work on your own. The
UpdateProgress control features the properties listed in Table 20-6.

TABLE 20-6 Properties of the UpdateProgress Control
Property Description
AssociatedUpdatePanelID Gets and sets the ID of the UpdatePanel control that this control is

 associated with.

DisplayAfter Gets and sets the time in milliseconds after which the progress
 template is displayed. It is set to 500 by default.

DynamicLayout Indicates whether the progress template is dynamically rendered in the
page. It is set to true by default.

ProgressTemplate Indicates the template displayed during an asynchronous postback
that is taking longer than the time specified through the DisplayAfter
property.

An UpdateProgress control can be bound to a particular UpdatePanel control. You set the
binding through the AssociatedUpdatePanelID string property. If no updatable panel is
 specified, the progress control is displayed for any panels in the page. The user interface of
the progress bar is inserted in the host page when the page is rendered. However, it is ini-
tially hidden from view using the CSS display attribute.

When set to none, the CSS display attribute doesn’t display a given HTML element and reuses
its space in the page so that other elements can be shifted up properly. When the value of
the display attribute is toggled on, existing elements are moved to make room for the new
element.

If you want to reserve the space for the progress control and leave it blank when no update
operation is taking place, you just set the DynamicLayout property to false.

Composing the Progress Screen
The control displays the contents of the ProgressTemplate property while waiting for a panel
to update. You can specify the template either declaratively or programmatically. In the lat-
ter case, you assign the property any object that implements the ITemplate interface. For the
former situation, you can easily specify the progress control’s markup declaratively, as shown
in the following code:

<asp:UpdateProgress runat="server" ID="UpdateProgress1">
 <ProgressTemplate>
 ...
 </ProgressTemplate>
</asp:UpdateProgress>

You can place any combination of controls in the progress template. However, most of the
time, you’ll probably just put some text there and an animated GIF. (See Figure 20-3.)

872 Part V The Client Side

Update in progress for panel #1

Last updated on 12/3/20
1:28:23 PM

1:28:12

Refresh Panel #1

Panel #1 Panel #2

FIGURE 20-3 A progress template informing users that some work is being done.

Note that the UpdateProgress control is not designed to be a gauge component, but rather a
user-defined panel that the ScriptManager control shows before the panel refresh begins and
that it hides immediately after its completion.

Important If you’re looking for a real gauge bar to monitor the progress of a server-side task,
partial rendering and the UpdateProgress control are not the right tools. As you’ll see later in the
chapter, polling is one of the main drawbacks of partial rendering and polling is unavoidable for
monitoring server tasks from the client.

Client-Side Events for Richer Feedback
Each asynchronous postback is triggered on the client via script. The entire operation is
conducted by the PageRequestManager client object, which invokes, under the hood, the
XMLHttpRequest object. What kind of control do developers have on the underlying opera-
tion? If you manage XMLHttpRequest directly, you have full control over the request and
response. But when these key steps are managed for you, there’s not much you can do unless
the request manager supports an eventing model.

The Sys.WebForms.PageRequestManager object provides a few events so that you can
 customize the handling of the request and response. Table 20-7 lists the supported events
that signal the main steps around an Ajax postback that partially update a page. The events
are listed in the order in which they fire to the client page.

TABLE 20-7 Properties of the UpdateProgress Control
Event Event Argument Description
initializeRequest InitializeRequestEventArgs Occurs before the request is prepared for sending

beginRequest BeginRequestEventArgs Occurs before the request is sent

pageLoading PageLoadingEventArgs Occurs when the response has been acquired but
before any content on the page is updated

pageLoaded PageLoadedEventArgs Occurs after all content on the page is refreshed as
a result of an asynchronous postback

endRequest EndRequestEventArgs Occurs after an asynchronous postback is finished
and control has been returned to the browser

 Chapter 20 Ajax Programming 873

To register an event handler, you use the following JavaScript code:

var manager = Sys.WebForms.PageRequestManager.getInstance();
manager.add_beginRequest(OnBeginRequest);

The prototype of the event handler method—OnBeginRequest in this case—is shown here:

function beginRequest(sender, args)

The real type of the args object, though, depends on the event data structure. By using any
of these events, you can control in more detail the steps of an asynchronous request. Let’s
dig out more.

The initializeRequest event is the first in the client life cycle of an asynchronous request.
The life cycle begins at the moment a postback is made that is captured by the
UpdatePanel’s client-side infrastructure. You can use the initializeRequest event to evaluate
the postback source and do any additional required work. The event data structure is the
InitializeRequestEventArgs class. The class features three properties: postBackElement, request,
and cancel.

The postBackElement property is read-only and evaluates to a DomElement object. It
 indicates the DOM element that is responsible for the postback. The request property
 (read-only) is an object of type Sys.Net.WebRequest and represents the ongoing request.
Finally, cancel is a read-write Boolean property that can be used to abort the request before
it is sent.

Immediately after calling the initializeRequest handler, if any, the PageRequestManager object
aborts any pending async requests. Next, it proceeds with the beginRequest event and then
sends the packet.

When the response arrives, the PageRequestManager object first processes any returned
data and separates hidden fields, updatable panels, and whatever pieces of informa-
tion are returned from the server. Once the response data is ready for processing, the
PageRequestManager object fires the pageLoading client event. The event is raised after the
server response is received but before any content on the page is updated. You can use this
event to provide a custom transition effect for updated content or to run any clean-up code
that prepares the panels for the next update. The event data is packed in an instance of the
class PageLoadingEventArgs. The class has three properties: panelsUpdating, panelsDelet-
ing, and dataItems. The first two are arrays and list the updatable panels to be updated and
 deleted, respectively.

The pageLoaded event is raised after all content on the page is refreshed. You can use this
event to provide a custom transition effect for updated content, such as flashing or highlight-
ing updated contents. The event data is packed in the class PageLoadedEventArgs, which has
three properties: panelsUpdated, panelsDeleted, and dataItems. The first two are arrays and
list the updatable panels that were just updated and deleted, respectively.

874 Part V The Client Side

The endRequest event signals the termination of the asynchronous request. You receive this
event regardless of the success or failure of the asynchronous postback.

Disabling Visual Elements During Updates
If you want to prevent users from generating more input while a partial page update is being
processed, you can also consider disabling the user interface—all or in part. To do so, you
write handlers for beginRequest and endRequest events:

<script type="text/javascript">
function pageLoad()
{
 var manager = Sys.WebForms.PageRequestManager.getInstance();
 manager.add_beginRequest(OnBeginRequest);
 manager.add_beginRequest(OnEndRequest);
}
</script>

You typically use the beginRequest event to modify the user interface as appropriate and
 notify the user that the postback is being processed:

// Globals
var currentPostBackElem;

function OnBeginRequest(sender, args)
{
 // Get the reference to the button click (i.e., btnStartTask)
 currentPostBackElem = args.get_postBackElement();
 if (typeof(currentPostBackElem) === "undefined")
 return;
 if (currentPostBackElem.id.toLowerCase() === "btnStartTask")
 {
 // Disable the button
 $get("btnStartTask").disabled = true;
 }
}

The beginRequest handler receives event data through the BeginRequestEventArgs data
 structure—the args formal parameter. The class features only two properties: request and
postBackElement. The properties have the same characteristics of analogous properties on
the aforementioned InitializeRequestEventArgs class.

In the preceding code snippet, I disable the clicked button to prevent users from repeatedly
clicking the same button.

At the end of the request, any temporary modification to the user interface must be
 removed. So animations must be stopped, altered styles must be restored, and disabled
 controls must be re-enabled. The ideal place for all these operations is the endRequest event.
The event passes an EndRequestEventArgs object to handlers. The class has a few properties,
as described in Table 20-8.

 Chapter 20 Ajax Programming 875

TABLE 20-8 Properties of the EndRequestEventArgs Control
Property Description
dataItems Returns the client-side dictionary packed with server-defined data items

for the page or the control that handles this event. (More on registering
data items later.)

Error Returns an object of type Error that describes the error (if any) that
 occurred on the server during the request.

errorHandled Gets and sets a Boolean value that indicates whether the error has been
completely handled by user code. If this property is set to true in the event
handler, no default error handling will be executed by the ASP.NET AJAX
client library.

Response Returns an object of type Sys.Net.WebRequestExecutor that represents the
executor of the current request.

As you can see, when the endRequest event occurs there’s no information available about
the client element that fired the postback. If you need to restore some user interface settings
from inside the endRequest event handler, you might need a global variable to track which
element caused the postback:

function OnEndRequest(sender, args)
{
 if (typeof(currentPostBackElem) === "undefined")
 return;
 if (currentPostBackElem.id.toLowerCase() === "btnStartTask")
 {
 $get("btnStartTask").disabled = false;
 }
}

Wouldn’t it be nice if you could visually notify users that a certain region of the screen has
been updated? As you’ve seen, partial rendering improves the user experience with pages
by eliminating a good number of full refreshes. If you look at it from the perspective of the
average user, though, a partial page update doesn’t have a clear start and finish like a regular
Web roundtrip. The user doesn’t see the page redrawn and might not notice changes in the
user interface. A good pattern to employ is to use a little animation to show the user what
has really changed with the latest operation. You can code this by yourself using the pair
of beginRequest and endRequest events, or you can resort to a specialized component—an
UpdatePanel extender control—as you’ll see in a moment.

Important The disabled HTML attribute works only on INPUT elements. It has no effect on
hyperlinks and <a> tags. If you plan to use LinkButton controls, you have to resort to other
JavaScript tricks to disable the user interface. One possible trick is temporarily replacing the
onclick handler of the hyperlink with a return value of false. Another effective trick might be to
cover the area to be disabled with a partially opaque DIV.

876 Part V The Client Side

Aborting a Pending Update
A really user-friendly system always lets its users cancel a pending operation. How can you
obtain this functionality with an UpdateProgress control? The progress template is allowed
to contain an abort button. The script code injected in the page will monitor the button and
stop the ongoing asynchronous call if it’s clicked. To specify an abort button, you add the
following to the progress template:

<input type="button" onclick="abortTask()" value="Cancel" />

In the first place, the button has to be a client-side button. So you can express it either
through the <input> element or the <button> element for the browsers that support this
element. If you opt for the <input> element, the type attribute must be set to button. The
script code you wire up to the onclick event is up to you, but it will contain at least the
 following instructions:

<script type="text/JavaScript">
function abortTask()
{
 var manager = Sys.WebForms.PageRequestManager.getInstance();
 if (manager.get_isInAsyncPostBack())
 manager.abortPostBack();
}
</script>

You retrieve the instance of the client PageRequestManager object active in the client page
and check whether an asynchronous postback is going on. If so, you call the abortPostBack
method to stop it.

Important Canceling an ongoing update in this way is equivalent to closing the connection
with the server. No results will ever be received, and no updates will ever occur on the page.
However, canceling the update is a pure client operation and has no effect over what’s happen-
ing on the server. If the user started a destructive operation, the client-side Cancel button can do
nothing to stop that operation on the server.

The Ins and Outs of Partial Rendering
Overall, partial rendering is only one possible way to approach Ajax. It preserves most of your
current investments and is relatively cheap to implement. Partial rendering just adds Ajax
capabilities to your pages. There’s no architectural new point in partial rendering. It’s a great
technique to quickly update legacy applications, and it is an excellent choice when you lack
the time, skills, or budget to move on and redesign the application. But in a good number of
cases, an improved user interface and optimized rendering is all that your users demand. So
partial rendering would fit in perfectly.

 Chapter 20 Ajax Programming 877

On the other hand, building true Ajax applications where some of the presentation logic lives
on the client written in JavaScript is not trivial either, and it requires a well-done and power-
ful client framework, as well as a server-side API that can be easily invoked via a URL and that
can return easy-to-parse data.

These days, the winning library for client-side programming is jQuery. (I’ll cover the library in
the next chapter.) An important extension to the library is jQuery UI, which solves at the root
most of the issues I mentioned earlier regarding update progress and client-side widgets.

You should be aware of the structural limitations that partial rendering has. Let’s review
the most important. If any of them are likely to affect you, you better look elsewhere and
 re-architect your application.

Issues with Concurrent Calls
Partial rendering doesn’t support concurrent asynchronous postbacks. This means that you
are not allowed to have two asynchronous postbacks going on at the same time. Partial ren-
dering ultimately works by bypassing the standard browser mechanism that handles an HTTP
request. It hooks up the submit event of the form, cuts out the standard browser handler, and
places the HTTP request using XMLHttpRequest.

The request that reaches the Web server differs from a regular ASP.NET request only because
it has an extra HTTP header. The request sends in the contents of the posting form, includ-
ing the view-state hidden field. The response is not pure HTML but represents a text record
where each field describes the new status of a page element—update panels, hidden fields,
and scripts to run on loading.

As you can see, the underlying model of partial rendering is still the model of classic
ASP.NET pages. It is a sort of stop-and-go model where the user posts back, waits for a while,
and then receives a new page. While waiting for the next page, there’s not much the user can
do. Only one server operation per session occurs at a time. Partial rendering is only a smarter
way of implementing the old model.

From a technical standpoint, the major factor that prevents multiple asynchronous postbacks
is the persistence of the view-state information. When two requests go, both send out the
same copy of the view state, but each reasonably returns a different view state. Which one is
good for the page, then? Partial rendering takes a defensive approach, and it silently kills the
ongoing request whenever a new request is placed—a last-win discipline.

By writing some JavaScript code around the BeginRequest client event, you can turn the
 discipline into a first-win approach, at the cost of losing the new request. It is your responsi-
bility to queue the stopped request and run it later. This is just what some commercial Ajax
frameworks do.

878 Part V The Client Side

This fact has a clear impact on developers. In fact, you should always modify the user
 interface to ensure that users can’t start a second operation before the first is terminated.
Otherwise, the first operation is aborted in favor of the second. This happens in any case,
even when the two operations are logically unrelated.

Note When concurrent calls are necessary, you should consider moving that page (if not the
whole application) to a more AJAX-oriented design. Alternatively, you can consider implement-
ing that feature within the page using direct script-led calls to URL-based endpoints. I’ll cover this
approach in a moment.

Issues with Polling
Among other things, Ajax pages are popular because they can retrieve the client informa-
tion in a timely manner. A page starts polling a remote URL, grabs fresh information, and
returns it to the client for the actual display. Implemented via partial rendering, polling is
subject to being interrupted when the user starts a new partial rendering operation to restart
 automatically at the end.

If this is not a problem for you, you can use the new Timer server control, as shown here:

<asp:Timer ID="Timer1" runat="server" Enabled="true" Interval="1000" ontick="Timer1_Tick" />
<asp:Button ID="Button1" runat="server" Text="Start task" onclick="Button1_Click" />
<asp:UpdateProgress ID="UpdateProgress1" runat="server" DynamicLayout="false">
 <ProgressTemplate>

 </ProgressTemplate>
</asp:UpdateProgress>

<asp:UpdatePanel ID="UpdatePanel1" runat="server">
 <ContentTemplate>
 <asp:Label ID="Label1" runat="server" />
 </ContentTemplate>
 <Triggers>
 <asp:AsyncPostBackTrigger ControlID="Button1" EventName="Click" />
 </Triggers>
</asp:UpdatePanel>

<hr />

<asp:UpdatePanel ID="UpdatePanel2" runat="server">
 <ContentTemplate>
 <asp:Label ID="lblClock" runat="server" />
 </ContentTemplate>
 <Triggers>
 <asp:AsyncPostBackTrigger ControlID="Timer1" EventName="Tick" />
 </Triggers>
</asp:UpdatePanel>

 Chapter 20 Ajax Programming 879

The Timer control is the server counterpart of a client timer created using the
window.setTimeout method. In the preceding code, the Timer control causes a postback
 every second as specified by the Interval property. The postback fires the Tick event. By
using the timer as the trigger of an updatable panel, you can refresh the content of the
panel periodically. In the code, the second UpdatePanel control just renders out a digital
clock:

protected void Timer1_Tick(Object sender, EventArgs e)
{
 // Update the client UI to reflect server changes
 ...
}

The downside is that a timer-based polling system implemented over the partial rendering
engine is still subject to concurrent calls and can be stopped at any time.

REST and Ajax
When the client requires that a specific operation be executed on the server with no frills and
in a purely stateless manner, you should consider options other than partial rendering. Enter
remote server method calls and REST, or Representational State Transfer.

REST refers to the idea of having data and resources exposed to Web clients as public HTTP
endpoints. Clients interact with these endpoints using HTTP verbs such as GET, POST, PUT,
and DELETE. In REST, the URL is a representation of a resource, and the HTTP verb describes
the action you want to take regarding the resource’s representation. Data exchanged in
those interactions is represented in simple formats such as JSON and plain XML, or even in
 syndication formats such RSS and ATOM.

From a programming perspective, REST is all about making a call to a Web-exposed service
from the client browser. This requires that a public, well-known API be exposed and made
accessible from JavaScript or whatever other programming technology you have available in
the browser (for example, Silverlight).

At the highest level of abstraction, Web applications are client/server applications that
 require an Internet connection between the two layers. Before Ajax, this connection was
incorporated in the special client application—the browser—which opens the connection,
clears the user interface, and then updates the screen with the results of a server operation.

With Ajax, the client code has the ability to bypass the browser and can handle connections
itself. This enables the client to enter user interface updates without fully refreshing the
 displayed page—a great step forward toward usability and rich user experiences.

880 Part V The Client Side

Scriptable Services
Any Ajax solution is made of two main layers that are neatly separated but communicating:
the JavaScript and HTML presentation layer, and a service layer that acts as a façade for HTTP
endpoints. Figure 20-4 gives an overview of the architecture.

JavaScript and HTML

Browser

HTTP Facade

Rest of the system
(Business layer, DAL)

Internet

Local/Internet

Roundtrip

FIGURE 20-4 A typical Ajax architecture.

The HTTP façade works out a convenient API for the presentation layer to call. The API is
built on top of the existing application services and workflows. The HTTP façade scripts these
 middle-tier components from the client. The architectural relevance of the HTTP façade is
that it decouples the middle tier from a special presentation layer, such as an Ajax presenta-
tion layer. An Ajax presentation layer is special essentially because it’s a partial-trust Web
client.

For security reasons, service technologies hosted on the Web server require special
 adjustments to enable JavaScript callers. In addition, it’s likely that some of the application
services you have in the middle tier run critical procedures. Any piece of code bound to a
URL in the HTTP façade, instead, is publicly exposed over the Internet—not an ideal situation
for a business-critical service. So decoupling application services from the Ajax presentation
layer is a measure of design but also a matter of security.

How would you build the HTTP façade?

 Chapter 20 Ajax Programming 881

The HTTP Façade
The HTTP façade is the list of public URLs known to, and managed by, the Ajax presentation
layer. In an Ajax scenario, the presentation layer is made of only JavaScript code. All the logic
you can’t or don’t want to code in JavaScript must be referenced on the server.

Public HTTP endpoints are the only point of contact between Ajax clients and server
 applications. You can write endpoints callable by Ajax clients using a number of technologies.

Note In the context of Ajax, Web-hosted services are instrumental to the definition of a public,
contract-based API that JavaScript code can invoke. It doesn’t mean that you can call just any
public Web services from an Ajax client. More precisely, you can call only services that live in the
same domain as the calling page in full respect of the Same Origin Policy (SOP) implemented
by most browsers. This is a security measure, not a technical limitation. You should think of Web
services as a sort of application-specific façade to expose some server-side logic to a JavaScript
(or Silverlight) client.

To start off, an AJAX-callable endpoint can be an .asmx ASP.NET Web service. If this is your
choice, you need to configure the server ASP.NET application so that its hosted Web services
can accept JSON calls in addition to, or instead of, SOAP calls.

You can also use a Windows Communication Foundation (WCF) service to contain all the
logic you want to expose to Ajax clients. As you’ll see later in the chapter, though, you get
only the Web WCF programming interface and, as such, only a subset of the typical WCF
features. In particular, the area of security is thinned down. A common solution for ASP.NET
Web Forms Ajax-enabled applications is hosting WCF services and interacting with them via
JSON payloads.

If you don’t want to add WCF to your application but still need a service, you can then opt
for a custom, handmade HTTP handler. An HTTP handler is just a public URL exposed by
a Web application, so it can reliably serve any purpose the presentation needs to address.
Compared to WCF services, plain HTTP handlers lack a lot of facilities, including the automat-
ic JSON serialization of input and output data. (You can use the same tools that WCF uses,
but that’s just not…automatic.)

WCF Services
A WCF services is exposed as an .svc endpoint. To be invoked from within an ASP.NET Ajax
page, a service must meet a number of requirements, the strictest of which relate to the
 location of the endpoint and underlying platform. Ajax-enabled services must be hosted in
the same domain from which the call is made. If we consider using WCF services to back an
Ajax front end, the service must be hosted in an Internet Information Services (IIS) applica-
tion on the same Web server as the ASP.NET application.

882 Part V The Client Side

Important By default, AJAX-enabled WCF services run side by side with the ASP.NET
 application in the same AppDomain. Requests for an .svc resource are first dispatched to the
ASP.NET runtime, but then the WCF hosting infrastructure intercepts these requests and routes
them out of the HTTP pipeline. ASP.NET doesn’t participate in the processing of WCF requests
past the PostAuthenticateRequest event in the request life cycle. At that point, in fact, the WCF
infrastructure intercepts the request and starts processing that in total autonomy. In the default
configuration, the WCF service method has no access to ASP.NET intrinsics, ASP.NET imperson-
ation and URL authorization settings are ignored, and HTTP modules interested in filtering the
WCF request past the PostAuthenticateRequest event never get a chance to do their work.

To support Ajax calls, you also need to expose service methods through HTTP requests and
subsequently map methods to URLs. This is just what the WCF Web programming model has
to offer. The WCF Web programming model enables services to support plain-old XML (POX)
style messaging instead of SOAP, which is the key step to enabling the JSON calls that are
typical of ASP.NET AJAX clients.

The following code snippet shows how to use the new WebGet attribute in the definition of a
service contract:

[ServiceContract]
public interface ICalculator {
 [OperationContract]
 [WebGet]
 long Add(long x, long y);

 [OperationContract]
 [WebGet(UriTemplate="Sub?p1={x}&p2={y}")]
 long Subtract(long x, long y);
}

The WebGet attribute qualifies a method as a retrieval operation and enables callers to use
the HTTP GET verb to invoke it. The WebGet attribute also features the UriTemplate prop-
erty. You use this property to specify which URL format is accepted to invoke the method. If
not otherwise specified via an explicit UriTemplate property, the URI template for a WebGet
method like the aforementioned Add is the following:

theService.svc/Add?x=1&y=2

The service name is followed by the method name, and formal parameters follow in order,
each with its own actual value. You can change this standard URI template by changing the
method name and formal parameter names.

 Chapter 20 Ajax Programming 883

The WebInvoke attribute indicates that a given method has to be considered as a logical
invoke operation that can be invoked using any HTTP verb, but typically the POST verb is
called upon:

[ServiceContract]
public interface ICalculator {
 [OperationContract]
 [WebInvoke(Method="Post",
 RequestFormat=WebMessageFormat.Xml,
 ResponseFormat=WebMessageFormat.Json)]
 long Add(long x, long y);
}

Through the WebInvoke attribute, you can set the URI template, the method to be used to
invoke the method, as well as the format for the request and response text.

Note If you choose to add to your Visual Studio project a new item known as an AJAX-enabled
service, the wizard gets you a skeleton of code that’s ready to help you build an AJAX-enabled
WCF service.

To be invoked from an AJAX client, a WCF service can be configured with a specific binding
model—the webHttpBinding model. The webHttpBinding model is a basic HTTP binding
 except that it doesn’t use SOAP. The webHttpBinding binding model is specifically created for
REST scenarios. Here’s an excerpt from a sample configuration script for an AJAX-enabled
WCF service:

<system.serviceModel>
 <behaviors>
 <endpointBehaviors>
 <behavior name="ajaxBehavior">
 <enableWebScript />
 </behavior>
 </endpointBehaviors>

 <serviceBehaviors>
 <behavior name="metadataBehavior">
 <serviceMetadata httpGetEnabled="true" />
 </behavior>
 </serviceBehaviors>
 </behaviors>
 ...
</system.serviceModel>

When webHttpBinding is turned on, you can also use the optional enableWebScript element,
which enables the run time to generate the JavaScript proxy for the service. The proxy is
a JavaScript class that makes it particularly easy to invoke the service endpoints. To invoke

884 Part V The Client Side

a service, a proxy is not strictly required, as you’ll see in the next chapter about jQuery. In
addition, you might also want to publish service metadata for retrieval using an HTTP GET
request.

The services hosted by the Web application must be specially configured to use the Web
HTTP-specific binding model, as shown here:

<system.serviceModel>
 ...
 <services>
 <service name="Samples.TimeService"
 behaviorConfiguration="metadataBehavior">
 <endpoint contract="Samples.ITimeService"
 binding="webHttpBinding"
 behaviorConfiguration="ajaxBehavior" />
 </service>
 </services>
</system.serviceModel>

The configuration of a WCF service specifies key pieces of information—the binding model
(mandatory), contract, and behavior. The binding indicates how the call is going to hap-
pen—essentially whether it will use a REST approach, a SOAP approach, or both. The contract
attribute indicates which contract the endpoint is exposing. If the service class implements
a single contract type, the contract attribute can be omitted in the endpoint section. Finally,
the behaviorConfiguration attribute contains the name of the behavior to be used in the
endpoint.

Note In some particular scenarios, you can also resort to a simplified configuration scheme
for AJAX-enabled WCF services. In the service endpoint file—the .svc file—you use the Factory
 attribute in the @ServiceHost directive and make it point to a system-provided class that supplies
default settings for binding and endpoint behaviors. Here’s the code for the .svc endpoint file:

<%@ ServiceHost
 Factory="System.ServiceModel.Activation.WebScriptServiceHostFactory"
 Service="Samples.Services.TimeService" %>

Note that you can use simplified configuration only for service classes that implement one
 contract only.

The definition of the service contract for an AJAX-enabled WCF service is not different from
that of any other WCF services. You use the OperationContract attribute to qualify a method
as a public service method, and you use the optional WebGet and WebInvoke attributes to
configure the URL template. Here’s an example:

[ServiceContract(Namespace="Samples.Services", Name="TimeService")]
public interface ITimeService
{
 [OperationContract]
 DateTime GetTime();

 Chapter 20 Ajax Programming 885

 [OperationContract]
 string GetTimeFormat(string format);
}

public class TimeService : ITimeService
{
 public DateTime GetTime()
 {
 return DateTime.Now;
 }
 ...
}

You should be sure to give meaningful values to the Namespace and Name properties of the
ServiceContract attribute. The reason is that the concatenation of those values determines
the name of the JavaScript proxy class used to access the WCF service. If you leave them
blank, the JavaScript proxy for the preceding service will be named tempuri.org.ITimeService.
Not really a nice or helpful name!

For AJAX-enabled WCF services, the data contract—namely, the agreement between the
 service and client that describes the data to be exchanged—is defined in the canonical
way. You use an implicit contract for serialization, and deserialization is used for collections,
 primitive types, dates, enumerations, and the GUID; an explicit contract is required for cus-
tom complex types. In this case, you use the DataContract and DataMember attributes on
class members to determine which members go into the serialization stream.

Important The configuration of a WCF service is different if the client is a Silverlight
 application. In such a case, in fact, you are not allowed to use webHttpBinding and must resort to
the basicHttpBinding model, which executes the method call over a SOAP 1.1 channel.

ASP.NET Web Services
The primary reason for choosing ASP.NET Web services instead of WCF as the technology
for building your HTTP façade is backward compatibility. You can call ASP.NET Web services
from AJAX clients as long as your Web server runs the Microsoft .NET Framework 2.0 plus
AJAX Extensions 1.0. For WCF services, ASP.NET 3.5 or a newer version is required.

A Web service made to measure for an ASP.NET AJAX application is similar to any other
ASP.NET Web service you might write for whatever purposes. Just one peripheral aspect,
though, marks a key difference. You must use a new attribute to decorate the class of the

886 Part V The Client Side

Web service that is not allowed on regular ASP.NET Web services—the ScriptService attribute.
Here’s how to use it:

namespace Samples.WebServices
{
 [ScriptService]
 [WebService(Namespace = "urn:aspnet4.book/")]
 public class TimeService : System.Web.Services.WebService, ITimeService
 {
 [WebMethod]
 public DateTime GetTime()
 {
 return DateTime.Now;
 }
 ...
 }
}

Note that the ScriptService attribute simply enables AJAX callers to connect to the service;
it doesn’t prevent SOAP callers from sending their packets. As a result, an ASP.NET AJAX
Web service might have a double public interface: the JSON-based interface consumed by
the hosting ASP.NET AJAX application, and the classic SOAP-based interface exposed to any
 clients, from any platforms, that can reach the service URL.

When you write an AJAX-enabled ASP.NET Web service, you have no need for a contracted
interface as with WCF services. However, extracting an interface from the service class is
rarely a bad idea.

public class TimeService : System.Web.Services.WebService, ITimeService
{
 [WebMethod]
 public DateTime GetTime()
 {
 return DateTime.Now;
 }
 ...
}

Public methods of the Web service class decorated with the WebMethod attribute can be
invoked from the AJAX page. Any method is invoked using the HTTP POST verb and returns
any value as a JSON object. You can change these default settings on a per-method basis by
using an optional attribute—ScriptMethod. In particular, through the ScriptMethod attribute
you can enable HTTP GET calls and use XML instead of JSON as the serialization format.

Enabling the use of the HTTP GET verb opens security holes: the service method can be
 invoked through a cross-site scripting attack that attaches an external script to the <script>
or HTML tags. These HTML elements are the sole elements allowed to access re-
sources from outside the current domain. However, they always operate through a GET verb.
This means that by keeping the HTTP GET verb disabled on your Web service method you

 Chapter 20 Ajax Programming 887

 prevent at the root any possible cross-site scripting attacks. More in general, my opinion is
that you should have very good reasons to use the ScriptMethod attribute, anyway.

Finally, deriving the Web service class from System.Web.Services.WebService is not mandatory
either. If you use that class as a parent, all that you gain is that you enable the service
to access ASP.NET intrinsics directly without using the HttpContext.Current object as an
intermediary.

Important By default, AJAX-enabled WCF services process requests for method execution
 outside the ASP.NET pipeline. Requests for ASP.NET Web services methods, conversely, are
 treated as standard ASP.NET requests. In other words, .asmx requests flow through the classic
request life cycle whereas .svc requests are routed out of the pipeline at some point.

By switching WCF services to ASP.NET compatibility mode, you ensure that .svc requests are
treated identically to .asmx requests with respect to ASP.NET intrinsics, URL authorization, and
impersonation. However, the ASP.NET compatibility mode for WCF services breaks the WCF abil-
ity to behave consistently across hosting environments and transports. Compatibility mode is an
option only for WCF services that will always operate over HTTP and be hosted by IIS, which is
just what the majority of AJAX-enabled WCF services do.

Discriminate Against Outsiders
Any security barrier you place around the HTTP façade at the network level (for example,
a firewall) to filter outsiders would likely stop legitimate calls too. When all calls come from
a plain Web browser and from the Internet, you need a reliable way to welcome legitimate
 users and reject outsiders.

To do so, you have to identify a piece of information that only legitimate users can easily
provide. The simplest and most effective piece of information is an authentication cookie
generated by the ASP.NET Forms authentication.

To protect critical services in the HTTP façade, you isolate in a reserved area of the site any
ASP.NET pages that invoke a sensitive service method and any services to protect. After
 pages and services are placed in a protected area of the site, access to them requires that
users go through a login page.

The login page gets credentials from the user and verifies whether the user is authorized
to visit the page. If all is fine, the request is authorized and an authentication cookie is
 generated and attached to the response. From now on, any requests the user makes to the
application, including requests directed at services in the HTTP façade, will bring the cookie.
(See Figure 20-5.)

888 Part V The Client Side

Presentation

Login

User
.....

JSON
auth

cookie

JSONJSON

JSON
auth

cookie

JSON
auth

cookie

JSONJSON

HTTP Facade

URL

JavaScript Silverlight

JSON
JSON/
SOAP

FIGURE 20-5 Legitimate users and outsiders around the HTTP façade.

In ASP.NET, login pages require that Forms authentication be turned on. Furthermore,
 anonymous users should be denied access to any resources within the protected area. Here’s
a sample configuration script you can use:

<location path="ProtectedAreaOfTheSite">
 <system.web>
 <authorization>
 <deny users="?" />
 </authorization>
 </system.web>
</location>

If necessary, login pages can be placed on a different server and work over HTTPS. This
 solution, however, has no impact on the security of the HTTP façade.

Outsiders can still try to access the services via the public URL. In this case, though, because
the service IIS endpoint is also placed behind an authorization section, they will receive an
HTTP 401 error code (unauthorized access). The outsider call will pass only if the outsider can
show a valid authentication cookie. But this can happen only if a cookie theft has occurred
previously. However, this is all another problem that relates to the security of the Web site
rather than to the security of the services in the HTTP façade.

The only viable alternative to using cookies and ASP.NET Forms authentication is to install
client certificates on all client machines.

Trusting the HTTP Façade
Should WCF and Web services do something on their own to keep outsiders off the site? If
you place service endpoints behind a protected area of the site, you’re as safe as with any
other ASP.NET pages based on Forms authentication. To give you an idea, if you combine

 Chapter 20 Ajax Programming 889

Forms authentication with HTTPS you have the same security level currently used by online
banking applications and payment sites.

It’s therefore safe for the middle tier to trust the upper HTTP façade and accept any calls
coming down the way. However, nothing prevents you from implementing an extra check for
authorization within the body of service methods. In this case, though, you need to access
credentials information from within the service.

AJAX-enabled services can carry this information only via the authentication cookie or client
certificates. Programmatically, a service gets user credentials via intrinsic objects of the
 run-time platform. ASP.NET XML Web services live within the ASP.NET runtime and have full
access to the ASP.NET intrinsics, including the User object.

By default, instead, WCF service calls are processed by the WCF runtime, which lives side by
side with ASP.NET, but it’s not a part of it. As a result, a WCF service method can’t access the
HTTP request context and put its hands on the User object. The only possible workaround is
running all the WCF services hosted by the site in ASP.NET compatibility mode.

You turn compatibility mode on in the configuration file, as shown here:

<system.serviceModel>
 <serviceHostingEnvironment aspNetCompatibilityEnabled="true" />
 ...
</system.serviceModel>

In addition, each service is required to express its explicit approval of the model. A
 service does this by decorating the service class—not the service contract—with the
AspNetCompatibilityRequirements attribute, as shown here:

[AspNetCompatibilityRequirements(
 RequirementsMode = AspNetCompatibilityRequirementsMode.Allowed)]
public class TimeService : ITimeService
{
 ...
}

Note that, by default, a WCF service has the RequirementsMode property set to NotAllowed.
If this value is not changed to either Allowed or Required, you get a run-time exception as
you attempt to make a call to the service.

Note WCF services have been designed to be independent from binding and transportation.
By turning on ASP.NET compatibility mode, you break this rule because you make the service
 dependent on IIS as the host and HTTP as the transportation protocol. On the other hand,
 services in the HTTP façade are just Ajax-specific services so, in this regard, enabling ASP.NET
compatibility is actually a natural choice.

890 Part V The Client Side

JSON Payloads
When you call server-based code you likely need to pass input data and wait to receive some
other data back. Clearly, a serialization format is required to transform platform-specific data
(for example, a .NET object) into an HTTP network packet. For years, this field has been the
reign of XML. To a large extent, this is still the reign of XML, but not when a Web browser is
used as the client.

Shorthand for JavaScript Object Notation, JSON is the de facto standard format for browsers
and Web servers to exchange data over HTTP when a script-led request is made. The main
reasons for preferring JSON over XML can be summarized by saying that, overall, JSON is
simpler than full-blown XML and gets a free deserialization engine in virtually any browser
that supports JavaScript. You can learn more about the syntax and purposes of JSON at
http://www.json.org.

JSON at a Glance
JSON is a text-based format specifically designed to move the state of an object across tiers.
It’s natively supported by JavaScript in the sense that a JSON-compatible string can be evalu-
ated to a JavaScript object through the JavaScript eval function. However, if the JSON string
represents the state of a custom object, it’s your responsibility to ensure that the definition of
the corresponding class is available on the client.

The JSON format describes the state of the object, an example of which is shown here:

{"ID"="ALFKI", "Company":"Alfred Futterkiste"}

The string indicates an object with two properties—ID and Company—and their respective,
text-serialized values. If a property is assigned a nonprimitive value—say, a custom object—
the value is recursively serialized to JSON, as in the code snippet shown here:

{"ID"="ALFKI",
 "Company":"Alfred Futterkiste",
 "Address":{"Street="543 Oberstr", "City"="Berlin", "Country":"Germany"} }

Services in the HTTP façade preferably receive and return HTTP packets with JSON content.

On the client, creating a JSON representation of data is your responsibility. You can either
manually build the string or use some facilities to serialize a JavaScript object to JSON. Some
browsers support native JSON parsing through a JSON object exposed out of the window
object. Specifically, these browsers are Internet Explorer 8, Firefox 3.5, Safari 4, Chrome,
Opera 10, and their newer versions. Alternatively, you can download the file json2.js, which
provides analogous capabilities, from http://www.json.org.

On the server, you typically rely on the serialization capabilities of some classes in the .NET
Framework to get a JSON string. You can use the JavaScriptSerializer class or the newer

http://www.json.org
http://www.json.org

 Chapter 20 Ajax Programming 891

DataContractJsonSerializer class. Although they do it through different APIs, both classes take
a .NET object and convert it to a JSON string. This step, however, is transparently performed
by the WCF infrastructure after you have defined the data contracts for the service interface.

Data Contracts
Any nonprimitive data to be sent or received via WCF methods must be marked with the
DataContract attribute. Imagine you have the following service:

[ServiceContract(Namespace = "Services.Wcf")]
[AspNetCompatibilityRequirements(
 RequirementsMode = AspNetCompatibilityRequirementsMode.Allowed)]
public class CustomerService
{
 [OperationContract]
 public CustomerDTO LookupCustomer(String id)
 {
 var context = new NorthwindDataContext();
 var data = (from c in context.Customers
 where c.CustomerID == id
 select c).SingleOrDefault();
 if (data != null)
 {
 var dto = new CustomerDTO((Customer)data);
 return dto;
 }
 return new MissingCustomerDTO();
 }
}

The method LookupCustomer is expected to return a custom object. This object must be
decorated with ad hoc DataContract attribute:

namespace Services.Wcf
{
 [DataContract]
 public class CustomerDTO
 {
 private Customer _customer;
 public CustomerDTO(Customer customer)
 {
 _customer = customer;
 }

 [DataMember]
 public string CustomerID
 {
 get { return _customer.CustomerID; }
 set { _customer.CustomerID = value; }
 }
 ...
 }
}

892 Part V The Client Side

In this particular case, the class being used over WCF is a data-transfer object (DTO)—that is,
a helper class that moves the content of domain model objects across tiers.

Why JSON Is Preferable to XML
For years, XML has been touted as the lingua franca of the Web. Now that Ajax has become a
key milestone for the entire Web, XML has been pushed to the side in favor of JSON as far as
data representation over the Web is concerned.

Why is JSON preferable to XML in Ajax scenarios?

The main reason for dropping XML and SOAP in favor of JSON is that JSON is much easier to
handle from within a JavaScript-powered client than any XML-based format. JSON is slightly
simpler and more appropriate for the JavaScript language to process than XML. Although
JSON might not be easier for humans to understand than XML—this is just my thought, by
the way—it’s certainly easier for a machine to process than XML. Nothing like an XML parser
is required for JSON. Everything you need to parse the text is built into the JavaScript lan-
guage. JSON is also less verbose than XML, and less ambitious too. JSON, in fact, is not as
good as XML for interoperability purposes.

The JSON syntax is not perfect either. The industrial quantity of commas and quotes it re-
quires makes it a rather quirky format. But can you honestly say that XML is more forgiving?

With JSON, you also gain a key architectural benefit at a relatively low cost. You always
 reason in terms of objects instead of dealing with untyped Document Object Model (DOM)
trees. On the server, you define your entities and implement them as classes in your favorite
managed language. When a service method needs to return an instance of any class, the
state of the object is serialized to JSON and travels over the wire. On the client, the JSON
string is received and processed, and its contents are loaded into an array, or a kind of mirror
JavaScript object, with the same interface as the server class. The interface of the class is in-
ferred from the JSON stream. In this way, both the service and the client page code use the
same logical definition of an entity.

Obviously, from a purely technical standpoint, the preservation of the data contract doesn’t
strictly require JSON to be implemented. You could get to the same point using XML as
well. In that case, though, you need to get yourself an XML parser that can be used from
JavaScript.

Parsing some simple XML text in JavaScript might not be an issue, but getting a full-blown
parser is another story completely. Performance and functionality issues will likely lead to a
proliferation of similar components with little in common. And then you must decide wheth-
er such a JavaScript XML parser should support things such as namespaces, schemas, white
spaces, comments, and processing instructions.

 Chapter 20 Ajax Programming 893

As I see it, for the sake of compatibility you will end up with a subset of XML limited to nodes
and attributes. At that point, it’s merely a matter of choosing between the angle brackets of
XML and the curly brackets of JSON. Additionally, JSON has a free parser already built into
the JavaScript engine—the aforementioned function eval.

Also labeled as the fat-free alternative to XML, JSON has ultimately been a very conve-
nient choice for architects of Web frameworks and is today the real currency exchanged by
 browsers and Ajax-enabled services.

JavaScript Client Code
You can consume a REST service by simply invoking its URL and processing its response. We’ll
get into this example in the next chapter via the jQuery library. A referenced Ajax-enabled
WCF or Web service, however, can automatically generate a JavaScript proxy class, which
might make invoking the service easier.

Getting a Proxy for the HTTP Façade
When you add a Web or WCF service to a classic Web application project or to a Windows
Forms project, you go through a Visual Studio wizard, indicate the URL of the service, specify
the desired namespace, and finally have the wizard generate a proxy class and add it in the
folds of the project solution.

When you add a reference to Web or WCF services to an ASP.NET AJAX page, no Visual
Studio wizard will be there to silently invoke an SDK tool that automagically creates the proxy
class. In the first place, you don’t add a service reference through the Web project. Instead,
you programmatically add the service reference to the ASP.NET page, as shown here:

<asp:ScriptManager ID="ScriptManager1" runat="server">
 <Services>
 <asp:ServiceReference Path="appAjaxLayer.svc" />
 ...
 </Services>
</asp:ScriptManager>

The script manager emits the following markup:

<script src="appAjaxLayer.svc/js" type="text/javascript"></script>

If you’re testing your page and have debug mode set in the web.config file, the suffix to the
service URL will be /jsdebug instead of /js.

The /js suffix is the magic word that instructs the service infrastructure to generate a
JavaScript proxy class for the client code to call the service. In particular, for WCF services
the enableWebScript attribute of the endpoint behavior enables the generation of the proxy;
subsequently, it enables the service to be scripted from an Ajax client.

894 Part V The Client Side

The JavaScript proxy class is named according to different rules for Web and WCF services.
For Web services, the proxy gets the exact fully qualified name of the class behind the .asmx
endpoint. For WCF services, the name of the proxy class is determined by the concatena-
tion of the Namespace and Name properties specified in the ServiceContract attribute you’re
targeting. Note, therefore, that when you call a WCF service method you’re actually calling a
method defined on a contract. To invoke a WCF service, it’s the contract that matters, not the
class that implements it. In fact, the same service class can implement multiple contracts.

Using the Proxy
After you have the JavaScript proxy, invoking the Web or WCF service is nearly the same
thing. The proxy object comes as a singleton and exposes the same set of contracted
 methods you have on the original service. The communication model is asynchronous and
requires you to specify at least a callback function to use in case of successful execution.
Here’s an example:

// Async call of method GetQuotes with a callback
Samples.Services.FinanceInfoService.GetQuotes(symbols, onDataAvailable);

The code can refer to a Web service as well as a WCF service. If it refers to a Web service,
the Web service class is named Samples.Services.FinanceInfoService; if it refers to a WCF
service, the namespace of the service contract might be Samples.Services and the name of
the contract might be FinanceInfoService. The preceding code snippet invokes the method
GetQuotes.

In addition to the regular list of parameters for the service method, each proxy method can
take up to three extra parameters. The first extra parameter is mandatory and represents
the callback to invoke if the method execution is successful. The second and third optional
 parameters indicate, respectively, the callback to use in case of failure and a state object to
pass to both callbacks. In the code snippet just shown, the onDataAvailable parameter refers
to a JavaScript callback to call only if the method executes successfully.

The signature of the success and failure callbacks is similar, but the internal format of the
 results parameter can change quite a bit. Here’s the callback signature:

function method(results, context, methodName)

Table 20-9 provides more details about the various arguments.

TABLE 20-9 Arguments for a JavaScript Proxy Callback Function
Argument Description
results Indicates the return value from the method in the case of success. In the case of

failure, a JavaScript Error object mimics the exception that occurred on the server
during the execution of the method.

context The state object passed to the callback.

methodName The name of the service method that was invoked.

 Chapter 20 Ajax Programming 895

The JavaScript proxy exposes a number of properties and methods for you to configure. The
list is presented in Table 20-10.

TABLE 20-10 Static Properties on a JavaScript Proxy Class
Property Description
path Gets and sets the URL of the underlying Web or WCF service.

timeout Gets and sets the duration (in seconds) before the method call times out.

defaultSucceededCallback Gets and sets the default JavaScript callback function to invoke for any
successful call to a method.

defaultFailedCallback Gets and sets the default JavaScript callback function, if any, to invoke for
a failed or timed-out call.

defaultUserContext Gets and sets the default JavaScript state object, if any, to be passed to
success and failure callbacks.

If you set a “default succeeded” callback, you don’t have to specify a “succeeded” callback in
any successive call as long as the desired callback function is the same. The same holds true
for the failed callback and the user context object. The user context object is any JavaScript
object, filled with any information that makes sense to you, that gets passed automatically to
any callback that handles the success or failure of the call.

Note The JavaScript code injected for the proxy class uses the path property to define the URL
to the Web service. You can change the property programmatically to redirect the proxy to a
different URL.

Remote Calls via Page Methods
If you don’t feel like using Web or WCF services, a quick solution to expose Ajax-callable end-
points is based on page methods. Page methods are simply public, static methods exposed
by the code-behind class of a given ASP.NET page. The run-time engine for page methods
and Ajax-enabled Web services is nearly the same. Using page methods saves you from the
burden of creating and publishing a service; at the same time, though, it binds you to having
page-scoped methods that can’t be called from within a page different from the one where
they are defined.

Public and static methods defined on a page’s code-behind class and flagged with the
WebMethod attribute transform an ASP.NET page into a Web service. Here’s a sample page
method:

public class TimeServicePage : System.Web.UI.Page
{
 [WebMethod]
 public static DateTime GetTime()
 {
 return DateTime.Now;
 }
}

896 Part V The Client Side

You can use any data type in the definition of page methods, including .NET Framework
types as well as user-defined types. All types will be transparently JSON-serialized during
each call.

Note The page class where you define methods might be the direct code-behind class or,
 better yet, a parent class. In this way, in the parent class you can implement the contract of
the public server API and keep it somewhat separated from the rest of the event handlers
and methods that are specific to the page life cycle and behavior. Because page methods are
 required to be static (shared in Microsoft Visual Basic .NET), you can’t use the syntax of interfaces
to define the contract. You have to resort to abstract base classes.

Alternatively, you can define Web methods as inline code in the .aspx source file as follows
(and if you use Visual Basic, just change the type attribute to text/VB):

<script type="text/C#" runat="server">
 [WebMethod]
 public static DateTime GetTime()
 {
 return DateTime.Now;
 }
</script>

Page methods are specific to a given ASP.NET page. Only the host page can call its methods.
Cross-page method calls are not supported. If they are critical for your scenario, I suggest
that you move to using Web or WCF services.

When the code-behind class of an ASP.NET AJAX page contains WebMethod-decorated
static methods, the run-time engine emits a JavaScript proxy class nearly identical to the
class generated for a Web or WCF service. You use a global instance of this class to call server
methods. The name of the class is hard-coded to PageMethods. Its usage is nearly identical to
the proxy for Web or WCF services.

function getTime()
{
 PageMethods.GetTime(methodCompleted);
}
function methodCompleted(results, context, methodName)
{
 // Format the date-time object to a more readable string
 var displayString = results.format("ddd, dd MMMM yyyy");
 document.getElementById("Label1").innerHTML = displayString;
}

Note, however, that page methods are not enabled by default. In other words, the
PageMethods proxy class that you use to place remote calls is not generated unless you set
the EnablePageMethods property to true in the page’s script manager:

<asp:ScriptManager runat="server" ID="ScriptManager1" EnablePageMethods="true" />

 Chapter 20 Ajax Programming 897

For the successful execution of a page method, the ASP.NET AJAX application must have the
ScriptModule HTTP module enabled in the web.config file:

<httpModules>
 <add name="ScriptModule"
 type="System.Web.Handlers.ScriptModule, System.Web.Extensions" />
</httpModules>

For page method calls, therefore, there’s no page life cycle and child controls are not
 initialized and processed.

Note From page methods, you can access session state, the ASP.NET Cache, and User objects,
as well as any other intrinsic objects. You can do that using the Current property on HttpContext.
The HTTP context is not specific to the page life cycle and is, instead, a piece of information that
accompanies the request from the start.

Summary
ASP.NET offers two approaches to AJAX: partial rendering and scriptable services. Of the two,
partial rendering is the one with some hidden costs. Partial rendering is easy to understand
and doesn’t require that you learn new things. It makes an existing page work the Ajax way
without changing anything. Although it can still achieve better performance than classic
postbacks, partial rendering moves a lot of data around. In the worst cases, the savings in
terms of markup are negligible compared to the quantity of bytes moved.

On the other hand, the best selling point of the Ajax paradigm is the idea of making stateless
server-side calls from the client and updating the page via the DOM. Here’s where scriptable
services fit in. No hidden costs are buried in this model. You send in only input data required
by the method being invoked and receive only the return value. Traffic is minimal, and no
view state or other hidden fields (for example, event validation) are roundtripped. On the
down side, remote method calls require JavaScript skills. You control the execution of the
method via JavaScript and use a JavaScript callback to incorporate the results in the page.

Using scriptable services leads you to making some architectural changes to the application.
You need a server API designed to respond to script-led requests, and you need this API
to live on top of your existing middle tier. How do you expose this API? There are various
 options for implementing this layer. You can use a Web service or, better yet, a WCF service
hosted in the same domain. Once you have a back end based on services, you orchestrate
calls to endpoints from the client browser using whatever programming language the
 browser provides. If plain JavaScript is not optimal, you can use a wrapper library such as
jQuery (see next chapter) or switch to a rich Internet framework such a Silverlight.

 899

Chapter 21

jQuery Programming
If knowledge can create problems, it is not through ignorance that we can
solve them.

—Isaac Asimov

Aside from the social implications of it, the modern Web from a technology viewpoint is
mostly about running (a lot) more JavaScript code on the client. JavaScript is a very special
type of language; it’s probably not the language everybody would choose to use today to
power up the client side of the Web. However, it’s the only common language we have, and
we have to stick to it to reach the largest audience.

So what if you want (or more likely need) more power on the client?

Be ready to write more JavaScript code. More importantly, be ready to import more
JavaScript code written by others. Either of these two ways of using JavaScript is OK, as they
are not mutually exclusive options.

I firmly believe that, at least for the time being, you can’t just transform JavaScript into
 something else that is radically different from what the language is today. However, the Web
has repeatedly proven to be a surprisingly dynamic and agile environment; so who really
knows what could happen in five years?

Currently, the most effective approach to adding more power to the client is using ad hoc
libraries full of Document Object Model (DOM) facilities and adding new features to the
 existing JavaScript language. Interestingly, a single all-encompassing library seems not to
be realistic. The ideal JavaScript library is often obtained by stacking up and composing
 together bits and pieces of existing libraries in a custom recipe that suits each particular
application.

Many attempts have been made over the years to create the perfect JavaScript library.
As it often happens, many libraries participate, but only one wins. And in this regard the
 winner is jQuery. In this chapter, you’ll discover the capabilities of this library and its powerful
 extensibility model.

Power to the Client
JavaScript is a language tailor-made for the Web and, more specifically, for the browser. I
won’t stray too far from the truth by saying that there’s little life for JavaScript outside the
realm of a Web browser, even though the demand for out-of-browser JavaScript is growing
and might explode in the near future.

900 Part V The Client Side

Anyway, today JavaScript still lives for the browser and within the browser. This is the starting
point to understand what the language is for and where to look for possible (and really
 useful) extensions. Not surprisingly, our quest will lead straight to jQuery—currently, a
 natural extension of most Web applications.

Programming within the Browser
The first appearance of JavaScript as a browser-hosted language dates back to late 1995,
when the first beta of Netscape Navigator 2 was released. JavaScript was introduced to give
authors of Web documents the ability to incorporate some logic and action in HTML pages.
Before then, a Web page was essentially a static collection of HTML tags and text. Historically,
the first significant enhancement made to the syntax of HTML was the support for tags to
include script code.

Original Goals of the Language
JavaScript was not designed to be a classic and cutting-edge programming language—not
even by the standards of 15 years ago. The primary goal of its designers was to create a lan-
guage that resembled a simpler Java that could be used with ease by inexpert page authors.

To some extent, the design of JavaScript was influenced by many languages, but the
 predominant factor was simplicity. It was named “JavaScript” because the language
was essentially meant to be a powerful language like Java, but focused on scripting. No
 other relationships, beyond the deliberate reference in the name, exist between Java and
JavaScript.

As a result, JavaScript is an interpreted and weakly typed language that also supports
 dynamic binding and objects. JavaScript, however, is not a fully object-oriented language.

Note Originally developed at Netscape by Brendan Eich, JavaScript was first named LiveScript.
The name was changed to JavaScript when Netscape added support for Java technology in its
Navigator browser. The script suffix was simply meant to be the script version of an excellent
 programming language like Java. In no way was the language supposed to be a spinoff of Java.

Later, Microsoft created a similar language for its Internet Explorer browser and named it
JScript to avoid trademark issues. In 1997, JavaScript was submitted to the European Computer
Manufacturers Association (ECMA) International for standardization. The process culminated a
couple of years later in the standardized version of the language named ECMAScript.

 Chapter 21 jQuery Programming 901

The Scripting Engine
Being an interpreted language, JavaScript requires an ad hoc run-time environment to
 produce visible effects from the source code. The run-time environment is often referred to
as the browser’s scripting engine. As such, the JavaScript run-time environment can be slightly
different from one browser to the next. The result is that the same JavaScript language fea-
ture might provide different performance on different browsers and might be flawed on
one browser while working efficiently on another one. This fact makes it generally hard and
time-consuming to write good, cross-browser JavaScript code and justifies the love/hate
 relationship (well, mostly hate) that many developers have developed with the language over
the years.

The diagram in Figure 21-1 shows the overall structure of a scripting engine with an
 interesting extension—the JavaScript background compiler—that some of the latest
 browsers are implementing.

JavaScript Engine

DOM
Objects

Your
Objects

Browser
Objects

Source
Code

JavaScript Language
Compiler/Optimizer

Scripting Engine

FIGURE 21-1 The browser’s JavaScript engine.

The scripting engine is a component that is hosted in the browser and receives the source
code to process. Armed with language knowledge, the engine can resolve any name in the
source code that can be mapped to a syntax element—keywords, variables, local functions,
and objects.

In addition, the source code processed within a Web browser is likely populated with
 specific objects coming from various sources. For example, you can find DOM objects to
access the content being displayed in the page as well as browser-specific objects such as
XMLHttpRequest, JSON, and window. Furthermore, any libraries you reference from the page

902 Part V The Client Side

are also published to the engine. After the script has been loaded, the browser runs the script
through the engine. This action results in the functionality defined by the commands in the
code.

As mentioned, although JavaScript is definitely a stable language that hasn’t faced significant
changes for a decade now, virtually any broadly used library is packed with forks in code to
distinguish the behavior of different browsers and ensure the same overall interface.

One of the first rules—if not the first rule—you should follow to write rich client applica-
tions is get yourself a powerful JavaScript library that adds abstraction and features to the
JavaScript language and that works in a cross-browser manner.

Flaws and Workarounds
JavaScript has a number of drawbacks, both technical and infrastructural. In spite of all these
factors, though, JavaScript works just great for the majority of Web applications. And nothing
any better has been invented yet.

All things considered, the limitations of JavaScript can be summarized as two elements: it
is an interpreted language, and it is not fully object oriented. The former drawback makes
the language significantly slower than a compiled language. The latter makes it harder for
 developers to write complex code.

The Google Chrome browser (which you can read more about at http://www.google.com/
chrome) is the first browser with an open-source JavaScript engine that compiles source code
to native machine code before executing it. As a result, Chrome runs JavaScript applica-
tions at the speed of a compiled binary, which is significantly better than any bytecode or
 interpreted code.

An analogous capability is featured by Internet Explorer 9, which compiles the JavaScript
code in the background, leveraging the full capabilities of the underlying hardware.
Generally, all browsers (including Mozilla-based browsers and Opera) are evolving their
JavaScript engines to achieve performance as close as possible to that of native code.

Because JavaScript is so popular and widely used, planning a significant overhaul of the
 language is just out of question. For years now, libraries built on top of the core language
have been providing facilities to work with remote endpoints, parse data into JSON, and
 produce UI widgets.

As you saw in Chapter 20, “Ajax Programming,” JavaScript can be used to write code that
follows two radically different programming paradigms: functional programming and
 object-oriented programming (OOP). JavaScript is neither 100 percent functional nor object-
oriented, but it borrows concepts from both qualified functional and object-oriented lan-
guages. This inevitably creates some noise regarding the programming techniques you can
employ. As a developer, you must be ready to accept compromises that might not be

http://www.google.com/

 Chapter 21 jQuery Programming 903

acceptable in a fully qualified functional or object-oriented scenario. To use JavaScript at its
best, you probably have to mix functional features with object-oriented (OO) features.

What You Write JavaScript Code For
The client-side code you are called to write is no longer, and not just, plain scripting of the
document object model as it was when the language was introduced. Today, you often use
JavaScript for some client-side logic and input validation. In particular, you use JavaScript
to download data from the server, implement Windows-like effects such as drag-and-drop,
resizing, templates, popup and graphic effects, local data caching, and the management of
history and events around the page. You want the JavaScript code to be maintainable and
unobtrusive.

Any in-browser JavaScript inevitably deals with the DOM. The DOM, therefore, is the primary
object model you need to work with. Any other object model you might want to introduce
risks being cumbersome and partially unnecessary.

If you have to write your own framework to support some server-side infrastructure, you
probably are better off opting for an object-oriented approach. If your goal, instead, is just to
add some presentation logic to the page, you don’t need object orientation in JavaScript. A
functional approach combined with rich DOM and page manipulation capabilities is the ideal
mix these days. The jQuery library is just the most illustrious example of such a library.

The Gist of jQuery
The main reason for the worldwide success of the jQuery library is its unique mix of
 functional and DOM programming. The library works by selecting DOM elements and
 applying functions over them, which is just what client Web developers need to do most of
the time.

Details of the Library
The library is made of a single .js file you can download from http://jquery.com. Most
ASP.NET Visual Studio templates already include a version of the jQuery library, even though
the one included in the template might not be the latest. From the site, you can pick both
the minified and debug versions. Compressed, they are a bit more than 20 KB in size. Here’s
what you need to link the jQuery library (keeping in mind that the path can change on a
 per-application basis):

<script type="text/javascript" src="/Scripts/jquery-1.4.4.js"></script>

So if jQuery is not the only option, why is it so popular?

http://jquery.com

904 Part V The Client Side

In the first place, the library is lightweight and cross-browser capable. Second, it works
by selecting DOM elements via a Cascading Style Sheet 3.0 (CSS3)-compliant syntax and
 applying functions to each of them. Functions are mostly user-defined, but a number of
predefined (and commonly used) functions exist. Third, the library is based on an extensible
model that enables developers to write and share their own plug-ins, thus contributing to
making the library even more successful.

Microsoft offers support 24 hours a day, seven days a week for the jQuery library when used
with ASP.NET and contributes developers to the project. Template support recently added
to version 1.4.5 of the library has been contributed by Microsoft. Visual Studio recognizes
jQuery code via a proper .vsdoc file and provides IntelliSense support. (See Figure 21-2.)

FIGURE 21-2 IntelliSense support for jQuery code.

For development purposes, you reference the VSDOC file, as shown here:

<script type="text/javascript" src="/Scripts/jquery-1.4.4-vsdoc.js"></script>

You can get the latest VSDOC IntelliSense file from the Microsoft CDN at the following
 address: http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.4.4-vsdoc.js. Obviously, you might
need to change the file name to get a newer version. The naming convention of the jQuery
library is jquery-n.n.n.js, where n.n.n stands for the current version number.

The Root Object
The word query in the library’s name says it all—the jQuery library is primarily designed
for running (clever) queries over the DOM. The library supplies a powerful interface to se-
lect DOM elements that goes far beyond the simple search for an element that matches a
given ID. For example, you can easily select all elements that share a given cascading style
sheet (CSS) class, have certain attributes, or appear in a given position in the tree. More
 importantly, you can chain multiple clauses together and prepare complex queries.

http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.4.4-vsdoc.js

 Chapter 21 jQuery Programming 905

The root of the jQuery library is the jQuery function. Here’s the overall structure of the
library:

(
 function(window, undefined)
 {
 var jQuery = (function() {...})();
 /* the rest of the library goes here */
 }
) (window);

The jQuery function just shown is then mapped as an extension to the browser’s window
 object and is aliased with the popular $ function. The function has the following prototype:

function(selector, context)

The selector indicates the query expression to run over the DOM; the context indicates
the portion of the DOM from which to run the query. If no context is specified, the jQuery
 function looks for DOM elements within the entire page DOM.

The jQuery function typically returns a wrapped set, namely a collection of DOM elements.
Nicely enough, this wrapped set is still a jQuery object that can be queried using the same
syntax, resulting in chained queries.

jQuery and Functional Programming
In jQuery, you find some basic principles of functional programming. In particular, the library
is built around a fundamental type of data—the DOM element. And the library’s root object
is essentially a wrapper around DOM elements. Furthermore, DOM elements can be passed
into the jQuery object through the type constructor. Finally, the root object can pass its own
wrapped values into other functions that return another instance of the same root object.

The net effect is that you build your jQuery code by pipelining function calls to create a
 super function that just gets some input and returns some output. In the super function, you
express behavior by injecting anonymous JavaScript functions as if they were plain values.

Let’s start by playing with the jQuery library.

Working with jQuery
When writing JavaScript intensive applications, you’ll find it quite natural to put a piece
of code at the top of each page and set up the DOM to serve the desired logic within the
page. Typically, this code initializes global variables and prepares the ground for possible
future actions. Ideally, you also want to use this initialization code to arrange event handlers,
 caching, and downloads of external data.

906 Part V The Client Side

Because jQuery is designed to query the DOM and work with selected elements, any
 initialization code should reasonably run only when the DOM is ready. Detecting DOM
 readiness and writing initialization code with jQuery library is easier than ever.

Detecting DOM Readiness
In the beginning of client-side development, there was just one place where you could put
the initialization code of a Web page—in the onload event on either the window object
or the <body> tag. The onload event fires as soon as the page has finished loading—that
is, once the download of all linked images, CSS styles, and scripts has terminated. There’s
no guarantee, however, that at this time the DOM has been fully initialized and is ready to
 accept instructions.

The DOM ReadyState Property
The document root object in the DOM exposes a read-only readyState property just to let
you know the current state of the DOM and figure out when it is OK for your page to start
scripting it. Any change to the property is signaled with a readyStateChange event. Web
pages are notified of DOM readiness by registering a handler for this event and checking the
value of the readyState property in the code.

Most browsers also support the DOMContentLoaded event, which just signals when the DOM
is ready. Internet Explorer, however, doesn’t support it.

Using the readyState property is an approach that definitely works, but it is a bit cumber-
some. For this reason, most JavaScript frameworks offer their own “ready” event that signals
when you can start making calls into the framework safely. In this way, they shield you from
the details of the DOM implementation and just let you know when you can do your own
thing.

The jQuery library is no exception.

The jQuery’s Ready Function
In jQuery, you select the current DOM document and call the ready function on it. The ready
function encapsulates the code to check the value of the readyState property on the DOM’s
document object. The ready function takes an anonymous function as a parameter. The argu-
ment function is where you specify any initialization code required for the document. Here’s
how you use it:

<script type="text/javascript">
$(document).ready(
 function() {
 alert("I’m ready!");
 });
</script>

 Chapter 21 jQuery Programming 907

The jQuery’s ready function provides a cross-browser solution to detect the DOM readiness.

Note that the ready function works only if it’s invoked on the current document. You can’t call
the ready function on, say, an image, a script, or a portion of the DOM. In light of this, you can
even omit the document selector and resort to the equally acceptable syntax shown here:

<script type="text/javascript">
$(function() {
 alert("I’m ready!");
 });
</script>

The two syntaxes are equivalent. Another approach consists of using the bind method to
bind a handler to the ready event of the document:

$(document).bind("ready", function() { ... });

In this case, though, the handler won’t run if at the time of event binding the ready event has
already fired. Finally, the ready handler is delayed until the document is ready or runs imme-
diately if the document is already entirely loaded. I’ll return to bind and other event functions
later in the chapter.

Onload vs. Ready
Which code runs first, the window’s onload event handler or the call’s jQuery ready function?

The onload event is called after the HTML and any auxiliary resources are loaded. The ready
function is called after the DOM is initialized. The two events can run in any order. The
 onload event won’t ensure the page DOM is loaded; the ready function won’t ensure all
 resources, such as images, have been loaded.

Another noticeable difference between onload and ready is that you can have multiple calls
to ready in a page. You can have only one global onload event handler either defined on the
window object or expressed as an attribute on the body tag. When multiple calls to ready are
specified, jQuery pushes specified functions to an internal stack and serves them sequentially
after the DOM is effectively ready.

It is generally recommended that you use either the ready function or the onload handler.
If you need both things, you should use the jQuery’s load function attached to the window
 object or to more specific elements such as images, scripts, or style sheets:

$(window).load(function() {
 // Initialization code here
});

You typically use load when you need to access specific information on specific page
 elements such as images or scripts. So in summary, you rarely end up using load on the
 window object.

908 Part V The Client Side

Wrapped Sets
Why does the word “query” appear in the name of the library? The ultimate purpose of the
jQuery library (j stands for JavaScript) is simplifying the task of getting a selected subset of
DOM elements to work with. Put another way, the jQuery library is mostly intended to run
queries over the page DOM and execute operations over the returned items.

The query engine behind the library goes far beyond the simple search capabilities of, say,
document.getElementById (and related functions) that you find natively in the DOM. The
query capabilities of jQuery use the powerful CSS syntax, which gives you a surprising level
of expressivity. You find similar query expressivity only in the DOM of HTML 5 when it’s fully
defined and widely and uniformly supported.

The query engine of jQuery allows you to select elements that have a given combination of
attribute values, appear in a fixed relative position in the DOM tree, or have a particular rela-
tionship with other elements. More importantly, you can add filter conditions, chain multiple
queries together, and apply them sequentially.

The result of a query is a wrapped set. A wrapped set is an object containing a collection of
DOM elements. Elements are added to the collection in the order in which they appear in the
original document.

A wrapped set is never null, even if no matching elements have been found. You check the
actual size of the wrapped set by looking at the length property of the jQuery object, as
shown here:

// Queries for all IMG tags in the page
var wrappedSet = new jQuery("img");
var length = wrappedSet.length;
if (length == 0)
 alert("No IMG tags found.");

Note that the expression just shown, through which you get the wrapped set, is fully
 equivalent to the more commonly used $(“img”).

The wrapped set is not a special data container; rather, it’s a jQuery-specific term to indicate
the results of a query. However, once you hold all the elements you were looking for, you
need to process them. To start off, let’s see how to enumerate the content.

Enumerating the Content
To loop through the elements in the wrapped set, you use the each function. The each
 function gets a function as a parameter and invokes that on each element:

// Prints out names of all images
$("img").each(function(index) {
 alert(this.src);
});

 Chapter 21 jQuery Programming 909

The callback function you pass to each receives the 0-based index of the current iteration.
Nicely enough, you don’t need to retrieve the corresponding DOM element yourself; you just
use the keyword this to refer to the element currently being processed. If the callback func-
tion returns false, the iteration is stopped. Note that each is a quite generic function made
available for any task for which a more specific jQuery function doesn’t exist. If you find a
jQuery function that already does what you intend to code through each, by all means use
the native function.

You use the length property to read the size of the wrapped set. You can also use the size
function, but the length property is slightly faster:

// You better use property length
alert($("img").size());

The get function extracts the wrapped set from the jQuery object and returns it as a
JavaScript array of DOM elements. If you pass an index argument, instead, it will return the
DOM element found at the specified 0-based position in the wrapped set. Note that the get
function breaks the jQuery chainability because it returns a DOM object or an array of DOM
objects. You can’t further apply jQuery functions to the results of a get call.

Many more operations are available on wrapped sets, and many others can be added
through plug-ins. I’ll return to the topic of operations that are possible on a wrapped set later
in the chapter, right after discussing the syntax used to arrange queries.

Basic Selectors
A query is characterized by a selector. A selector is simply the expression that, when properly
evaluated, selects one or more DOM elements. In jQuery, you have three basic types
of selectors—based on ID, CSS, or tag name. In addition, a selector can result from the
 composition of multiple simpler selectors combined using ad hoc operators. In this case, you
have a compound selector.

An ID selector picks up DOM elements by ID. An ID selector commonly selects only one
 element unless multiple elements in the page share the same ID—this condition violates the
HTML DOM standard, but it is not too unusual in the real world. Here’s the syntax of an ID
selector:

// Select all elements in the context whose ID is Button1
$("#Button1")

The leading # symbol just tells jQuery how to interpret the following text.

A CSS-based selector picks up all elements that share the given CSS class. The syntax is shown
here:

// Select all elements in the context styled with the specified CSS class
$(".header")

910 Part V The Client Side

In this case, the leading dot (.) symbol tells jQuery to interpret the following text as a CSS
style name.

Finally, a tag-based selector picks up all elements with the specified tag, such as all IMG tags,
all DIV tags, or whatever else you specify. In this case, the selector consists of the plain tag
name—no leading symbol is required:

// Select all IMG elements in the context
$("img")

As mentioned, you can also concatenate two or more selectors to form a more specific one.

Compound Selectors
Concatenation is possible through a number of operators. For example, the white space picks
up all elements that satisfy the second selector and are descendants of those matching the
first. Here’s an example:

// Select all anchors contained within a DIV
$("div a")

The selector just shown is functionally equivalent to the following jQuery expression:

$("div").find("a");

Similar to the white space, the > operator selects elements that are direct child elements (and
not just descendants) of the elements matched by the first selector:

// All anchors direct child elements of a DIV
$("div > a")

The preceding selector is functionally equivalent to the following jQuery expression:

$("div").children("a")

Plain concatenation of selectors results in a logical AND of conditions. For example, consider
the following query:

$("div.header.highlight")

It selects all DIV elements styled using both the class header and class highlight.

The + operator—the adjacent operator—selects sibling elements in the second selector
 immediately preceded by elements selected by the first selector. Here’s an example:

// All P immediately preceded by A
$("a + p")

 Chapter 21 jQuery Programming 911

The ~ operator—the next operator—is similar to + except that it selects sibling elements just
preceded by others. Here’s an example:

// All P preceded by A
$("a ~ p")

By using the comma, instead, you return the union of elements queried by multiple selectors.
In terms of operations, the comma represents a logical OR of selectors. The next example, in
fact, picks up elements that are either A or P:

// All A and all P
$("a, p")

Beyond simple operators, you have filters. A filter is a jQuery-specific expression that contains
some custom logic to further restrict the selected elements.

Predefined Filters
Selectors can be further refined by applying filters on position, content, attributes, and
 visibility. A filter is a sort of built-in function applied to the wrapped set returned by a basic
selector. Table 21-1 lists positional filters in jQuery.

TABLE 21-1 Positional Filters
Filter Description
:first Returns the first DOM element that matches

:last Returns the last DOM element that matches

:not(selector) Returns all DOM elements that do not match the specified selector

:even Returns all DOM elements that occupy an even position in a 0-based indexing

:odd Returns all DOM elements that occupy an odd position in a 0-based indexing

:eq(index) Returns the DOM element in the wrapped set that occupies the specified 0-based
position

:gt(index) Returns all DOM elements that occupy a position in a 0-based indexing greater
than the specified index

:lt(index) Returns all DOM elements that occupy a position in a 0-based indexing less than
the specified index

:header() Returns all DOM elements that are headers, such as H1, H2, and the like

:animated() Returns all DOM elements that are currently being animated via some functions
in the jQuery library

Table 21-2 lists all filters through which you can select elements that are child elements of a
parent element.

912 Part V The Client Side

TABLE 21-2 Child Filters
Filter Description
:nth-child(expression) Returns all child elements of any parent that match the given expression.

The expression can be an index or a math sequence (for example, 3n+1),
including standard sequences such as odd and even.

:first:child Returns all elements that are the first child of their parent.

:last-child Returns all elements that are the last child of their parent.

:only-child Returns all elements that are the only child of their parent.

A particularly powerful filter is nth-child. It supports a number of input expressions, as shown
here:

:nth-child(index)
:nth-child(even)
:nth-child(odd)
:nth-child(expression)

The first format selects the n.th child of all HTML elements in the source selector. All child
 elements placed at any odd or even position in a 0-based indexing are returned if you
 specify the odd or even filter instead.

Finally, you can pass the nth-child filter a mathematical sequence expression, such as 3n to
indicate all elements in a position that are a multiple of 3. The following selector picks up all
rows in a table (labeled Table1) that are at the positions determined by the sequence 3n+1—
that is, 1, 4, 7, and so forth:

#Table1 tr:nth-child(3n+1)

Table 21-3 lists expressions used to filter elements by content.

TABLE 21-3 Content Filters
Filter Description
:contains(text) Returns all elements that contain the specified text

:empty Returns all elements with no children

:has(selector) Returns all elements that contain at least one element that matches the given
selector

:parent Returns all elements that have at least one child

As far as content filters are concerned, you should note that any text in an HTML element is
considered a child node. So elements selected by the empty filter have no child nodes and no
text as well. An example is the
 tag.

A popular and powerful category of filters are attribute filters. Attribute filters allow you
to select HTML elements where a given attribute is in a given relationship with a value.
Table 21-4 lists all attribute filters supported in jQuery.

 Chapter 21 jQuery Programming 913

TABLE 21-4 Attribute Filters
Filter Description
[attribute] Returns all elements that have the specified attribute. This filter selects the

element regardless of the attribute’s value.

[attribute = value] Returns all elements where the specified attribute (if present) is set to the
specified value.

[attribute != value] Returns all elements whose specified attribute (if present) has a value
 different from the given one.

[attribute ^=
value]

Returns all elements whose specified attribute (if present) has content that
starts with the given value.

[attribute $=
value]

Returns all elements whose specified attribute (if present) has content that
ends with the given value.

[attribute *=
value]

Returns all elements whose specified attribute (if present) has content that
contains the given value.

Attribute filters can also be concatenated by simply placing two or more of them side by
side, as in the following example:

var elems = $("td[align=right][valign=top]");

The returned set includes all <td> elements where the horizontal alignment is right and the
vertical alignment is top.

The next expression, which is much more sophisticated, demonstrates the power and
 flexibility of jQuery selectors, as it combines quite a few of them:

#Table1 tr:nth-child(3n+1):has(td[align=right]) td:odd

It reads as follows:

Within the body of element Table1, select all <tr> elements at positions 1, 4, 7,
and so forth. Next, you keep only table rows where a <td> element exists with the
attribute align equal to the value of right. Furthermore, of the remaining rows, you
take only the cells on columns with an odd index.

The result is a wrapped set made of <td> elements.

Finally, a couple more filters exist that are related to the visibility of elements. The :visible
filter returns all elements that are currently visible. The :hidden filter returns all elements that
are currently hidden from view. The wrapped set also includes all input elements of type
hidden.

Form Filters
A special family of filters exists for HTML input elements. Table 21-5 lists all of them.

914 Part V The Client Side

TABLE 21-5 Input Field Filters
Filter Description
:input Returns all elements that have a role in collecting input data

:text Returns all input elements whose type attribute is text

:password Returns all input elements whose type attribute is password

:checkbox Returns all input elements whose type attribute is checkbox

:radio Returns all input elements whose type attribute is radio

:submit Returns all input elements whose type attribute is submit

:reset Returns all input elements whose type attribute is reset

:image Returns all input elements whose type attribute is image

:button Returns all input elements whose type attribute is button

:file Returns all input elements whose type attribute is file

:hidden Returns all input elements whose type attribute is hidden

:enabled Returns all input elements that are currently enabled

:disabled Returns all input elements that are currently disabled

:checked Returns all input elements that are currently checked

:selected Returns all input elements that are currently selected

The :input filter, in particular, refers to all logical input elements you might find within a page
form and is not limited solely to the <input> elements. In fact, it also picks up <textarea>
and <select> elements used to display multiline text boxes and lists. The filters in Table 21-5
provide handy shortcuts for selecting homogeneous elements and are functionally equiva-
lent to the other legal jQuery selectors. For example, :checkbox is equivalent to the following:

form input[type=checkbox]

As you can see in Table 21-5, other nice helpers are available to grab all input elements in
a page form that are currently enabled or disabled and all check boxes and radio buttons
 currently selected.

Filter vs. Find
To further restrict a query, you can use either the find or filter function on a wrapped set.
They are not the same, of course. The function filter explores the current wrapped set for
matching elements and doesn’t ever look into DOM for descendants. The function find,
 instead, looks inside of each of the elements in the wrapped set for elements that match
the expression. In doing so, however, the function explores the DOM of each element in the
wrapped set.

 Chapter 21 jQuery Programming 915

Operating on a Wrapped Set
The power of jQuery descends primarily from the powerful query language that allows you
to select nearly any possible combination of DOM elements you can think of. However, the
query language would not be much without a rich collection of predefined operations to
 apply to selected elements. The jQuery library offers a wide range of functions you can apply
to the content of a wrapped set. We have already taken a look at how to enumerate the
 content of a wrapped set; let’s now proceed with more specific operations.

As mentioned, function calls can be chained because any wrapped set returned by a query
is in turn another jQuery object that can be further queried. The following expression is just
fine:

$(selector).hide().addClass("hiddenElement");

It first hides from view all matching elements and then adds a specific CSS class to each of
them. In jQuery, however, not all functions return a jQuery object. You must be aware of
this to avoid nasty script errors. Chaining functions that act as value getters (not returning a
jQuery object) is fine as long as these functions go at the end of the expression.

Important Before going any further, it is worth recalling that this is an ASP.NET Web Forms
book. This means that in spite of the changes introduced in version 4 to the algorithm for gen-
erating control IDs, there is still a chance you’ll end up using complex hierarchies of controls in
which you don’t exactly know the actual ID being generated for a given segment of the markup.
As you saw in Chapter 6, “ASP.NET Core Server Controls,” this problem is addressed by the
ClientIDMode property added in ASP.NET 4 to the Control class. An easy way to retrieve the client
ID of an ASP.NET control—at least when the ASP.NET control outputs a single piece of HTML—is
the following:

<script type="text/javascript">
 var selector = "#<%= PanelAdvancedOptions.ClientID %>";
 ...
</script>

The code block captures the value of the ClientID property of the specified ASP.NET control and
will emit it into the script block.

Controlling Visibility
The functions hide and show allow you to remove from view or display all elements that
match a given selector. These functions help a lot in building dynamic views where you need

916 Part V The Client Side

to adjust the next user interface based on a current user’s choice. Here’s how to hide an
element:

<script type="text/javascript">

 $(document).ready(function () {

 $("#panelAdvancedOptions").hide();

 });

</script>

To display it, you just replace the call to hide with a call to show. The most interesting aspect
of show and hide methods is the built-in support for completion callbacks and effects. Here
are the full signatures supported by the functions:

$(selector).hide()
$(selector).show()
$(selector).hide(duration, callback)
$(selector).show(duration, callback)
$(selector).hide(duration, easing, callback)
$(selector).show(duration, easing, callback)

When duration is specified, functions perform an animation while hiding or showing the
element. The duration argument indicates the time (in milliseconds) the animation will
take to run. You can also specify a couple of descriptive values such as fast and slow, which
 correspond to fixed values—specifically, 200 and 600 milliseconds.

The easing parameter indicates the internal function to use to perform the animation. Default
values are linear and swing, which animate height, width, and opacity. Different effects can
be achieved only through plug-ins.

The callback function runs at the end of the animation. The function doesn’t get any
 parameter. However, the expression this in the context of the callback refers to the element
being animated.

$("#panelAdvancedOptions").show(1000, function () {
 // Perform some action necessary when the panel is displayed.
 // The panel takes 1 second of animation to display.
 ...
});

Invoking show and hide methods without parameters is nearly equivalent to setting the
 display CSS attribute. The only difference is that the assigned value is cached for the purpose
of toggling it through the toggle function:

$("#panelAdvancedOptions").toggle();

 Chapter 21 jQuery Programming 917

The preceding call toggles the visibility state of all elements in the wrapped set, making
 visible hidden elements and hiding visible elements.

In addition to plain show and hide methods, you also have methods to apply visibility
 changes through specific animations, such as sliding and fading. Methods are listed in
Table 21-6.

TABLE 21-6 Visibility Effects

Function Description
slideDown Displays any matching elements by increasing their height progressively

slideUp Hides any matching elements by decreasing their height progressively

slideToggle Shows or hides all matching elements inverting the current sliding setting

fadeIn Fades in any matching elements by reducing their opacity progressively

fadeOut Fades out any matching elements by increasing their opacity progressively

fadeTo Fades the opacity of all matching elements to a specified opacity

Styling
Applying CSS classes to selected elements is easy too. If you’re interested in tweaking just
individual CSS properties, you can use the css function, as shown here:

$("form input").css(
 {‘color’ : ‘blue’,
 ‘background-color’ : ‘yellow’,
 ‘border-style’ : ‘dashed’}
);

To work with entire CSS classes, you have ad hoc functions such as those in Table 21-7.

TABLE 21-7 Working with CSS Classes

Function Description
addClass Adds the specified CSS class to any matching elements

removeClass Removes the specified CSS class from any matching elements

toggleClass Toggles the specified CSS class from any matching elements, meaning that the
elements will be added to the class if they’re not already assigned and removed
from the class if they are currently assigned

Binding and Unbinding Events
For years, it has been common to write HTML pages with client buttons explicitly attached to
JavaScript event handlers. Here’s a typical example:

<input type="button" value="Click me" onclick="fnClick()" />

918 Part V The Client Side

From a purely functional perspective, there’s nothing wrong with this code—it just works as
expected and runs the fnClick JavaScript function whenever the user clicks the button. This
approach, however, is largely acceptable when JavaScript is just used to spice up Web pages;
it becomes unwieldy when the amount of JavaScript code represents a significant portion of
the page.

The expression “unobtrusive JavaScript” is popular these days, and it just means that it would
be desirable not to have explicit links between HTML elements and JavaScript code. In a
way, unobtrusive JavaScript is the script counterpart of CSS classes. With CSS, you write plain
HTML without inline style information and designer style elements using classes. Likewise,
you avoid using event handler attributes (onclick, onchange, onblur, and the like) and use a
single JavaScript function to attach handlers, upon page loading, wherever required.

The jQuery library provides a bunch of functions to bind and unbind handlers to events
fired by DOM elements. The pair of bind and unbind functions are used to attach a callback
 function to the specified event:

// All elements that match the selector will be attached
// the same handler for the click event.
$(selector).bind("click", function() {
 ...
});

You use the unbind function to detach any currently defined handler for the specified event:

$(selector).unbind("click");

The unbind function doesn’t remove handlers that have been inserted directly in the markup
through any of the onXXX attributes.

The jQuery library also defines a number of direct functions to bind specific events. Facilities
exist for events such as click, change, blur, focus, dblclick, keyup, and so forth. The following
code shows how to bind a handler for the click event:

$(selector).click(function() {
 ...
});

Invoked without a callback, the same event functions produce the effect of invoking the
 current handler, if any are registered. The following code, for example, simulates the user’s
clicking on a specific button:

$("#Button1").click();

You can achieve the same effect in a more generic way using the trigger function:

$("#Button1").trigger("click");

 Chapter 21 jQuery Programming 919

Event handlers receive a jQuery internal object—the Event object. This object provides a
 unified programming interface for events that goes hand in hand with the World Wide Web
Consortium (W3C) recommendation, and it resolves discrepancies in the slightly different
implementations provided by some browsers:

$("#Button1").click(function(evt) {
 // Access information about the event
 :

 // Return false if you intend to stop propagation
 return false;
});

The Event object features properties such as mouse coordinates, the JavaScript time of the
event, which mouse button was used, and the target element of the event.

Note In JavaScript, the time is expressed as the number of milliseconds elapsed from a fixed
date—January 1, 1970.

Live Event Binding
Live binding is a nice feature of jQuery that allows you to keep track of event bindings for
a given subset of DOM elements for the entire page lifetime. In other words, if you opt for
live binding instead of plain binding, you are guaranteed that any new dynamically added
 elements that match the selector will automatically have the same handlers attached. You
operate live binding through live and die functions. Here’s an example:

$(".specialButton").live("click", function() {
 ...
})

All buttons decorated with the specialButton CSS style are attached the given function as
the handler for the click event. The difference between using live and bind (or specific event
 functions such as click) is that when live is used, any new DOM elements added to the page
and decorated with the specialButton style automatically have the handler added. This won’t
happen if bind is used. To stop live binding for some elements, you need to use the die
function:

$(".specialButton").die("click");

920 Part V The Client Side

Manipulating the DOM
The standard DOM provides a rich set of methods to create HTML trees dynamically. It turns
out, however, that in nearly all browsers the performance of native DOM objects is poor
compared to using the innerHTML property, which is not officially part of the DOM standard.
While functions and objects to neatly compose a piece of HTML are great things to have,
the ability to select a plain chunk of HTML and get the resulting DOM tree is even more
 compelling. In jQuery, you find an API that supports both approaches.

Creating a DOM Tree
The simplest way to create a new DOM tree in jQuery consists of passing an HTML string to
the jQuery (or $) function, as shown here:

// Represents a DOM tree with a UL list and two child LI elements
$("OneTwo");

You can also indicate style information, event handlers, and set attributes. The following
 example returns a DIV element with some inner text, a CSS class, and a click handler:

$("<div />", {
 class: "panel",
 text: "Click me!",
 click: function() {
 $(this).toggleClass("extra");
 }
 }
);

The DOM you created in this way is not part of the page yet. To add it to the existing page
DOM, an additional step is required.

Adding Elements to the DOM
The jQuery library defines a bunch of functions to insert the DOM tree resulting from a piece
of HTML somewhere in the existing DOM. The following code shows how to insert a dynami-
cally created image after each element in the wrapped set. The wrapped set includes all LI
child elements of a UL element identified by name:

$("#ShoppingList li").after("");

The function after inserts the DOM tree (specified via plain HTML text) after any matching
element in the set. Other available functions are before, prepend, and append. The function
prepend puts the DOM before the inner text of matching elements, whereas the function
 append puts the DOM right after the inner text of matching elements.

 Chapter 21 jQuery Programming 921

You can also add elements to an existing DOM the other way around—that is, by first
 creating the new DOM and then inserting it in some way around elements in a wrapped set.
You use insertAfter and insertBefore to insert a DOM after or before an existing element:

$(html).insertAfter(selector);
$(html).insertBefore(selector);

You use the prependTo and appendTo functions to insert something before and after,
 respectively, the inner text of a matching element:

$(html).prependTo(selector);
$(html).appendTo(selector);

To detach an existing DOM subtree, you use the method detach. A detached DOM tree is
treated like a dynamically created DOM tree and can be moved around the DOM. Imagine
the following page content:

<div id="section">
 <h1>Title</h1>
 <hr id="Separator" />
 <p>Content</p>
</div>

Consider now the following script code:

<script type="text/javascript">
 var naturalOrder = true;
 function swapText() {
 var title = $("h1", "#section").detach();
 var content = $("p", "#section").detach();

 if (naturalOrder) {
 title.insertAfter("#Separator");
 content.insertBefore("#Separator");
 }
 else {
 content.insertAfter("#Separator");
 title.insertBefore("#Separator");
 }
 naturalOrder = !naturalOrder;
 }
</script>

The swapText function is defined as the click handler of a button in the page. When clicked, it
first grabs a reference to the DOM subtrees for the title and content. Note that the #section
parameter identifies the context for the selector—it gets all h1 elements within the specified
section of the page. Next, the position of the title and content is toggled around the hr as
you click the button. (See Figure 21-3.)

922 Part V The Client Side

FIGURE 21-3 Toggling DOM subtrees in a page.

Important In general, it is preferable to create a DOM tree using plain HTML when the HTML
block you need is fairly complex. You might want to use insertion methods only for single ele-
ments (including an entire DOM subtree), In other words, it is not recommended that, say, to
create a UL list you place multiple calls to insert the UL tag and then each of the required LI tags.
You compose the HTML string and get it as a DOM in a single step.

Removing DOM Elements
To remove elements from the DOM, you have various options. You can remove all elements
that match a given selector using the following code:

$(selector).remove();

The empty function, on the other hand, just empties the body of each element that is
 selected through the query expression:

$(selector).empty();

Finally, the aforementioned detach function detaches a DOM subtree from the main DOM
but keeps it referenced in memory so that you can re-add it everywhere at any time:

$(selector).detach();

Modifying DOM Elements
HTML DOM elements are characterized by attributes, inner text, and HTML. For each of
these, you have ad hoc functions. For example, you use the attr function to read and write

 Chapter 21 jQuery Programming 923

the content of a given attribute. The following code reads the value of the maxlength
 attribute of a given text box:

var maxLength = $("#TextBox1").attr("maxlength");

To set it, instead, you just add a second parameter to attr, as shown here:

$("#TextBox1").attr("maxlength", 10);

You can use the function attr to read and write any attributes. For the value attribute,
 however, you can resort to the more specific val function. The val function has the same
 usage as the attr function.

To get and set the inner text of an element, you use the text function. The html function is
used to get and set the inner HTML of an element.

Sometimes you just want to make a copy of an element DOM element or subtree and
 duplicate it in various places around the page. The jQuery library offers the clone function:

$(selector).clone();

Used in this way, the function performs a deep copy of matching elements, including
 attributes and descendants. The function, however, also supports an optional Boolean
argument:

$(selector).clone(true);

If set to true (false is the default), the function performs a deep copy of matching elements,
including attributes and descendants plus event handlers.

The jQuery Cache
In client Web applications, data storage is an area of growing importance, and the work
 behind done on it around the HTML 5 specification confirms this fact. Some browsers cur-
rently support forms of local storage even though the API is not unified yet. Local storage
is persistent and is meant to replace certain use of cookies in the long run—for example, to
store user-specific data. An in-memory cache is a different kind of thing, but it still has its
own space.

Cached Data and DOM Elements
The jQuery library offers a simple but quite effective API to store data in the browser’s
 memory for the duration of the session. Any data you park in the jQuery cache is lost once
you close the browser window. The jQuery cache is centered on the data function. This
 method allows you to associate some arbitrary data with all elements that match the selector.

924 Part V The Client Side

Note that most of the time, though, you’ll use selectors that match just a single DOM
 element. If multiple elements are selected, no data duplication will ever occur—only the
 reference is duplicated, not the data.

The jQuery cache is implemented as a plain dictionary where each element is characterized
by a name and a value. What about naming conventions to ensure uniqueness of entries?
Binding data to DOM elements, in full respect of the jQuery philosophy, is also helpful be-
cause it makes it significantly simpler to name elements. Cached entries can have the same
name as long as they are bound to different DOM elements.

Working with Data in the In-Memory Cache
To add data to the cache, you select the DOM elements and then invoke the data function,
passing the key and value.

$("#Grid1").data("DataSource", value)

The cache is fairly useful for storing data you download once and reuse frequently within
the page. When you have a master/detail view and you get data for the detail view via Ajax,
a call to the data function can save you roundtrips within the same session. Have a look at
Figure 21-4.

FIGURE 21-4 An Ajax page that retrieves customer details from the server.

 Chapter 21 jQuery Programming 925

Every time the user selects a letter, the page downloads the list of all customers whose name
begins with the letter. If the user clicks twice on, say, “A,” the list of customers is downloaded
only once. Here’s the script code that manages the clicking:

// Attempt to grab data from the cache first
var data = loadFromCache(selection);
if (typeof (data) !== ‘undefined’) {
 fillViewInternal(data, true);
 return;
}

// Grab data from the server asynchronously
loadFromSource(selection);

Inside of the loadFromCache function, you simply build the key and place a call to the data
function:

function loadFromCache(query) {
 var key = "Customers_" + query;
 var cachedInfo = $("#RootView").data(key);
 return cachedInfo;
}

Inside of the loadFromSource function, instead, you store downloaded data right into the
cache object:

var key = "Customers_" + query;
$("#RootView").data(key, downloadedInfo);

Once it’s placed in the cache, the data never expires and must be removed manually to free
up memory. To remove a piece of data from the cache, you use the removeData method:

$("#RootView").removeData(key);

Ajax Capabilities
Ajax support in jQuery is centered on an abstraction of the browser’s XMLHttpRequest object
and counts on a bunch of helper functions that address specific scenarios, such as getting a
JSON response, getting a script file, or performing a cross-domain call.

926 Part V The Client Side

Plain Ajax Caller
In jQuery, to compose and control all aspects of your Web request, you use the ajax function,
as shown next:

$.ajax(
 {
 type: "POST",
 url: "getOrder.aspx",
 data: "id=1234&year=2010",
 success: function(response) {
 alert(response);
 }
 }
);

The ajax function gets a list of parameters, such as type, url, data, dataType, cache, async, and
success. The dataType parameter indicates the type of the expected response (for example,
HTML, XML, JSON, JSONP, script). A few other parameters exist to let you further configure
the HTTP request. You can refer to the jQuery online documentation for further details. The
URL is http://api.jquery.com/jQuery.ajax.

The async parameter indicates whether the call has to go asynchronously or not. The cache
Boolean parameter indicates whether you want the library to cache the response for future
access to the same URL. Ajax calls are always cached by default except for when the data
type is JSONP or script.

The $.ajax function supports several callbacks. The beforeSend callback is invoked just before
sending the request out. The callback receives the settings of the call and represents your last
chance to modify the call. The complete callback is invoked as soon as the response is re-
ceived and regardless of the outcome. The callback receives a description of the HTTP status
of the request and indicates whether the request completed successfully, resulted in an error,
timed out, or pointed to a resource that was not modified. The callback won’t receive the
actual response, if there is any. Past the complete callback, the library fires either the success
or error callback, depending on the context. The success callback receives the response sent
over the wire by the server. The error callback gets a code for the type of error (timeout,
parse, or error) and an exception object that provides, if possible, more details about the
failure.

On top of the ajax function, a number of shortcut functions have been created that make it
simpler for developers to place certain specific types of calls, such as calls for getting a script
file or a JSON string. The get and post functions also exist to perform plain HTTP GET and
POST requests.

http://api.jquery.com/jQuery.ajax

 Chapter 21 jQuery Programming 927

Global Ajax Event Handlers
The jQuery library provides a bunch of global handlers for Ajax events so that you can
 register your handlers that are invoked for each Ajax operation regardless of the code that
triggers it. You can add handlers for the events in Table 21-8.

TABLE 21-8 Global Ajax Events
Event Description
ajaxComplete Fires upon completion of any Ajax request, regardless of the outcome

ajaxError Fires when an Ajax call fails

ajaxSend Fires when an Ajax request is sent

ajaxStart Fires when an Ajax request begins being processed

ajaxStop Fires when no pending Ajax requests are left

ajaxSuccess Fires when an Ajax request completes with success

You can have multiple handlers for each of these events. If multiple handlers are registered,
all of them are invoked in order.

Getting Scripts
The getScript function requires you to provide the URL for the script file and an optional
 callback to execute upon downloading the script. Here’s the signature of the function:

$.getScript(url, succeededCallback)

The interesting thing about the function is that the downloaded script is processed by jQuery
right after download. This means that in the callback, you can already start using objects and
features available in the script:

<script type="text/javascript">
 $.getScript("mylib.js", function() {
 // Start using the features of the downloaded script here
 ...
 });
</script>

The request being placed for the script is an HTTP GET. Keep in mind that if you need to
tweak the request beyond the hardcoded settings of the getScript function, you better resort
to the ajax function.

Getting JSON
The getJSON function is ideal for invoking an HTTP endpoint that is expected to return a
JSON-encoded string. Here’s the signature of the function:

$.getJSON(url, inputData, succeededCallback)

928 Part V The Client Side

When you make a JSON request, you might need to send some data over to the remote
server to guide the generation of the response. The second argument to getJSON represents
the input you intend to pass. Here’s an example:

var playerId = 1;
$.getJSON("/yourServer/Player/Details", playerId, function(jsonData) {
 // Start using the information stored in the downloaded object here
 displayDetailsForPlayer(jsonData);
});

The getJSON function appends any input data to the URL as a query string. If the data is not
of a primitive type, the function will convert it to a string before appending it to the URL. The
request is placed as an HTTP GET request.

Any response is assumed to be JSON and is parsed as such using the global $.parseJSON
function. The callback receives the parsed data ready to use.

Getting HTML
A frequent action you might want to perform from a client page is downloading some HTML
via a simple GET request. The load function is an instance (as opposed to global) function
that you can call over a wrapped set. Here’s the signature of the function:

$(selector).load(url, inputData, succeededCallback)

Note that input data and callback function are optional. In particular, the method is
 automatically bound to a default callback function that appends the downloaded markup to
all elements in the wrapped set. Here’s an example:

var templateType = 1;
$("#panelAdvancedOptions").load("/template.aspx", templateType);

If any callback is provided in the call, it is executed after the default callback. No call is ever
attempted if the wrapped set is empty. If the input data is a JavaScript object, the request
goes out as a POST instead of a GET.

You are not forced to download the entire content of the provided URL. If the URL contains
a white space, anything that follows is interpreted as a jQuery selector. Look at the following
example:

$("#panelAdvancedOptions").load("/template.aspx #area_1");

The entire URL content is downloaded, but jQuery then discards everything but the DOM
tree selected by the #area_1 expression. When you use load, you should be aware that some
tags might be discarded during the parsing process. This typically occurs with tags such as
<html> and <title>, which are usually already part of the page.

 Chapter 21 jQuery Programming 929

Cross-Domain Calls
The biggest difference between making a browser-led request and an Ajax-led request is in
what happens after the response has been downloaded. The browser safely processes the
response to display it. The script, on the other hand, can potentially make any use of the
downloaded response—from building hopefully innocuous mashups to preparing cross-site
scripting attacks. For this reason, all browsers implement the Same-Origin Policy (SOP), which
means that script-led calls are allowed to hit only the same server that served the current
page.

Nobody complained about SOP until Ajax became as popular as it is today. SOP represents
a serious limitation for developers of Ajax applications because it prevents you from easily
creating mashups and, more in general, to requesting data from a site that lives on a differ-
ent host or that uses a different protocol. Workarounds have been in the works for years, but
we’re still looking for an official standard solution to the issue. W3C has a working draft for
something called Cross-Origin Resource Sharing (CORS), which defines a common ground
for browsers and Web servers to interoperate and enable applications to perform secure
 cross-site data transfers. Some browsers currently support CORS to some extent and through
different APIs. That will probably be the mainstream approach in the near future.

While waiting for that, you might want to consider other approaches, such as using a
 server-side proxy, Silverlight or Flash applets and their workarounds to bypass SOP, and
 leveraging cross-domain enabled HTML tags such as <script> and <iframe>.

Note When it comes to cross-domain calls, these are the options that work without requiring
each user to tweak security settings on her browser. SOP is ultimately a browser policy, and each
user can disable it by changing the browser’s security settings.

Cross-Domain HTML Tags
Both the <script> and <iframe> tags can be configured to download resources from any
site, regardless of any origin policy that might be set. An <iframe> element can successfully
download content from just about anywhere, but browsers apply restrictive policies as far
as scripting that content is concerned. Cross-frame scripting is not allowed if content comes
from different domains. So you’re back at square one: how can you actually consume the
downloaded content? In the end, the <iframe> trick proves helpful only when you need to
upload data in a fire-and-forget manner to a cross-domain site.

With the <script> tag, instead, the downloaded content is restricted to JavaScript, but it can
be freely consumed from within the caller page. With a bit of help from the remote server,
you can download usable data from a different domain in the form of a JavaScript string and
process it on the client. This requires using the JSON with Padding (JSONP) protocol.

930 Part V The Client Side

A JSONP solution is effective and cross-browser capable, but it can be used only with
 agreeable sites and in conformance with the rules they set.

Basics of JSONP
A JSONP-enabled Web site is a Web site exposing a public endpoint that agrees to return a
JSON string padded with a call to a caller-defined JavaScript function. For example, suppose
that dino.com exposes an endpoint like this one:

http://www.dino.com/public/getcustomer/123

When invoked, the endpoint returns a JSON string that represents an object. If you try to
call the URL just shown via Ajax, you likely will get an “access denied” error because of the
SOP. If you use the same URL within a <script> tag, however, you successfully download the
 response of the method, except that you can’t do much to further process it:

<script type="text/javascript"
 src="http://www.dino.com/public/getcustomer/123" />

A JSONP-enabled endpoint would rather wrap the JSON output string in a call to a JavaScript
function that is defined locally within the context of the caller server. The JSONP output
would look like this:

myHandler("{‘Id’=’...’, ‘CompanyName’=’...’, ...}");

Because all browsers evaluate any content downloaded via a <script> immediately, JSONP
does the trick of invoking some cross-domain code and processing the output locally. The
myHandler function mentioned here is supposed to be a JavaScript function defined by the
same developer who actually places the cross-domain Ajax call.

With JSONP, you find a way to instruct the remote server to return a string that wraps the
JSON data into a call to your JavaScript function. A JSONP-enabled site is a site that offers
you a programmatic and documented way to indicate which JavaScript function the response
has to be wrapped in. Most JSONP sites today allow this through an ad hoc parameter in the
query string. For example, Flickr recognizes the jsoncallback parameter.

JSONP in jQuery
Cross-domain calls can be successful only when you call a server that is JSONP enabled. If this
condition is true, you can use many of the jQuery Ajax functions to set up a successful cross-
domain call. For example, you can use the $.getScript function, append the target JavaScript
function name in the query string, and skip over the jQuery callback:

$.getScript("http://someserver/GetCustomer?js=myHandler", function () { })

Your JavaScript function will take care of processing the results of the query in JSON format.

http://www.dino.com/public/getcustomer/123
http://www.dino.com/public/getcustomer/123
http://someserver/GetCustomer?js=myHandler

 Chapter 21 jQuery Programming 931

Although this approach is fully functional, it deviates a bit from the standard jQuery
 programming model in which the callback function defines the behavior to take at the end
of the operation. For this reason, the $.getJSON function offers to generate a predefined
but randomly named function to bypass browser policies. The predefined behavior of the
 autogenerated function will just invoke the callback, passing the JSON data. You trigger the
generation of the random name using the following notation:

$.getJSON("http://someserver/GetCustomer?js=?", function () {
 // Place your code here that processes the response
 ...
})

The query string parameter (js in the example) has to match the query string parameter that
the server recognizes and supports. The ? placeholder instructs jQuery to generate a random
and unique name. The following is a sample heading for a JSONP request that goes through
jQuery:

GET /GetCustomer?js=jsonp1294078062559 HTTP/1.1

As a developer, you have no control over the algorithm that generates the JavaScript
 function name. Using a fixed name, however, brings you some benefits in terms of caching
ability. If you use the $.ajax function to arrange a JSONP call, you can use the jsonp and
 jsonpcallback parameters to replace the query string parameter name and the JavaScript
function name, respectively.

Important. As mentioned, Microsoft provides full support for jQuery when it’s used within
ASP.NET applications. Microsoft also created a few components that were accepted as official
jQuery plug-ins in late 2010.

At least the biggest of them—the Templates plug-in—is incorporated in the main library with
version 1.5. The Templates plug-in fills a significant gap in client-side programming because it
provides a way to declare HTML-based, data-bound templates. Ajax calls make it easy to down-
load fresh JSON data, but displaying raw data is never easy because you just want to display data
in the context of a rich graphical layout. With templates, you have the power of HTML for the
layout and an ad hoc syntax to control how external data is inserted.

Another interesting plug-in from Microsoft is the Data Link plug-in, which allows you to
 implement an MVVM-like design on the client. The plug-in keeps your user interface and data
synchronized. It also makes it possible to keep the input fields of an HTML form in sync with the
properties of a JavaScript object.

Finally, the third Microsoft plug-in is the Globalization plug-in, which emits on the client
 information about more than 350 different cultures, thus enabling you to use formats or parse
numbers, dates and times, calendars, and currencies according to the current settings.

http://someserver/GetCustomer?js=?

932 Part V The Client Side

Summary
As emphatic as it might sound, knowing how to use JavaScript is a necessary skill today,
whether you use a rich library or not.

jQuery delivers a number of benefits. In the first place, it makes JavaScript code easier and
quicker to write. The library provides helper functions that dramatically increase your pro-
ductivity while decreasing frustration. The key to the wide adoption of jQuery is probably
that it makes it simpler to do what developers need to do more often—query for DOM
 elements and manipulate them.

No ASP.NET application today can ignore client programming and jQuery. Microsoft now
fully supports jQuery and has abandoned further development of the Microsoft AJAX Client
library. Isn’t this a big enough reason to develop JavaScript skills?

	 	 933

Symbols
$.ajax function, 926
$.getScript function, 930
$.parseJSON function, 928
@xxx syntax, 25–26

A
absolute expiration, 731
abstraction, 575–576

ASP.NET MVC and, 24
importance of, 19
of views, 624–626

Accept-Charset attribute, 82
access

rules for, 818–819
securing with roles, 358

access control lists (ACLs),
790–791

AcquireRequestState event, 32,
650

.acsx files, @Control directive for,
180

actions in ASP.NET MVC
applications, 22

Active Record pattern, 599–600
DAL and, 606

Active Server Pages (ASP), 3
Adapter property, 231
adapters, 605

control, 230–231
CSS-friendly, 232
writing, 232

adaptive rendering, 230–232
AdCreated event, 263
Add Managed Modules dialog

box, 37
Add method, 726
<add> tag, 287
AddOnPreRenderCompleteAsync

method, 202–203, 207–208
AddValidationCallback method,

764
ADO.NET

classes, binding data to,
413–414

images, reading, 134
AdRotator controls, 262–263, 268
advertisement banners, 262–263
AggregateCacheDependency

class, 738–739
aggregates, 600–601

AJAX, 14–20, 313, 337, 839–840
advent of, 8
ASP.NET support for, 3
benefits of, 840
Browser-Side Templating

pattern, 840
as built-in part of Web, 19
cross-domain calls, 850–851
Data-for-Data model, 17
events, jQuery handlers for, 927
HTML Message pattern,

839–840
HTTP façade, 881. See also HTTP

façade
infrastructure, 840–851
interaction model, 17
JavaScript and, 845–851
jQuery support, 925–928
JSON for, 892–893
Module Pattern, 849
out-of-band HTTP requests,

841–842
page methods, 895–897
partial rendering, 851–879
remote validation via, 385
REST and, 879–897
scriptable services, 880–889
ScriptManager control, 852–860
SEO and, 351
SOP and, 929
server controls and, 267–268
UpdatePanel control, 860–865
WCF services, hosting, 881
XMLHttpRequest object and,

840, 845
AJAX calls, replacing with

postbacks, 10
AJAX-enabled services, 883

configuration settings, 107–108
ajax function, 926
AJAX HTML helpers, 20
AJAX postbacks, 868
AlachiSoft NCache, 755
allowAnonymous attribute, 294
allowDefinition attribute, 67
AllowDirectoryBrowsing property,

43
allowLocation attribute, 67–68, 71
allowOverride attribute, 70–71
AllowPartiallyTrustedCallers

attribute, 789
allowPolicy attribute, 109

AlternatingItemTemplate
property, 483

AltSerialization class, 696
Amazon RDS, 613
Amazon SimpleDB, 613
anchor controls, 243–244
animations, 916–917
anonymous access, 781–782
anonymous accounts,

impersonating through, 785
anonymous functions, 846
anonymous ID, 294, 671
anonymous identification feature,

73–74
anonymous users. See also user

profiles
user profiles for, 294–295

<anonymousIdentification>
section, 73–74, 76

AOP, 571
Apache Web servers, 27
AppDomain, ASP.page_aspx class,

obtaining, 35
AppendDataBoundItems property,

419–420
appendTo function, 921
AppFabric, 747–748
AppFabric Caching Services

(ACS), 748–753
architecture of, 748–751
client-side configuration,

751–752
programming, 752–753
storing output caching in, 777
unnamed caches, 751

AppFabric Hosting Services, 748
App_GlobalResources folder, 304
Application Controller pattern,

632
application data, caching,

721–744
application deployment, 39–62

application warm-up and
preloading, 59–62

files and settings, packaging,
43–51

IIS configuration, 55–59
mode settings, 81–82
site precompilation, 52–55
with XCopy, 40–43

@Application directive, 653–654
application directives for global.

asax, 653–654

Index

934

application events,
nondeterministic, 33

application factory, 176–177
application logic, 596, 602–605

remote deployment, 603–604
Application object, 721

writing to, 679
application pages. See pages
application pools

defined, 29
identity of, custom, 38–39
identity of, modifying, 39
initialization of, 59
process recycling, 55–56
warmup of, 59–62
working mode for, 30

<applicationPool> section, 95
Application Request Routing, 37
application restarts, 38, 56–58,

170
causes of, 179

application root folder, 786
application state, 675–679. See

also HttpApplicationState
class

global state, storing, 679
synchronization of operations,

678–679
application warm-up, 59–62

application pools, configuring,
60–61

autostart provider, 61
behavior of, 59
specifying actions, 61–62

Application_End event handler,
648

Application_Error event handler,
283–284

Application_Error stub, 275
applicationHost.config file

editing, 60, 93
mappings in, 37

application-hosting environment
configuration settings, 84

application-level configuration
settings, 111

accessing, 111–112
changing, 65
processing of, 65
updating, 112–113

application-level tracing, 100–101
ApplicationManager class, 34
application scope, 119
application services,

centralization of, 30

applications. See also ASP.
NET applications; Web
applications

binding pages to master, 326
claims-based identity,

configuring for, 825
composable parts, 585
cookies, sharing, 801–802
data storage, 923
debugging, 284–285
domain logic, 596
error handling, 275–277
global.asax file, 651–655
inactive, unloading, 84
initialization code, 905–906
initialization of, 645–651
isolation between, 29
maintainability, 565
object-oriented design, 599
permissions for, 788–789
plugin-based, 584
resources embedded in,

659–660
security features of, 780. See

also security
symptoms of deterioration,

567–569
theme settings, 340
trust level of, 786–789
virtual folder for, 645

Application_Start event, 32
route definitions in, 160

Application_Start event handler,
648

Application_Xxx notation, 36
ApplyAppPathModifier method,

690
AppSettings collection, accessing,

111–112
<appSettings> section, 67,

105–106
App_Themes folder, 339
ArtOfTest, 363
.ascx extension, 768
ASHX extension and resources

for handler mappings, 124
for HTTP handlers, 141–142

.asmx ASP.NET Web services, 881
ASP pages. See also pages

processing of, 170
<asp:Content> tag, 325, 329–330
aspect-oriented programming

(AOP), 571
ASP.global_asax class, 652
ASP.NET

adoption of, 3
authentication API, 108

authentication methods, 789–
791. See also authentication

browser information storage,
230

configuration hierarchy, 63–110
configuration in, 63. See

also configuration files
HTTP modules built-in, 154. See

also HTTP modules
and IIS, history of, 28–31
improvements to, 3
introduction of, 3
membership API, 88
perfect framework,

characteristics of, 18–19
programming model, 19
runtime environment, 27. See

also runtime environment
site navigation API, 352–358
stateful behavior, 6–7
vulnerability patch, 64
worker process, standalone,

28–29
writing files on disk, 137

ASP.NET 4, 20–21
ASP.NET applications. See

also Web applications
custom configuration data,

105–106
deploying, 39–62
error-handling settings, 80–81
health monitoring, 83
HTTP modules, registering, 37
identity of, 87
IIS, configuring for, 55–59
installing, 40
partial-trust applications, 103
preloading, 59–62
restarts of, 56–58
session-state information,

98–100
site-level settings, 108–110
termination tracking, 57
trust levels, 101–104
warmup of, 59–62

ASP.NET cache. See Cache object;
caching

ASP.NET compiler tool, 53–54
parameters of, 54
target directory support, 53

ASP.NET Development Server
<webServer> section and,
109

ASP.NET HTTP runtime, 174
page processing, 169, 174. See

also page life cycle; pages

application events, nondeterministic

 935

ASP.NET MVC, 4, 21–25
abstraction, building with,

18–19
control over markup, 24
features of, 21–22
language, changing on the fly,

311
localizing applications in, 306
new paradigm of, 14
opting out of built-in features,

25
request processing, 24–25, 170
requests, 22
runtime environment, 22–24, 27
runtime stack, 23
Selective Update model, 20
separation of concerns, 23
simplicity, 24–25
state, maintaining, 23
testing code-behind, 363
URL patterns, 23
URL routing in, 157
visual components, 24

ASP.NET pages. See pages
ASP.Net permission set, 103
ASP.NET requests. See also HTTP

requests
processing, 34–35
responses, building, 35–36

ASP.NET security context,
781–791

ASP.NET site administration tool,
302

ASP.NET temporary directory, 172
compiled code in, 178

ASP.NET Web Forms, 3–4. See
also Web Forms

culture, setting, 309
HTML rendering, 9
localized text, 306–307
processing and rendering,

separating, 9–10
request processing, 9
SEO and, 350–351
testing, 363
URL routing in, 157, 160–166

ASP.NET Web Pages, 25–26
audience of, 25
@xxx syntax, 25–26

ASP.NET Web services, 885–887
aspnet_client directory, 104
AspNetCompatibilityRequirements

attribute, 889
aspnet_compiler –v command, 53
aspnet.config file, 95
aspnetdb.mdf file, 293–294

structure of, 302
AspNetInternalProvider provider,

79

aspnet_isapi.dll, 28–30, 92, 170
mapping to resources, 30,

171–172
aspnet_regiis.exe, connection

strings, encrypting with, 114
aspnet_regsql.exe, 80
AspNetSqlProfileProvider, 301
aspnet_state.exe, 697–699
AspNetXmlSiteMapProvider class,

100
ASP.page_aspx class, 35
ASPState database, 701–702
ASPStateTempApplications table,

702
ASPStateTempSessions table, 702
<asp:substitution> control, 775
.aspx files

in ASP.NET MVC projects, 22
compiling, 284–285
handler for, 190
@Page directive for, 180, 181
serving markup with, 148

.aspx pages. See also pages
URLs, mapping to, 36

.aspx source files, changes in,
170, 173

ASPX templates, 217. See
also markup

ASPXANONYMOUS cookie, 74
ASPXROLES, 97
assemblies

business logic, 596
debug mode, 284
default linked assemblies,

185–186
early and late binding and, 187
generating, 170
loading, 187
modifying list of, 186
number of pages in, 169
referencing, 188
referencing from pages, 185
unloading vs. recompiling, 56

@Assembly directive, 185–187,
653–654

attributes of, 187
AssociatedControlID property,

260–261
Async attribute, 201–202
AsyncCallback objects, 146
asynchronous handlers, 121,

146–147, 201. See also HTTP
handlers

adding to page, 202
implementing, 147–148

Asynchronous JavaScript and
XML. See AJAX

asynchronous pages, 121,
201–209

AddOnPreRenderCompleteAsync
method, 202–203

Async attribute, 201–202
building, 203–206
operations for, 208
PreRenderComplete stage,

202–203
RegisterAsyncTask method,

206–207
asynchronous postbacks, 868,

869
concurrent, 877–878
events of, 872–874
triggers for, 872

asynchronous requests, 95
asynchronous tasks

registering, 201–203, 206–207
within pages, 207

AsyncPostBackError event, 857
AsyncPostBackTrigger class, 869
attr function, 922–923
attribute filters, 912–913
AttributeCollection class, 238
attributes, directive, 181
Attributes collection, 237
AuthenticateRequest event, 32,

650, 820
AuthenticateUser function, 794
AuthenticateUser method, 794
authentication, 789–791

Basic authentication, 782
claims-based identity, 821–825
configuration settings, 74–76
Digest authentication, 782
Forms authentication, 783,

791–806
of HTTP requests, 32
integrated Windows

authentication, 782
login pages, 792
LoginStatus control, 829–830
LoginView control, 830–832
None authentication, 789
password changes and,

833–834
principal objects, custom,

804–806
over secured sockets, 803–804
sign-outs, 795–796
state of, 829
user authentication, 784,

794–795
of view state, 713
Windows authentication,

790–791
Windows CardSpace, 791

authentication API, 108
authentication modules, 650

authentication modules

936

<authentication> section, 74–76,
790, 792

authentication tickets, 792–793
encoding of, 800
getting and setting, 798
securing, 803–804
storage in cookies, 799–800

authorization, 76–77
file authorization, 790–791
of HTTP requests, 32
reauthorization, forcing, 663
URL authorization, 791

<authorization> section, 76–77
AuthorizationStoreRoleProvider,

821
AuthorizeRequest event, 32, 650
AutoDetect, 801
AutoMapper, 605
automated test frameworks, 638
autonomous views, 616
AutoPostBack property, 258
autostart providers, 61

Preload method, 62
autostarting Web applications,

38–39
.axd extension, 127, 129

for handler mappings, 124

B
Balsamiq Mockups, 624
BarChart control, 547–556

BarChartItem class, 550
control hierarchy, 549
events of, 553–554
item object, 548–551
Items property, 550
properties of, 547
style properties, 548
using, 555–556

base classes, 513
choosing, 514–515
extending, 515
inheriting from, 514–515
unit testing and, 656

BaseCompareValidator class, 381
BaseDataBoundControl class, 514
BaseDataList class, 514
BaseValidator class, 379–380,

380–381
Basic authentication, 782
basicHttpBinding model, 885
batch mode compilation, 169
Begin/End asynchronous

handlers, 201–203
BeginProcessRequest method,

147–148

signature of, 146
beginRequest event, 873, 874
BeginRequest event, 32, 151, 649
BeginRequest event handler,

151–152
BeginXxx methods, 94
behaviorConfiguration attribute,

884
big ball of mud (BBM), 566
BigTable (Google), 614
binary large objects (BLOBs),

database support for, 133
BinaryFormatter class, 539,

696–697
BinaryWrite method, 135, 669
bind function, 918–919
bind method, 907
binding containers, 226–227
BindingContainer property, 226
BLL, 593, 596–605

application logic, 602–605
design patterns for, 596–602

bound data
adding to controls, 551–553
getting, 540–544
tracking and caching, 536–538

bound fields, 445
BoundField class, 445
browser cache, 316, 755

behavior of, 756
browser capabilities, 671–672
<browserCaps> section, 77–78,

347
browser definition files, 345–346
.browser extension, 77, 230–232,

328
editing files, 346

browser IDs, detecting, 344
browser information

reading, 345
repository for, 344
storage of, 230–231, 328

Browser property, 77, 344
browser providers, 78
browser-led processing model,

840–841
browsers

browser-capabilities providers,
346–348

bypassing, 20
characteristics and capabilities

of, enumerating, 77, 671–672
cross-browser rendering,

344–348
data storage and, 923
definition files, 345–346

device-specific master pages
and, 327–329

DOM and DHTML support, 842
geo-location capabilities, 312
Google Chrome, 902
IDs of, 328
JavaScript background

compiler, 901
JavaScript engines, 902
programming in, 900–903
Same-Origin Policy, 929
script downloads, 313
scripting engines, 901–902
up-level browsers, 393
uploading files from, 249–251
XMLHttpRequest object

support, 843
browser-sensitive rendering,

234–235
Browser-Side Templating (BST),

840
BulletedList control, 426–427
business logic, 596

modeling, 597
business logic layer, 593, 596–605
Button class UseSubmitBehavior

property, 213
button clicks, processing of, 6
button controls, 257–258

command buttons, 247, 259
command name, 498
for JavaScript event handlers,

917–918
rendering as images, 447

button fields, 445–447
Button1_Click function, 5

C
cache, jQuery, 923–925
Cache class, 722–725

Cache object, working with,
725–732

methods of, 723–724
properties of, 722–723

cache items
attributes of, 725–726
dependencies of, 725, 728. See

also dependencies
expiration policy, 731–732
priority of, 730–731

cache manager, 175
Cache object, 676, 721, 722. See

also cache items; caching
cache synchronization, 736
callback function, 732
clearing, 735

<authentication> section

 937

Cache object (continued)
data expiration, 731–732
dependencies, 728
dependencies, broken, 740
for globally shared information,

679
inserting new items, 725–727
limitations of, 744
memory pressure statistics, 732
priority of items, 730–731
removal callbacks, 729–730
removing items from, 727
scavenging, 731
session state expiration policy,

694
cache settings, 78–80
Cache-Control header, 757, 761
CacheControl property, 665
cached pages, returning, 32
CacheDependency class, 728, 737

constructors, 728
deriving from, 737
members of, 737

CacheDependency object, 725,
728

aggregate dependencies,
738–739

change notifications, 738
custom, 737–739
for SQL Server, 743–745
testing, 742
for XML data, 739–742

caching, 463–464, 721–778
of application data, 721–744
cacheability of pages, 758–762
Cache class, 722–725
custom dependency, designing,

737–739
DAL, relation to, 734–735
database dependency, creating,

743–745
dependencies, 722, 738–739.

See also dependencies
distributed cache, 744–755
vs. fetching, 733
hashtable, 724–725
internal structure of, 724
isolating caching layer, 734–735
of multiple versions of pages,

765–768
of page output, 721, 755–777
pages, 665–666
and performance, 733
per request, 737
of portions of pages, 768–774
removal callbacks, 726

sliding expiration, 723, 726,
731–732

update callbacks, 726
Web cache, 755
Windows Server AppFabric,

747–753
XML data, cache dependency

for, 739–742
caching profiles, 774–775
<caching> section, 73, 78–80
caching services

AppFabric, 747–753
architecture of, 748–751
client-side configuration,

751–752
programming, 752–753

CacheItemPriority enumeration,
730

CacheItemRemovedReason
enumeration, 727

CacheMultiple class, 724
CacheProfile attribute, 774
CacheSingle class, 724
Calendar control, 263–264, 267
Cancel buttons, 876
CAS, 101
CAS policies, 103
cascading style sheets. See CSS
Cassandra, 614
Cassini, 48

<webServer> section and, 109
Castle Active Record, 600
catalogs, 585–586
catch blocks, 270–271
CausesValidation property, 248,

394
CDNs, 313–314
CGI, 120
ChangePassword control,

833–834
ChangePassword method, 812,

834
Chatty anti-pattern, 604
check box fields, 448
check boxes, 259–260
CheckBoxList control, 422–424
child controls

hierarchy of, 544–545
initialization, 210
managing, methods for,

195–197
postbacks, detecting from,

866–868
for rendering, 528–532
state of, persisting, 6–7
storage of, 229
unique names for, 190

child filters, 912
child requests, free threads for,

86
ChildrenAsTriggers, 867–869
Chirpy, 314
claims, 822, 823–824
claims-based identity, 821–825

using, 824–825
workflow, 822–823

claims-based Windows Identity
Foundation (WIF), 76

class names, resolving, 188
classes

adapters, 605
closed for modification,

575–576
code-behind classes, 12. See

also code-behind classes
coupling, 570–571
dynamically generated, 170
hierarchy of, 13
inports and exports, 585
page classes, 12–13
partial classes, 173
preconditions, 578
responsibilities of, 573–574
splitting, 574
system classes, 12

classic ASP, 4
classic ASP.NET, 4. See also Web

Forms
moving away from, 15–19

cleanup code in exception
handling, 272

click-throughs, 515
client behavior, controlling, 213
client cache, 748–753
client certificates, 782
client data, processing, 211
client IDs of controls, 220
client script files, storage of,

104–105
client script manager, reference

to, 195
client side, 839. See also AJAX

events for user feedback,
872–874

JSON representations on, 890
powering, 899–905

client Web programming, 3
clientIDMode attribute, 91
ClientIDMode property, 223

Predictable option, 224–225
Static option, 224

ClientID property, 211, 220
ClientIDRowSuffix property, 226
ClientScript object, 856

ClientScript object

938

ClientScript property, methods
explosed by, 198

ClientScriptManager class
GetWebResourceUrl method,
195

clientScriptsLocation attribute,
104

client-side behavior, testing,
361–363

client-side message boxes, 501
client-side validation, 393–394
closures in JavaScript, 847–848
cloud databases, 613
CLR exceptions, 270. See also error

handling
CLR security zones, 786
CMS, 157
code

sandboxing, 789
testability, 636–642
for Web pages, 3

code access secruity (CAS), 101,
103

code blocks in server-side
<head> sections, 243

Code Contracts API, 578
code declaration blocks, 654
code-behind classes, 217

defined, 12
hierarchy of, 13
removing, 627–628
server control references, 173
testing, 361
WebMethod attribute, 895–896

cohesion, 569–571
collections

binding data to, 412–413
in profiles, 289

COM, 843
command buttons, 247, 259,

498–499
custom, 499

command names, 498
Common Gateway Interface (CGI),

120
common language runtime (CLR),

270, 786
CompareValidator control, 380,

382–383, 386
compiled pages, 170

master pages, 329
Component Object Model (COM),

843
composable parts, 585
composite controls, 521. See also

controls; server controls

child controls, hierarchy of,
544–545

collections of items, 547
defined, 519

composite data-bound controls.
See also controls; server
controls

adding bound data, 551–553
building, 543–561
data item object and collection

support, 547
hierarchy and data separation,

546–547
receiving data, 545
template support, 556–561

CompositeControl class, 514
as base class, 519

CompositeDataBoundControl
class, 514

deriving from, 544
compressed responses, 79
concerns, separation of, 571–572
concurrent calls, 877–878
conditional refreshes, 866–870
CONFIG directory, 64
<configProtectedData> section,

107
<configSections> element, 67
configuration, declarative,

589–590
<configuration> element, 50, 66

main children of, 66
configuration errors, 269
configuration files, 64–68. See

also individual section names
accessing, 63
add, remove, and clear

elements, 68
<anonymousIdentification>

section, 73–74
application-level settings, 111
<appSettings> section, 67,

105–106
<authentication> section, 74–76
<authorization> section, 76–77
<browserCaps> section, 77–78,

347
<caching> section, 78–80
changes to, 63
<configProtectedData> section,

107
<configSections> element, 67
<configuration> element, 66
<connectionStrings> section,

106
creation of, 63

<customErrors> section, 80–81,
278–279

custom sections, creating,
116–117

custom sections, registering,
117

<deployment> section, 81–82
<EncryptedData> section, 114
encrypting, 107, 113–116
<globalization> section, 82, 309
handler factories, registering,

145
<handlers> section, 125
<healthMonitoring> section, 83
<hostingEnvironment> section,

84
<httpCookies> section, 84–85
<httpHandlers> section, 82, 123
HTTP modules, registering with,

153
<httpModules> section, 82, 153
<httpRuntime> section, 85–87
<identity> section, 87
<location> section, 68–71
<machineKey> section, 87–88
machine-level settings, 111
machinewide settings, 70
managing, 110–117
<membership> section, 88–89
opening, 111
<pages> section, 89–92
<processModel> section, 92–95
<profile> section, 96–97,

286–287
<properties> section, 286
protection of, 64
<providers> section, 301
<roleManager> section, 97
<section> element, 67
<sectionGroup> element, 67–68
sections, declaring, 67
<securityPolicy> section, 97–98
<sessionState> section, 98–100
<siteMap> section, 100
<system.serviceModel> section,

67
<system.web.extensions>

section, 107–108
<system.web> section, 71–73
<system.webServer> section,

108–110
<trace> section, 100–101
tree of, 64–65
<trust> section, 101–104
unmodifiable settings, 70–71
<urlMappings> section, 104

ClientScript property, methods explosed by

 939

configuration files (continued)
user names and passwords in,

87
<webControls> section,

104–105
<xhtmlConformance> section,

105
configuration management API,

110–113

configuration section handlers,
116

ConfigurationManager class, 111
OpenMachineConfiguration

method, 112
ConfigurationProperty attribute,

117 connectionString
attribute, 106

connection strings
configuration settings, 106
encrypting, 114
for out-of-process session

state, 700
from profile providers to

database engine, 301
connectionStringName attribute,

80
ConnectionStrings collection,

accessing, 111–112
<connectionStrings> section, 106
constructors, overloaded, 583
container controls, 239–240
Container keyword, 560
content. See also data

default content, 323–324
downloading cross-domain,

929–930
inline content, 316–317

Content controls, 324–326
content delivery networks

(CDNs), 313–314
content filters, 912
Content Management Systems

(CMS), fiendly URLs and, 157
content pages

binding definitions, 327
binding to master pages, 326
Content controls, 324–326
content placeholders, 320–321,

323
defined, 320
@MasterType directive, 335–336
processing, 329–334
serving to user, 329–330
source code of, 325
title of, 326
writing, 323–328

ContentPlaceHolder controls,
320–323

ContentTemplate property, 863
contract attribute, 884
contracts, MEF, 585
control adapters, 230–231

writing, 232
Control class, 190, 218, 514. See

also controls; server controls
ClientIDMode property, 223
deriving controls from, 513
events of, 229–230
extending, 515
IComponent interface, 218
IDisposable interface, 218
interfaces of, 218
methods of, 228–229
properties of, 218–228
RenderingCompatibility

property, 233
vs. WebControl class, 519

@Control directive, 180
control IDs

matching to posted names,
211

retrieving, 915
control properties

persistence modes, 558
varying output caching by,

770–772
control skins, 235
control state, 214, 718

programming, 718–719
ControlAdapter class, 230
controllers

in ASP.NET MVC, 21–22
defined, 616–617
role of, 618

ControlParameter class, 462
controlRenderingCompatibility-

Version attribute, 232
controls

data-bound controls, 421–434.
See also data-bound controls

dynamically created, handling,
211–212

and input tags, correspondence
between, 212

naming container for, 190
Page class methods related to,

195–197
prerendering stage, 214
state changes, detecting,

212–213
unloading, 215
validating groups of, 394–395
validation, support of, 382

view-state tracking, 210
Controls collection, 229

adding controls to, 521
dynamically added controls,

266
<controls> section, 91
ControlStyle property, 254, 255
ControlToValidate property, 381
cookieless attribute, 74, 800–801
cookieless sessions, 688–691

CreateUninitialized method,
706

issues with, 689–690
Search-Engine Optimization

and, 691
security and, 690–691

cookies, 675, 687–688
configuration settings, 84–85
cookieless sessions, 688–691
customizing, 804–806
Forms authentication through,

799–800
for HTTP façade, 887–888
for role information, 97
sharing between applications,

801–802
usage of, 74

Copy Web Site function (Visual
Studio), 40–42

CopyFrom method, 255
CouchDB, 614
coupling, 569–571

between modules, 575
between presentation and

business layers, 604
C++ server programming, 3
CPU bound operations, 208
CreateChildControls method

binding and nonbinding
modes, 545

overloaded version, 545–547
overriding, 521, 544
pseudocode, 544

CreateUninitialized method, 706
CreateUser method, 811
CreateUserWizard control,

834–835
credentials

collecting, 794
getting, 822

cross-browser rendering,
344–348

cross-domain calls
in AJAX, 850–851
jQuery and, 929–932

Cross-Origin Resource Sharing
(CORS), 929

Cross-Origin Resource Sharing (CORS)

940

cross-page communication,
189–190

cross-page posting, 365, 374–379
detecting, 377–378
@PreviousPageType directive,

376–377
redirecting to another page,

378
validation and, 395–396
view state information, 374–375

cross-site scripting (XSS), 780
GET and, 886–887

CSS, 319
applying to elements, 917
ASP.NET support for, 3
embedded vs. inline, 316
for ListView styling, 474, 480,

482, 494–497
minimizing impact of, 315–317
style sheets, 339
vs. themes, 220, 343, 357
use of, 255

CSS Control Adapter Toolkit
(CSSCAT), 232

css function, 917
CSS-based selectors, 909–910
CssClass property, 493–494
CSS-friendly markup code,

232–234
CssStyleCollection class, 254
culture

changing, 310–312
names of, 82, 309
resource assemblies, creating,

308
setting, in ASP.NET Web Forms,

309
setting, in .NET, 308–309

Culture attribute, 860
Culture property, 860
Cunningham wiki, 570
Current property, 657, 897
CurrentCulture property, 308–309
CurrentUICulture property,

308–317
custom controls, 513–561. See

also server controls
building from scratch, 518–533
control state, 718–719
control tree, building, 521–522
Control vs. WebControl, 519
correct rendering of, 195
data-bound composite

controls, building, 543–561
data-bound controls, building,

533–543

embedded resources, 195
extending existing controls,

514–518
interfaces for, 519
markup, writing to HTML text

writer object, 527–528
object model definition, 523
object model implementation,

523–526
rendering style, 520–522
template support, 556–561
usage scenario, defining,

515–516
custom object caching, 463
custom resources, HTTP handlers

for, 126–127
custom types in profiles, 289–290
Customer Relationship

Management (CRM) systems,
613

<customErrors> section, 80–81,
278–279, 857

customization themes, 338
CustomValidator control, 380,

383–385, 395–396, 504

D
DAL, 593, 596, 598, 605–614

Active Record pattern and, 606
alternatives to, 613–614
caching, relation to, 734–735,

747
conceptual view of, 608
database independence,

608–609
domain model organization,

602
Domain Model pattern and,

607–608
implementation of, 605–608
interfacing, 608–610
O/RM implementation,

610–613
Repository pattern for, 609–610
responsibilities of, 607
Table Module pattern and, 606

data
deleting, 465–468
editing, 454–455
paging, 451–453
retrieving, 460–461
sorting, 453–454
storing on server, 65
updating, 465–468

data access layer. See DAL

data binding
application-level, 326
class diagram, 415
customizing controls for,

533–543
DataBinder class, 436–438
data source controls, 456–468
data sources, 412–415
defined, 411
Eval method, 436–438
to GridView control, 443–451
HtmlSelect control support of,

245
with ListView control, 477–479
ObjectDataSource class,

459–469
page-level, 326
parent controls, identifying, 226
process of, 411
separating from control-

building code, 551–553
for server control RAD

designers, 218
simple, 434–436, 533
syntax, 434–435
Web pages vs. desktop

applications, 414
data contracts

for AJAX-enabled WCF services,
885

preservation of, 892
data controls, binding to data

source controls, 474
data eviction, 747
data expiration in cache, 731–732
data function, 923
data item classes, defining,

536–538
data item containers, 227
data keys containers, 227
data models

for WAP projects, defining,
290–292

for Web site projects, defining,
286–287

data paging with ListView control,
507–511

data representation, JSON for,
890–893

data source controls, 456–468
data controls, binding to, 474
defined, 456
hierarchical controls, 457–458
ID of, 417
named views, 456–458
parameters, using, 462–463
tabular controls, 456

cross-page communication

 941

data source objects
interface implementation, 534
mapping to control properties,

535–536
data sources, 412–415, 721

adding items to, 501–505
ADO.NET classes, 413–414
collection classes, 412–413
key fields, setting, 420
queryable objects, 414–415
specifying, 416
updates to, 454–455
viewing records, 432–433

data tables, managing, 438–455
data transfer objects (DTOs), 605
data validation. See also

validation
configuration settings, 87
for cookies, 799

database dependencies, 80
for caching, 743–745

database management systems
(DBMS), BLOB support, 133

databases
cloud databases, 613
images, loading from, 133–136
session state, storing in,

699–704
sharding, 612

DataBind method, 411
calling, 414, 561

DataBinder class, 436–438, 541
DataBinding event, 556
data-binding expressions,

434–438
evaluation of, 435
generating and parsing, 437
implementing, 436

data-binding properties, 411,
415–421

AppendDataBoundItems
property, 419–420

DataKeyField property, 420
DataMember property, 417–418
DataSourceID property, 417
DataSource property, 416–417
DataTextField property, 418
DataValueField property, 419

data-bound controls, 421–434
bound data, getting, 540–544
bound fields, 445
building, 533–543
composite, 543–544
data-bound properties, adding,

534
data item classes, 534–535
DataPager control for, 507–508

data source fields to control
properties, mapping,
535–536

defined, 411
events of, 556
iterative controls, 427–432
key features of, 533–534
list controls, 421–427
receiving data, 545
types of, 411
view controls, 432–434

DataBound event, 556
DataBoundControl class, 514
DataBoundLiteralControl class,

434
DataContract attribute, 891–892
DataContractJsonSerializer class,

891
Data-for-Data model, 17
DataGrid control, 431–432

autoreverse sorting, 718
DataItemContainer property, 227
DataKeyField property, 420
DataKeyNames property, 421,

467–468, 474, 500
DataKeysContainer property, 227
DataList control, 430–431
DataMember property, 417–418
DataPager control, 507–511

embedding, 508–509
properties of, 508
types of, 509

DataPagerField class, 509
DataSet class, 414, 598
DataSource property, 416–417,

474
DataSourceID property, 417, 442,

474, 477
DataSourceView class, 457

methods of, 458
DataTextField property, 418
DataTextFormatString property,

418
DataValueField property, 419
Db4O, 614
debug mode, 284–285
debug script files, 859–860
debugging pages, 284–285
declarative authorization, 77
decryption attribute, 87
decryption keys, specifying,

87–88
decryptionKey attribute, 87
default ASP.NET account

changing, 784–786
privileges of, 785–786

default.aspx skeleton, 625

defaultProvider attribute, 79, 88,
97, 100

defaultRedirect attribute, 81
defaultUrl attribute, 799
delegate classes, 146
delete operations, in ListView

control, 500–501
DeleteUser method, 811
denial of service (DoS), 780
dependencies, 568

aggregate, 738
broken, 740
of cached items, 722, 725, 728
database dependencies,

743–745
decreasing number of, 570
isolating, 572
polling, 739, 742
resolving, 588–589

Dependency Injection, 582–591
Dependency Inversion principle,

572, 580–583
dependency-changed event, 730
deploy packages

building, 45–47
contents of, 45
running, 44

deployment. See application
deployment

deployment precompilation,
53–55

update support, 54–55
<deployment> section, 81–82
derived classes

generating, 177
naming convention for, 172
substitution principle and,

576–578
URLs, linking to, 172

description attribute, 349
description meta tag, 349
deserialization of session state,

695–697, 710
design patterns

Active Record pattern, 599–600
for BLL, 596–602
Browser-Side Templating, 840
Domain Model pattern,

600–602
HTML Message, 839–840
Module Pattern, 849
MVC pattern, 616–618
MVP pattern, 619–621, 623–636
MVVM pattern, 621–623
for presentation layer, 615–623
Repository pattern, 609–610
Service Layer pattern, 602

design patterns

942

design patterns (continued)
Table Module pattern, 598
Transaction Script pattern,

597–598
Design Patterns: Elements of

Reusable Object-Oriented
Software (Gamma, Helm,
Johnson, and Vlissides), 575

design principles, 569–572
detach function, 922
detach method, 921
DetailsView control, 432

DataKeyNames property, 467
vs. ListView control, 476

development environment, web.
config file for, 51

development frameworks,
characteristics of, 18–19

device-specific content, ignoring,
92

die function, 919
Digest authentication, 782
Dijkstra, Edsger W., 571
direct scripting, 19–20
directives

location of, 179
processing directives, 179–190

DirectoryInfo class, 130
disabled attribute, 875
disableExpiration attribute, 79
DisplayIndex property, 493
Dispose method, 149, 648

for custom HTTP modules, 151
overriding, 215

Disposed event, handling, 215
distributed cache, 744–755

of ACS, 748–751
AlachiSoft NCache, 755
data eviction, 747
design of, 745
features of, 745–747
freshness of data, 747
high availability, 746
Memcached, 753–754
NorthScale Memcached

Server, 755
read-through and write-

through capabilities, 747
ScaleOut StateServer, 755
SharedCache, 754
storing output caching in, 777
topology of, 746

distributed caching system, 745
DOM (Document Object Model)

adding elements to, 920–922
assumptions about, 8
elements, accessing, 91

evolution of, 842
functional approach combined

with, 903
manipulating in jQuery,

920–923
modifying elements in, 922–923
queries, running over, 904, 908
readiness for scripting,

detecting, 906–907
readyState property, 906
removing elements from, 922
updating content with, 842–843

DOM trees
adding to DOM, 920–922
creating, 920, 922
toggling, 921–922

domain attribute, 84, 802
domain logic, 596
domain model, defined, 600
Domain Model pattern, 600–602

DAL and, 607–608
Domain-Driven Design (DDD),

601
DOMContentLoaded event, 906
DoPostBackWithOptions function,

374
download experience, optimizing,

312–317
DPAPI protection provider, 107,

115
DropDownList control, 421–422

binding data to, 534
HTML server control for, 245

DTOs, 605
dummy objects, 640
Duration attribute, 759, 761
dynamic compilation, 52, 169
dynamic controls, handling,

211–212
Dynamic HTML (DHTML), 839,

842
dynamic keyword, 334
Dynamic Language Runtime

(DLR) component, 335
dynamic resources. See pages
dynamic type, 375–376
dynamic user interfaces, 18–19

E
each function, 908–909
eavesdropping, 780
ECMAScript, 900
edit template

defining, 497–498
predefined buttons, 498–499

editing data, 454–455

Eich, Brendan, 900
ELMAH, 284
empty fields, 387
empty function, 922
EnableClientScript property, 393
enableKernelCacheForVaryByStar

attribute, 79
EnablePageMethods property,

896–897
EnablePaging property, 464
EnablePartialRendering property,

863
EnableScriptGlobalization

property, 860
EnableScriptLocalization property,

315
EnableTheming property, 235, 342
EnableViewState attribute, 715
EnableViewStateMac attribute,

713
EnableViewState property, 227
enableWebScript attribute, 883–

884, 893
encapsulation, 572
encoders, 137
encoding, 82, 661
<EncryptedData> section, 114
encryption

of configuration files, 113–116
for cookies, 799
key containers, 115
of view state, 712–713
XML encryption, 107

encryption keys, specifying,
87–88

encryption providers, 107
choosing, 115–116

Enctype property, 249
endpoints, JSONP-enabled, 930
EndProcessRequest method, 147
EndRequest event, 33, 651, 874,

875
EndRequest event handler, 32,

151–152
EndRequestEventArgs control, 875
EnsureChildControls method, 522
Entity Framework, 458, 611–612
error codes, 64, 81
Error event handler, defining, 274
Error events, 33, 274, 651
error handling, 269–285

configuration settings, 80–81
Error event handler, 651
error pages, 273–274
error reporting, 283–285
errors, mapping to pages,

278–282

Design Patterns: Elements of Reusable Object-Oriented Software

 943

error handling (continued)
exception handling, 270–272
exception logging, 277
for fatal errors, 283–285
global, 275–277
handler precedence, 277
HTTP errors, 280–281
page error handling, 272–278
page-level, 274–275
partial rendering, 857
reporting in e-mail messages,

276
robustness of, 278

Error Logging Modules And
Handlers, 284

error messages
custom, 278–279
displaying, 275, 388–389
summary and display of,

391–392
error pages, 273–274

code-behind, 281
context-sensitive, 282
custom, 279–280
custom, specifying, 81
for local and remote users, 279
sensitive information on, 275,

278
error reporting, 283–285
<error> tag, 280
ErrorMessage property, 388,

392–393
errors

HTTP 500 errors, 277
mapping to pages, 278–282
session state and, 695
types of, 269

Esposito, Dino, 26
Eval method, 436–438

syntax, 437
Event object, 919
events

of BarChart control, 553–554
canceling, 407–408
of Control class, 229–230
of data-bound controls, 556
of GridView, 442–443
handling, 151–152. See

also HTTP handlers
for health monitoring, 83
of HttpApplication class, 150,

648–651
in IIS messaging pipeline, 32–33
of ListView control, 474–476
order of firing, 649–650
of Page class, 198–199

personalization events,
298–299

of ScriptManager control, 856
Exception class, 272
exception handling, 270–272

ASP.NET-specific facilities for,
270

cleanup code, 272
finally blocks, 271–272
guidelines for, 271–272
in .NET, 270–272
try/catch blocks, 270

exceptions
built-in types, 271
function of, 270–271
getting information about, 282
retrieving, 276
self-logging, 284
unhandled, 272

Execute method, 661–663
overloads of, 662

ExecuteRequestHandler event,
33, 650

handler for, registering, 34
ExecuteScalar method, 134
expiration callbacks, 706
expiration policies

for cached items, 726, 731–732,
747

for session-state items, 694
expired cache items, automatic

scavenging, 79
Expires HTTP header, 756
Expires property, 665
ExpiresAbsolute property, 665
exports, 585–587
extensions, aspnet_isapi.dll

handling of, 171–172
external style sheet files, linking

to, 242

F
Factory attribute, 884
fakes, 640
fatal exceptions, 283–285
feedback

client-side events for, 872–874
for partial page updates, 875
progress screen, 871–872
for users, 870–876

fetching vs. caching, 733
ffSite.master file, 327
Fiddler, 363
fields, defined, 413
file authorization, 790–791
file system monitor, 175

file types, searching for, 130
FileAuthorizationModule HTTP

module, 790
files

copying to target site, 42
packaging, 43–51

FileSystemWatcher object, 738,
742

FileUpload control, 261–262
filter function, 914
filters, 911–914
finally blocks, 271
FindControl method, 375
find function, 914
Firebug Web development tool,

317
Firesheep, 803
fixed identities, impersonating,

785
fixednames parameter, 55
flow layouts, 485–487

item layout, 486–487
Foote, Brian, 566
forbidden resources, blocking

access to, 652–653
ForeColor property, 381
form filters, 913–914
form submissions, 6

client behavior, controlling, 213
<form> tags, 365

multiple, 368–373
runat, visibility of, 371–373

format strings, defined, 556
Forms authentication, 783,

791–806
advanced features, 801–806
attributes of, 798–799
configuration of, 75, 798–801
control flow, 792–796
cookie-based, 799–800
cookieless, 800–801
cookies, sharing among

applications, 801–802
custom types of, 76
encryption and decryption

keys, 87
external applications for, 803
FormsAuthentication class,

796–798
<forms> section, 798–799
with HTTPS, 889
Login control, 826–828
resources protected by, 792
security concerns, 793, 804
setting up, 792
user credentials, collecting, 794

<forms> element, 74–75

<forms> element

944

<forms> section, 798–799
FormsAuthentication class,

796–798
methods of, 797–798
properties of, 796–797
SignOut method, 795–796

FormView control, 432, 433
vs. ListView control, 476

FTP, copying files to target with,
42

FullTrust permission set, 103
functional programming,

845–846
JQuery and, 905

functions
closures, 847–848
defined, 846

G
GAC

assemblies in, 786
HTTP handlers in, 124

Gamma, Erich, 575
gauge control, 523–533
GaugeBar control, 535–544

data item object, 536–538
mapping fields to properties,

535–536
PerformDataBinding method,

540–544
GDI+ subsystem, 140
geo-location capabilities, 312
get accessor, 538
get function, 909
GET verb, 365

enabling, 886–887
kernel caching and, 762
posting forms with, 367

GetAuthCookie method, 798
GetConfig method, 658
GetDataItem function, 438
GetEnumerator method, 678
GetFiles method, 130
GetGlobalResourceObject method,

307, 659–660
GetHandler method, 145
getJSON function, 927–928
GetLastError, 276
GetLocalResourceObject method,

660
GetPropertyValue method, 541
GetPropertyValue property,

290–291
GetRequiredString method, 163
getScript function, 927
GetUser method, 811

GetVaryByCustomString method,
767

GetWebApplicationSection
method, 658

GetWebResourceUrl method, 195,
315

global assembly cache (GAC)
assemblies in, 786
HTTP handlers in, 124

global error handling, 275–277
global resources, 304–305, 307

retrieving, 659–660
global themes, 339
global.asax file, 651–655

aliasing file name, 655
application directives, 653–654
Application_Error stub, 275
blocking access to, 652–653
C# code skeleton, 652
changes to, 653
code declaration blocks, 654
compiling, 652–653
contents of, 645
editing, 170
extending, 36–37
in precompiled assembly, 652
routes in, 160
server-side <object> tags,

654–655
static properties in, 655
syntax of, 653–655

globalization, 860
configuration settings, 82

<globalization> section, 82, 860
culture settings, 309

Google Chrome browser, 902
Google Gears, 312
GridView control, 433

accessibility properties, 440
appearance properties, 440
behavior properties, 439
binding data to, 443–451
bound fields, 445
button fields, 445–447
check box fields, 448
columns, configuraing,

444–445
DataKeyNames property, 467
default user interface, 452
editing data, 454–455
events of, 442–443
hyperlink fields, 447–448
image fields, 448–449
interaction with host page, 451
vs. ListView control, 477,

482–483
object model, 439–443

paging data, 451–453
predefined types, 440
Predictable algorithm

implementation, 225–226
sorting data, 453–454
state properties, 441
style properties, 440
templated fields, 450–451
templating properties, 441–442

GroupItemCount property, 488,
489

GroupPlaceholderID property, 473
GroupSeparatorTemplate

property, 489
GroupTemplate property, 487
Guthrie, Scott, 57
Gzip compression, 314

H
handler factories, 142, 144–145

IsReusable property and, 144
handler factory objects, 177
handlers, 5–6

for page requests, 177–178
<handlers> section, 125
hashAlgorithmType attribute, 88
hashing algorithms, specifying,

87
<head> section, code blocks in,

243
HeadContent placeholder, 326
health monitoring system, 83
<healthMonitoring> section, 83
heartbeat event, interval for, 83
heartbeatInterval attribute, 83
Helm, Richard, 575
hidden fields

creating, control for, 261–262
tracking values in, 7
view state information, saving

in, 200
HiddenField control, 261–262
hidden-field tampering, 780
hide function, 915–917
HierarchicalDataBound-

Controlclass, 514
HierarchicalDataSourceView class,

458
high availability of distributed

cache, 746
<hostingEnvironment> section,

84
HostSecurityManager object, 103
hostSecurityPolicyResolverType

attribute, 104

<forms> section

 945

HTML
ASP.NET MVC control over, 24
control over, 8
downloading, 928
literal strings, 7
syntax, 3

HTML attributes, setting, 237–238
HTML controls, correct rendering

of, 195
HTML elements

ID of, 16
predictable IDs, 91

HTML encoding, 661
HTML forms, 200
HTML input controls, 246–252

command buttons, 247
HtmlImage controls, 252
state changes, detecting,

248–249
for uploading files, 249–251
validation of input fields, 248

HTML markup. See also markup
adaptive rendering of, 230–232
client ID, 220–223
control over, 234

HTML Message (HM) pattern, 19,
839–840

HTML output, layout of, 8
HTML pages, JavaScript code

in, 16
HTML responses, arranging, 5
HTML server controls, 217, 235–

252. See also server controls
base class, 237
container controls, 239–240
external style sheet files,

linking, 242
generic controls, 237
header information, 241–242
hierarchy of, 239
HTML attributes, mappings to,

237–238
HTML syntax support, 236
meta information, managing,

243
namespace definition, 237
page postbacks with, 244
predefined controls, 236
properties of, 237
runat=server attribute, 235
state changes, detecting,

248–249
HTML tables, 484–485
HTML text writer object, 520

writing markup to, 527–528
HtmlAnchor class, 243–244

HtmlButton class CausesValidation
property, 248

HtmlButton controls, 240
HtmlContainerControl class, 239,

366
HtmlControl class, 236–237
HtmlForm class, 200, 365–367

methods of, 367
properties of, 366–367
Visible property, 371

HtmlForm controls, 240
HtmlGenericControl class, 237
HtmlHead controls, 241
HtmlImage controls, 252
HtmlInputButton class, 247

CausesValidation property, 248
HtmlInputCheckBox controls, 260
HtmlInputControl class, 246
HtmlInputFile controls, 249–251
HtmlInputImage controls, 247
HtmlInputRadioButton control

s, 260
HtmlInputReset controls, 247
HtmlInputSubmit controls, 247
HtmlLink controls, 242–243
HtmlMeta controls, 243
HtmlSelect controls, 244–245

data binding support, 245
HtmlTextArea control, 245
HTTP access error 403

(forbidden), 64
HTTP endpoints, 123

binding handlers to, 128–129
HTTP errors

handling, 280–281
HTTP 302, 280, 349
HTTP 403, 64
HTTP 404, 280–281
HTTP 500, 277

HTTP façade, 880–881
ASP.NET Web services, 885–887
JSON content, 890
protecting services in, 887–888
proxy for, 893–895
trusting, 888–889
WCF services, 881–885

HTTP GET, enabling, 886–887
HTTP handlers, 11

for AJAX presentation layer, 881
for AJAX requests, 148
allowPolicy attribute, 109
alternate, specifying, 36
ASHX resources, defining as,

141–142
asynchronous handlers,

146–148
binding to endpoints, 136

calling, 123
declaring, 123
determining, 32, 35
forbidden resources,

preventing access to, 143
functionality of, 33, 119
handler factories, 142, 144–145
IHttpAsyncHandler interface,

121
IHttpHandler interface, 121,

121–127
images, controlling with,

140–141
images, database-stored,

serving, 134–135
images, dynamically generated,

serving, 137
images, serving, 128–133
loading, 125
mapping, 124
for new types of resources,

126–127
picture viewer handler, 128–133
precondition attribute, 109, 126
preconditions on, 126
ProcessRequest method, 138
query string parameters,

accepting, 131
registering, 82, 121, 124–125,

132, 141
reusing, 143–144
ScriptResource.axd, 859
session state, access to, 141
synchronous or asynchronous

mode, 121, 201
<system.webServer> section

and, 108–109
vs. URL routing, 165
uses of, 141
writing, 36, 121–148

HTTP headers
fresh and stale resources,

determining, 756
programmatically setting,

763–764
sending, 33
for static resources, 758
varying output caching by, 767

HTTP modules, 646–647
built-in, 154
for current application, 154
custom modules, 151–154
Dispose method, 151
events handled by, 149–154
events raised by, 119
functionality of, 119
Init method, 151

HTTP modules

946

HTTP modules (continued)
loading and initialization of, 153
order of application, 153
pre- and post-processing of

requests, 149
registering, 37, 82, 153
role management, 97
system modules, inheritance

of, 149
<system.webServer> section

and, 108–109
URL routing engine, 119–120,

155, 157–159
writing, 149–156

HTTP pipeline, 176. See also page
life cycle

activation of, 174
HTTP requests, parsing to, 174
HttpRuntime class, 174–176

HTTP protocol stack, 29
HTTP requests

anonymous ID, 671
asynchronous requests, 95
authentication of, 650
authorization of, 650
client data, 671
delays caused by, 59
filtering, 155, 164
free threads and, 86
handling of, 645
HTTP module processing of,

149
IIS processing of, 30–37
information about,

encapsulation of, 656
information about connection,

672
information about request,

670–672
input validation, 674
logging, 33, 651
out-of-band, 841–842
output for, 122, 130–131
parsing to HTTP pipeline, 174
processing, 5, 9–10, 11, 27
processing with IIS worker

process, 29
processing with standalone

worker process, 28–29
queuing, 95
reducing number of, 316–317
routing, 24
saving to disk, 673
script-led requests, 890
sending, 844
serving from cache, 650
URL rewriting, 658–659

HTTP responses
cache policy, 665–666
compressed responses, 79
encapsulation of, 663
HttpResponse object, 663–670
large file transmission, 669
response filters, 666–667

HTTP runtime
page request processing, 174
reason for processing pages,

209
HTTP verbs, 879
HttpApplication class

events of, 648–651
IIS pipeline events and, 34
methods, 647–648
properties of, 645–646

HttpApplication object, 177, 645
Error event handler, 275–276
events raised by, 119
handling events from, 151–153
pooling of, 645

HttpApplicationFactory, 175–177
HttpApplicationState class, 676

methods of, 677–678
properties of, 676–677
synchronization of operations,

678–679
HttpBrowserCapabilities class,

77, 345
HttpBrowserCapabilitiesBase

class, 345
HttpCachePolicy class, 666

methods of, 763–764
properties of, 763

HttpCapabilitiesDefaultProvider
class, 347

HttpCapabilitiesProvider class, 78
HttpContext class, 656–660, 676

methods of, 658–660
properties of, 656–657

HttpContext object, role of, 645
HttpCookie object, 688
HttpCookieMode enumerated

type, 688–689
<httpCookies> section, 84–85
HttpForbiddenHandler class, 143
<httpHandlers> section, 82

handler information in, 177–178
handlers list, 123

<httpModules> section, 82
registering modules in, 153

HttpOnly cookie attribute, 84–85
httpOnlyCookies attribute, 84
HttpPostedFile class, 250
HttpRequest class

methods of, 673–674

properties of, 670–673
HttpRequest object, 670–674
HttpResponse class

methods of, 667–670
properties of, 664–667

HttpResponse object, 663–670
BinaryWrite method, 135
large file transmission, 669
output caching, 669
response filters, 666–667
WriteSubstitution method, 776

HttpRuntime class, 174–176
public static methods, 174–175
UnloadAppDomain, 179

HttpRuntime object, 30
<httpRuntime> section, 85–87

maxRequestLength attribute,
251

HTTPS, Forms authentication
with, 889

HttpServerUtility class
methods of, 660–663
properties of, 660

HttpSessionState class, 676, 680
methods of, 686
properties of, 685–686
synchronization mechanism,

685–686
HttpSessionState object, creating,

682–683
http.sys, 29
HttpValidationStatus

enumeration, 764
HttpWatch, 363
HyperLink control, 258

customizing, 515–518
hyperlink fields, 447–448

I
IAsyncResult interface, 146
IButtonControl interface, 257, 374
ICollection interface, 412, 685
IComponent interface, 218
IControlBuilderAccessor interface,

218
IControlDesignerAccessor

interface, 218
ICustomTypeDescriptor interface,

413
ID autogeneration mechanism,

220–222
ID selectors, 909
IDataBindingsAccessor interface,

218
identity providers, 823

HTTP pipeline

 947

<identity> section, 87
worker process identity

information, 784
Identity Selector, 791
IDictionary interface, 413
IDisposable interface, 218
idleTimeout attribute, 84
IEditableTextControl interface, 260
IEnumerable interface, 412, 417,

724
ieSite.master file, 327
IExpressionsAccessor interface,

218
<iframe> tags, 929–930
<ignoreDeviceFilters> section, 92
IHttpAsyncHandler interface, 121,

146, 201
implementing, 201

IHttpHandler interface, 11, 36,
121–127, 174

members of, 121–122
ProcessRequest method, 174

IHttpHandlerFactory interface,
144, 177

IHttpModule interface, 37,
149–150

module implementation of, 646
IIS

administrator-level extensions,
37

ASP.NET applications,
configuring for, 55–59

and ASP.NET, history of, 28–31
authentication tasks, 790
Classic mode, 31
handler mappings list, 177–178
HTTP request processing, 31–37
Integrated Pipeline mode,

30–31
ISAPI interface, 120
messaging pipeline, 32–35
new features, 37–39
process model and, 95
resources served by, 128, 140
runtime environment, 28
settings, propagating to

destination, 48–49
unified architecture of, 30
warm-up feature, 59–62
worker process, 29

IIS 7 integrated mode
HTTP handlers, registering, 132
HTTP handlers and modules

and, 108–110
module and handler resolution,

119

IIS Application Warm-up module,
59–62

IIS Express, 25
IIS kernel caching, 761–762, 766
IIS Manager

Add Managed Modules dialog
box, 37

applicationHost.config file,
editing in, 93

Application Pool Identity dialog
box, 39

Handler Mappings panel, 121
IIS Application Warm-up

feature, 60
mapping HTTP modules, 37

IIS metabase, 171
IIS pipeline, 174
IIS script maps, 127
IIS SEO Toolkit, 351–352
IIS Web projects, defined, 48
IList interface, 412
Image controls, 259
image fields, 448–449
image inlining, 316
image URLs, 259
ImageButton controls, 259
ImageFormat structure, 137
ImageMap controls, 259
images

advertisements, 262–263
buttons, rendering as, 447
controlling with HTTP handler,

140–141
copyright notes, writing on,

137–140
databases, loading from,

133–136
display of, 259
display of, configuring, 252
dynamically generated, serving,

137
grouping into sprites, 315–316
hyperlinks displayed as, 258
minimizing impact of, 315–317
referencing on Web pages, 133
saving, 137
serving, 128–133
skin-compliant, 340
writing to disk, 137

 tag, 133
immobility, 568
impersonate attribute, 87
impersonation

through anonymous account,
785

of fixed identities, 785
per-request, 785

thread identity and, 783–785
@Implements directive, 189
@Import directive, 188, 653–654
imports, 585–587
INamingContainer interface, 190,

221, 519, 558
information hiding, 571–572
inheritance

from base class, 515
prototype feature and, 849

Inherits attribute, 96
Init events, 210
Init method, 149, 648

for custom HTTP modules, 151
InitComplete events, 210
initialization

of applications, 38, 645–651
of child controls, 210
completion of, 210
modules, 646–647
of page, 210

initialization code, placement of,
905–906

Initialize method, 808
InitializeCulture method, 310
initializeRequest event, 873
inline content, 316–317
in-memory generation of images,

137
InnerException property, 276
innerHTML property, 842–843,

920
in-place precompilation, 53
InProc session state, 682, 694–

695, 705
in-process calls, 603
input controls

accessing, 375
multiple validators for, 390–391
and validation controls, linking,

381–382
Wizard control, 374

<input> element, 246
input field filters, 914
input fields, validation of, 248
input forms

cross-page posting, 374–379
HtmlForm class, 366–367
logical forms, 368
login capabilities, 368–369
multiple forms, 368–374
MultiView control, 373–374
mutually exclusive, 371–373
nesting, 370
parent objects, 367
single-form model, 365–366,

368

input forms

948

input forms (continued)
unique name, 367
validation controls, 379–396
wizards, 397–409

input tags and controls,
correspondence between,
212

input validation, 674
validation controls, 379–396
in wizards, 404

Insert method, 726
insert templates, 501–505

position of, 502–503
validation for, 504–505

insertAfter function, 921
insertBefore function, 921
InsertItemPosition property, 502
InsertItemTemplate property, 501
installer files, deployment with,

42–43
Integrated Pipeline mode (IIS),

30–31
integrated Windows

authentication, 782
integration testing, 566

defined, 49
Interface Segregation principle,

579–580
interfaces, 319

for custom controls, 519–520
defined, 189
implementing, 189
in MVP pattern, 625

intermediate page classes, 13
Internet Explorer

IE9 Developer toolbar, 317
JavaScript engine, 902
XMLHttpRequest object

instantiation, 843
Internet Information Services.

See IIS
intrinsic objects, 191
invalid input, 386
inversion of control (IoC), 582

frameworks, 584
vs. MEF, 584–585
Unity, 587–592

I/O bound operations, 208
I/O threads, 94–95
IPageableItemContainer interface

definition of, 510
IParserAccessor interface, 218
IPostBackDataHandler interface,

211, 245, 519–520
implementing, 249

IPostBackEventHandler interface,
213, 520

IRepeatInfoUser interface, 430
IRequiresSessionState interface,

141
IRouteHandler interface,

definition of, 159
ISAPI extensions, 170
ISAPI filters for cookieless

authentication, 800
ISAPI interface, 120
IsAuthenticated property, 829
IsCrossPagePostBack property,

377–378
ISessionIDManager interface, 708

methods of, 709
IsInPartialRendering property,

862
ISO/IEC 9126 paper, 565
isolation, testing in, 641–642
IsReusable property, 121–122, 174

handler pooling, 143
IStateManager interface, 534, 711
IsValid property, 379, 387–388
IsViewStateEnabled property, 228
ItemCanceling event, 503
ItemCommand event, 476
ItemDataBound event, 491–492
ItemEditing event, 498
ItemInserted event, 504
ItemPlaceholderID property, 473
Item property, 723, 726
item templates

selected item template,
505–507

setting up, 501–503
ITemplate type, 557
Items property, 423, 657
ItemTemplate property, 472, 483
iterative controls, 411, 427–432

DataGrid control, 431–432
DataList control, 430–431
vs. list controls, 427–428
Repeater control, 428–430

ITextControl interface, 260
IUrlResolutionService interface,

218

J
Java Server Pages (JSP), 3
JavaScript

AJAX and, 845–851
in browsers, 899–900
in client pages, 198
client-side code, 903
closures in, 847–848
drawbacks of, 902–903

functional programming in,
845–846

goals of, 900
in HTML pages, 16
initialization code, 905–906
introduction of, 900
JSON and, 890
libraries, 899
message boxes, 501
for navigation systems, 352
object model for, 903
Object type, 846
OOP in, 846–847
prototypes in, 848–849
proxy class, generating,

893–894
ready event, 906
scripting engine, 901–902
skills with, 3
unobtrusive, 918
writing and importing, 899

JavaScript background compiler,
901

JavaScript Object Notation.
See JSON

JavaScriptSerializer class, 890–891
JetBrains ReSharper, 188, 270
Johnson, Ralph, 575
jQuery function, 905
jQuery library, 18–19, 313, 422,

846, 877, 899, 903–905,
905–931

AJAX support, 925–928
benefits of, 904
binding and unbinding

functions, 918–919
cache, 923–925
chainability, 909, 915
cross-domain calls and,

929–932
Data Link plug-in, 931
DOM manipulation, 920–923
DOM readiness, detecting,

906–907
DOM tree, adding to DOM,

920–922
DOM tree, creating, 920
filters, 911–914
functional programming and,

905
Globalization plug-in, 931
HTML, downloading, 928
IntelliSense support, 904
JSON, getting, 927–928
linking, 903
live binding, 919
load function, 907

input tags and controls

 949

jQuery library (continued)
Microsoft support, 931
naming convention, 904
query capabilities, 908
ready function, 906–907
root object, 904–905
selectors, 909–911
Templates plug-in, 931
UI, 18, 877
wrapped sets, 905, 908–919

.js file, 903
/js suffix, 893
JScript, 900
JSON, 890–893

DataContract attribute,
891–892

format, 890
getting, 927–928
vs. XML, 892–893

JSON format, 20
JSON object, 890
JSON serialization, 108
JSON with Padding (JSONP),

929–931
json2.js file, 890

K
kernel caching, 58–59, 761–762,

766
enabling, 79

key, cached item, 725
key containers, 115
keywords attribute, 349
keywords meta tag, 349
Kuhn, Thomas, 15

L
Label control, accessibility

feature, 260
LABjs, 313
language, changing on the fly,

310–312
language attribute, 654
large file transmission, 669
Law of Demeter, 377
layers, 593

business logic layer, 596–605
data access layer, 605–614
page and database coupling

and, 762
service layer, 602–603
SoC and, 593
in three-tiered architecture, 593

layouts, 320. See also master
pages

flow layouts, 485–487
multicolumn layouts, 485
tabular layouts, 480–485
tiled layouts, 487–493

LayoutTemplate property, 472
legacyCasModel attribute, 103
length property, 909
lengthy tasks, asynchronous

operation for, 201–209
lifetime managers, 590–592
LinkButton control, 213
LINQ, 414–415
LINQ-to-SQL, 458, 610–611

linking to design patterns with,
599

Liskov’s substitution principle,
576–578

list controls, 411, 421–427
BulletedList control, 426–427
CheckBoxList control, 422–424
DataTextField property, 418
DataValueField property, 419
DropDownList control, 421–422
Items property, 423
vs. iterative controls, 427–428
ListBox control, 425
RadioButtonList control, 424–

425, 427
receiving data, 545
SelectedIndexChanged event,

425
ListBox control, 425

HTML server control for, 245
ListControlclass, 514
listeners, 101
ListItemCollection class, 423
ListView control, 433–434,

471–512
alternate item rendering,

483–484
buttons in layout, 496–511
CSS styling, 480, 482, 494–497
data-based operations, 496
data binding, 471, 477–479
data-binding properties, 474
data-related properties,

492–493
editing, in-place, 496–499
events of, 474–476, 498–499
flow layout, 485–487
vs. GridView control, 482–483
ItemTemplate property, 472
layout template, 479
LayoutTemplate property, 472
list layout, 479–480

new data items, adding,
501–505

object model, 472–479
vs. other view controls, 476–477
paging capabilities, 507–512
populating dynamically,

491–493
Predictable algorithm

implementation, 225
properties of, 472–474
rendering capabilities, 471
selecting items, 505–507
sorting items, 511
style properties, 494
styling the list, 493–496
tabular layout, 480–485
template properties, 473, 480
tiled layout, 487–493
updates, conducting, 499–501
user-interface properties, 474

literal controls, 252
literals, 260
live binding, 919
live function, 919
Load events, 211
load function, 907, 928
LoadComplete event, 213
LoadControl method, 197
LoadControlState method, 719
loadFromCache function, 925
loadFromSource function, 925
LoadPageStateFromPersistence-

Medium method, 215
LoadPostData method, 211
LoadTemplate method, 197
LoadViewState method, 540

overriding, 539
Local Security Authority (LSA), 88
local storage, 923
local themes, 339
local users, error pages for,

273–274
localization, 303–312

culture, changing, 310–312
culture, setting in .NET,

308–309
culture, setting in Web Forms,

309
global resources, 307
localized text, 306–307
local resources, 304–305, 308
of navigation system, 360
resources, localizable, 304–308
of script files, 314–315
of site map information,

359–361

localization

950

<location> section, 68–71
allowLocation attribute, 71
allowOverride attribute, 70–71
Path attribute, 69–70

Locator attribute, 50
locking mechanisms on Cache

object, 736
logging

of HTTP requests, 651
of request results, 33

logging exceptions, 277
logic of pages, testing, 361
logical forms, 368. See also input

forms
login capabilities of input forms,

368–369
Login control, 826–828

appearance of, 827
customizing, 827
events of, 828
membership API and, 826

login pages, 792–793
for AJAX-enabled pages,

887–888
credentials, collecting through,

794
in external applications, 803
layout of, 826

login templates, 831
LoginName control, 828–829
LoginStatus control, 829–830

properties of, 830
LoginView control, 830–832

properties of, 830
LogRequest event, 33, 651
low coupling, interface-based

programming, 572

M
machine scope, 119
machine.config file

for configuration, 63
configuring, 65
default modules list, 647
<location> element, 68, 69
location of, 64
<processModel> section, 92

machine.config.comments file, 64
machine.config.default file, 64
<machineKey> section, 87–88
machine-level configuration

settings, 70, 111
MailDefinition element, 832–833
maintainability, 565

importance of, 569
maintenance, 565

Managed Extensibility Framework
(MEF), 584–587

managed HTTP modules, defined,
37

MapPageRoute method, 161
mappedUrl attribute, 104
mappings

between fake URLs and real
endpoints, 104

between HTTP handlers and
Web server resources, 123

between properties and section
attributes, 117

between security levels and
policy files, 97

MapRequestHandler event,32,
650

markup
ASPX templates, 217
CSS-friendly, 232–234
generating, 194–195, 215
graphical aspects, configuring,

422
server-side programming, 839
style-ignorant, 255
writing, 520–521
writing to HTML text writer

object, 527–528
markup files (ASPX), compilation

of, 52
markup mix, 3
Martin, Robert, 573
Master attribute, 327
@Master directive, 180, 320–323

attributes of, 322
master page properties, 333

exposing, 333
invoking, 334–335

master pages, 180, 319–324
ASPX markup for, 222, 225
binding content pages to, 326
changing, 209
compiling, 329
ContentPlaceHolder controls,

320–322
default content, defining,

323–324
device-specific, 327–329
dynamic changes to, 336–337
@Master directive, 320–323
nested forms and, 370–371
nesting, 330–333
processing, 329–334
programming, 333–336
sample page, 321
UpdatePanel controls in,

864–865

Master property, 333, 336
MasterPage class, 321, 329
MasterPageFile attribute, 326, 327,

336–337
@MasterType directive, 335–336
max-age HTTP header, 756
maxBatchGeneratedFileSize

attribute, 169
maxBatchSize attribute, 169
maxPageStateFieldLength

attribute, 90
maxRequestLength attribute, 251
MEF, 584–587
membership API, 88, 806–821

data stores, integrating with,
812

login controls and, 826
Membership class, 807–812
membership provider, 812–817

Membership class, 806–812
advanced functionality of, 808
methods of, 808–809
properties of, 807–808

membership providers, 300,
812–817

choosing, 809
configuration settings, 88–89
configuring, 816–817
custom, 815–816
extending, 815
key issues of, 816
list of, 808
MembershipProvider base class,

813–814
ProviderBase class, 813

<membership> section, 88–89
MembershipProvider class,

813–814
MembershipUser object, 811–812
Memcached, 614, 753–754
memory usage, polling for, 79
MergeWith method, 255
meta tags, 349
MethodName property, 775
methods

of Control class, 228–229
page methods, transforming

into, 895–896
testing, 641
of Web controls, 255–256

Meyer, Bertrand, 575
Microsoft Dynamics CRM,

613–614
Microsoft Internet Explorer. See

Internet Explorer
Microsoft Internet Information

Services. See IIS

<location> section

 951

Microsoft .NET Framework. See
.NET Framework

Microsoft Silverlight. See
Silverlight

Microsoft SQL Express, 284
Microsoft SQL Server. See SQL

Server
Microsoft Visual Basic, 3
Microsoft Visual Studio. See

Visual Studio
Microsoft.Practices.Unity

assembly, 587
Microsoft.Practices.Unity.

Configuration assembly, 590
Microsoft.Web.Administration

assembly, 112
Microsoft.XmlHttp object, 843
MigrateAnonymous event,

299–300
minifiers, 314
MobileCapabilities class, 77
mocks, 640
mode attribute, 74–75
Mode attribute, 81
model

defined, 616
role in MVC, 617
role in MVP, 620

Model-View-Controller, 616–618,
620

Model-View-ViewModel, 615,
621–623

mod_mono module, 27
modular code, 571–572
Module Pattern, 849
modules, 646–647
Modules property, 154, 646
MongoDB, 614
Moq, 640
.msi files, 43
MSUnit, 638
multicolumn layouts, 485
multipart/form-data submissions,

249–251
multiserver environments

<machineKey> settings, 88
multitiered architecture, 594–

595. See also three-tiered
architecture

MultiView control, 266–268,
373–374

MVC pattern, 616–618
vs. MVP pattern, 620

MVP pattern, 14, 619–621
implementing, 623–636
interface, 625
vs. MVC pattern, 620

navigation, 632–636
presenter, creating, 626–632
presenter isolation, 641
testability of code, 636–642
view, abstracting, 624–626

MVVM pattern, 615, 621–623
myHandler function, 930

N
name conflicts, avoiding, 221
NameObjectCollectionBase class,

154, 676
namespaces, linking to pages,

188
<namespaces> section, 91
naming containers, 221, 226–227
NamingContainer property,

226–227
native requests, defined, 37
NavigateUrl property, 517
navigation

implementing, 632–636
linear and nonlinear, 397
through wizards, 405–409

navigation system, 351–357
localizing, 360
SiteMap class, 355–356
site map configuration, 357–360
site map information, 352–353
SiteMapPath controls, 356–358
site map providers, 354–355

navigation workflow, defining,
633–634

nesting
forms, 370–371
master pages, 330–333

.NET Framework
ASP.NET modules, 646–647
Code Contracts API, 578
configuration scheme, 63
culture, setting, 308–309
Dynamic Language Runtime

component, 335
exception handling, 270–272
graphic engine, 137
Managed Extensibility

Framework, 584–587
predefined server controls, 236

.NET Framework root folder, 786
NetFrameWorkConfigurationKey

container, 115
Netscape, 900
NETWORK SERVICE account, 38,

783
privileges of, 785–786

NHibernate, 612

None authentication, 789
NorthScale Memcached

Server, 755
NoSQL solutions, 614, 745
Nothing permission set, 103
NotifyDependencyChanged

method, 738, 741
null identities, 32
null reference exceptions, 270
numRecompilesBeforeAppRestart

attribute, 56

O
object caching, 463
object model. See also DOM

defined, 600
updatable, 842

<object> tags, server-side,
654–655

Object type, 846
ObjectCreating event, 463
ObjectDataSource control, 458,

459–469
caching support, 463
data retrieval, 460–461
deleting data, 465–468
existing business and data

layers and, 463
paging, setting up, 464–465
properties of, 459–460
updating data, 465–468

ObjectDisposing event, 464
object-oriented design, 599
object-oriented programming.

See OOP
object/relational mapper,

610–613
OCP, 575–576
omitVaryStar attribute, 79
OnClientClick property, 258
OnCompletionCallback method,

147
one-click attacks, 780

security against, 193
onload event, 906

order of running, 907
OOP, 4, 569

in JavaScript, 846–847
substitution principle and, 576

Open Authorization (oAuth), 20
Open Data (oData), 20
Open/Closed Principle (OCP),

575–576
OpenID, 76
OpenMachineConfiguration

method, 112

OpenMachineConfiguration method

952

OpenWebConfiguration method,
111

OperationContract attribute, 884
optimized internal serializer, 696
originUrl attribute, 102, 787
O/RM, 610–613

Code-Only mode, 611
Entity Framework, 611–612
Linq-to-SQL, 610–611
NHibernate, 612
SQL code of, 612

out-of-band HTTP requests,
841–842

output cache
execute now capabilities, 32
saving pages to, 33

output cache profiles, 79–80
output cache providers, 79,

776–777
output caching, 28, 33, 58–59,

669, 721, 755–777. See also
caching

caching profiles, 774–775
capabilities of, 758–759
configuration settings, 79
configuring, 58
dependency object, adding,

762–763
IIS kernel caching, 761–762
of multiple versions of page,

765–768
@OutputCache directive,

759–760
page output duration, 761
page output location, 760–761
of portions of page, 768–774
postbacks, dealing with, 766
post-cache substitution,

775–776
server-side caching, 761
sharing output of user controls,

772–773
of static vs. interactive pages,

766
of user controls, 770–775
validation of page, 764–765
varying by control, 770–772
varying by custom string,

767–768
varying by headers, 767
varying by parameters, 765

@OutputCache directive, 759–760
CacheProfile attribute, 774
Shared attribute, 773
VaryByCustom attribute,

767–768

VaryByParam attribute,
765–766

<outputCacheProfiles> section,
774

OutputCacheProvider class, 79
overloaded constructors, 583

P
packaging

files, 43–51
settings, 43–51

page caching, 665–666. See also
caching

output caching, 669
Page class, 36, 119, 190–208

AddOnPreRenderCompleteAsync
method, 202–203

Async attribute, 201–202
context properties, 193–194
controls-related methods,

195–197
Dispose method, 215
eventing model, 199
events of, 198–199
intrinsic objects, 191
LoadPageStateFromPersistence-

Medium method, 215
as naming container for

controls, 190
ProcessRequest method, 210
rendering methods, 194–195
SavePageStateToPersistence-

Medium method, 215
script-related methods,

197–198
ViewStateUserKey property,

192–193
worker properties, 191–193

page classes
derived, 12
intermediate, 13

page composition, 319–345
content pages, processing,

329–334
content pages, writing, 323–328
master pages, 320–324
master pages, processing,

329–334
master pages, programming,

333–336
styling pages, 336–344

page controller entities
code-behind classes, 12–13. See

also code-behind classes
implementation of, 5

Page Controller pattern, 11–14,
156, 618

effectiveness of, 14
HTTP handler components, 11
revisiting, 14
server-side definitions, 5

page development
error handling, 269–285
page localization, 303–312
page personalization, 285–303
resources, adding to pages,

312–317
@Page directive, 180–185

Async attribute, 201–202
configuration settings, 89–92
EnableViewStateMac attribute,

713, 715
page behavior attributes,

182–184
page compilation attributes,

181–182
page output attributes,

184–185
page execution

external page, embedding,
661–662

helper methods, 660–663
server-side redirection, 663

page handler factory, 177–179
page life cycle, 11–12, 119, 169,

174, 209–215
in ASP.NET MVC, 22
client data, processing, 211
finalization, 214–215
InitComplete events, 210
Init events, 210
LoadComplete event, 213
Load events, 211
managing, 177
markup, generating, 215
Page class events, 198–200
postback, 212–213
PreInit event, 209
PreLoad event, 211
PreRenderComplete event, 214
PreRender event, 214
restructuring, 14
setup, 209–212
Unload event, 215

page localization, 185, 303–312
page methods, 895–897

objects accessable from, 897
page objects, creation of, 178
page output, dependency object,

762–763
page personalization, 285–303

OpenWebConfiguration method

 953

page processing. See also partial
rendering

browser-led model, 840–841
page requests

context information, 175
processing, 174–179
reason for processing, 209

page usability, 344–364
PageAsyncTask object,

creating, 201
pageBaseType attribute, 90
PageHandlerFactory class, 144,

177–178
Page_Load event

profile properties, initializing,
295

presenter instance in, 626–627
pageLoaded event, 873
pageLoading event, 873
PageMethods class, 896
page-output caching. See output

caching
PageRequestManager client

object, 872
PagerSettings class, 441
pages, 6

advertisement banners on,
262–263

asynchronous pages, 121,
201–209

batch mode compilation, 169
behavior of, 757
cacheability of, 757, 758–762
content pages. See content

pages
culture, setting, 309
debugging, 284–285
download experience,

optimizing, 312–317
dynamic compilation, 52
embedding external pages in

current page, 661–663
error handling for, 272–278
errors, mapping to, 278–282
header information, 241
heaviness of, 10, 17
HTML forms on, 200
initialization code, 905–906
interaction model, 17
invoking, 170–173
layout of, 320. See also master

pages
life cycle of. See page life cycle
master pages. See master pages
namespaces, linking to, 188
page behavior, 182–184

partial rendering, 865. See
also partial rendering

passing values between, 379
performance and quality

analysis, 317
placeholders on, 265–266
postbacks. See postbacks
processing directives, 179–190
protecting access to, 784
recompilation of, 170
rendering, 214–215
requested, representation of,

172–173
resources, adding, 312–317
run-time modules, 170–171
script files, linking to, 312–314
scripts, adding to, 858–859
serving to user, 329–330
sharing of output, 773
single server-side form

support, 200
size thresholds, 714
styling, 336–344
testing for usability, 361–364
themes, applying to, 340–341
titles of, 348
unloading, 215
updating asynchronously, 16
usability, 319, 344–364
user controls, converting to,

769
user controls, linking to,

189–190
view state, enabling and

disabling, 227
view state, persisting, 200
XML documents, injecting into,

264–265
Pages-for-Forms model, 16–17
<pages> section, 89–92

child sections, 91–92
controlRenderingCompatibility-

Version attribute, 232
paging data, 451–453

setting up for, 464–465
paradigm shifts, 15
parameters, varying output

caching by, 765
ParseControl method, 197
parser errors, 269
partial caching, 768–774
partial classes, 173

code-behind classes, 173
partial rendering, 19–20, 851–879

asynchronous postbacks,
concurrent, 877–878

benefits and limitations of,
876–877

error handling, 857
example of, 861
migrating pages to, 865
polling and, 872, 878–879
vs. postbacks, 860, 878–879
postbacks, detecting from child

controls, 866–868
postbacks, triggering, 868–869
refresh conditions, 866
script loading, 858–859
ScriptManager control, 852–860
ScriptManagerProxy control,

857–858
UpdatePanel control, 860–866

partial trust permission set
changing name of, 103

PartialCaching attribute, 770
partial-trust applications, 103
partition resolvers, 704
partitioned cache topologies, 746
partitioned cache with H/A, 746
Passport authentication, 76
PasswordRecovery control,

832–833
passwords

changing, 833–834
managing, 812
retrieving or resetting, 832–833

Path attribute, 69
path property, 895
pathInfo placeholder, 165
patterns. See design patterns
Patterns & Practices group, 587
pending operations, canceling,

876
percentagePhysicalMemory-

UsedLimit attribute, 78
performance

analyzing pages for, 317
caching and, 733, 759, 761
closures and prototypes and,

849
DHTML and, 843
download experience,

optimizing, 312–317
exception handling and, 270
nesting pages and, 330
site precompilation and, 52
Substitution control calls and,

776
view state size and, 713–715

PerformDataBinding method,
overriding, 535, 540

permission sets, configuring, 103

permission sets, configuring

954

permissions, for applications,
788–789

PermissionSetName attribute, 103
per-request impersonation, 785
PersistenceMode attribute, 558
personalization, 285–303

anonymous user information,
migrating, 299–300

anonymous user profiles,
294–295

interaction with page, 292–300
personalization events,

298–299
profile database, creating,

292–294
profile providers, 300–303
user profiles, creating, 285–292
user-specific information, 299

Personalize event, 298
picture viewer handler, 128–133
PictureViewerInfo class, 129
pipeline events, wiring up,

151–153
PipelineRuntime objects,

invoking, 34
PlaceHolder controls, 265–266,

557
placeholders, 320–321, 323, 333

contents of, 326
default content, 323–324

POCO code generator, 601
policy files and security levels,

mappings between, 97–98
polling, 739, 742

partial rendering and, 872,
878–879

timer-based, 878–879
pollTime attribute, 80
port 80, 27
port numbers, changing, 100
positional filters, 911
PostAcquireRequestState event,

33, 650
PostAuthenticateRequest event,

32, 650
PostAuthorizeRequest event, 32,

650
postback controls, 387
postBackElement property, 873
postbacks, 4–6, 766

destination of, 365
detecting from child controls,

866–868
full, 869–870
handling, 5, 212–213
HTML server controls for, 244
partial rendering and, 860, 865

replacing with AJAX calls, 10
via scripts, 374
SEO and, 350
through submit buttons, 374
to target page, 374–376. See

also cross-page posting
Timer control for, 878–879
triggering, 258, 868–869
user interface, disabling,

874–875
PostBackTrigger object, 870
PostBackUrl property, 374
post-cache substitution, 775–776
posted data

processing, 211
retrieving, 369
saving, 250–251
testing, 363

posted names, matching to
control IDs, 211

posting acceptor, 250
PostLogRequest event, 33, 651
PostMapRequestHandler event,

32, 650
POST method, 365

posting forms with, 367
PostReleaseRequestState event,

33, 651
PostRequestHandlerExecute event,

33, 650
PostResolveRequestCache event,

32, 155–156, 650
PostUpdateRequestCache event,

33, 651
precedence of themes, 341
precondition attribute, 109, 126
preconditions, 578
predictable IDs, 91
PreInit events, 209
PreLoad event, 211
Preload method, 62
prependTo function, 921
PreRender event, 214, 230
PreRenderComplete event, 214

asynchronous handlers for, 201
Begin/End asynchronous

handlers for, 201
page processing, 202, 203

PreRequestHandlerExecute event,
33, 650

PreSendRequestContent event,
33, 150

PreSendRequestHeaders event,
33, 150

presentation layer, 269, 593, 596.
See also pages

in AJAX, 880

DAL, invoking from, 608
design patterns for, 615–623
navigation workflow, binding

to, 636
presentation logic, 217
Presentation Model (PM) pattern,

621
presenter

creating, 626–632
data retrieval, 628–629
defined, 619
instance of, getting, 626–627
navigation and, 632–636
Refresh method, 628
role in MVVM pattern, 622
role of, 621
service layer, connecting to,

629–630
sharing with Windows

applications, 631–632
testing, 639–642
testing in isolation, 641–642

__PREVIOUSPAGE hidden field,
374

PreviousPage property, 375
@PreviousPageType directive,

376–377
principal objects, custom,

804–806
priority, cached item, 726,

730–731
privateBytesLimit attribute, 78
process model

configuration settings, 92–95
IIS integrated mode and, 95
optimizing, 94

process recycling, 28, 55–56
configuration file changes and,

65
event log entries for, 57
unexpected restarts and, 56–58

processing, 14
separating from rendering,

9–10
processing directives, 179–190

@Assembly directive, 185–187
@Implements directive, 189
@Import directive, 188
@Page directive, 181–185
@Reference directive, 189–190
syntax, 180
typed attributes, 180–181

<processModel> section, 92–95
processRequestInApplicationTrust

attribute, 102

permissions, for applications

 955

ProcessRequest method, 36, 121–
122, 138, 210

HttpRuntime, 174–175
IHttpHandler, 174, 178, 190

profile API, 108
access layer, 300
storage layer, 300
for Web site projects, 286–287

profile class, 291–292
defining, 287–289

Profile property, 288, 295
attributes of, 96

profile providers, 300–303
configuring, 300–302
connection strings, 301
custom, 302–303
functionality of, 96
SQL Express, 286

<profile> section, 96–97, 286–287
ProfileEventArgs class, 299
ProfileModule, 298–299
Programming Microsoft ASP.NET

MVC (Esposito), 26, 268
ProgressTemplate property, 871
properties

of Control class, 218–228
defined, 413
of Web controls, 253–254

<properties> section, 286
property values, varying output

caching by, 770
protected members, 173
protection providers, choosing,

115–116
ProtectSection method, 114
protocol stack, 29
prototype object, 848–849
prototype property, 847
prototypes, 848–849
Provider property, 808
ProviderBase class, 813
providerName attribute, 106
providers

browser-capabilities providers,
346–348

browser providers, 77, 78
defined, 300
encryption providers, 107,

115–116
membership providers, 88
output cache providers, 79
profile providers, 96, 300–303
registering, 347
role providers, 97
site map providers, 100,

354–355
store providers, 99

Providers property, 815
<providers> section, 99, 301
proxy cache, 755–756
proxy classes, PageMethods class,

896
proxy methods, JavaScript,

893–895
public methods, invoking, 886

Q
queries

filter function, 914
filters, 911–914
find function, 914
selectors, 909–911
visibility operators, 915–917

query results. See wrapped sets
queryable objects, 414–415

R
RAD, 4, 437

designer data bindings, 218
paradigm, 569, 615
RadioButtonList control, 424–

425, 427
radio buttons, 259–260
RaisePostBackEvent method, 213,

387
RaisePostDataChangedEvent

method, 212, 245
Random Number Generator

(RNG) cryptographic
provider, 687

RangeValidator control, 380, 386
Rapid Application Development.

See RAD
Raven, 614
raw data, passing, 17
reader/writer locking

mechanisms, 683–684
reading methods,

synchronization mechanism,
678

ready function, 906–907
multiple calls to, 907
order of running, 907

readyState property, 906
readyStateChange event, 906
reauthorization, 663
Red Gate SmartAssembly, 284
redirect attribute, 81
RedirectFromLoginPage method,

794, 796
redirects, 634–635

RedirectToLoginPage method, 796
@Reference directive, 189–190
refreshing. See updating

conditional, 866–870
RegisterAsyncTask method,

206–208
RegisterHiddenField method, 261
RegisterInstance method, 588
RegisterRoutes method, 160
RegisterType method, 587
RegisterXXX methods, 855–856
regular expressions, validating,

385
RegularExpressionValidator

control, 380, 385
release script files, 859–860
ReleaseHandler method, 145
ReleaseRequestState event, 33,

650
Remote Scripting (RS), 841
removal callbacks, 726

defining, 729–730
Remove method, 727
Render method, 231, 520–521

overriding, 528
RenderControl method, 230
Renderer class, 575
rendering

browser-sensitive, 234–235
child controls for, 528–532
cross-browser rendering,

344–348
custom controls, 520–522,

527–533
legacy and CSS-friendly modes,

232–234
separating from processing,

9–10
SimpleGaugeBar control,

527–533
templates, 560–561

rendering engine, entry point
into, 231

rendering methods, 194–195
RenderingCompatibility property,

233
Repeater control, 221, 416,

428–430
RepeaterItem class, 429
RepeaterItemCollection class, 429
replay attacks, 803, 804
replicated cache topologies, 746
Repository pattern, 609–610
Representational State Transfer

(REST), 879–897
request handlers, determining, 32

request handlers, determining

956

request life cycle, 22
events in, 32–34
handlers, writing, 36–37

Request object Browser property,
77

request property, 873
request routing, 119–120
Request.Headers collection, 275
RequiredFieldValidator control,

380, 382, 386–387
RequireJS, 313
requirements churn, 567
RequirementsMode property, 889
requireSSL attribute, 84, 803–804
reset buttons, 247
ResetPassword method, 812
Resolve method, 588–589
ResolveRequestCache event, 32,

650
resolver types, 103
resource assemblies, defined, 304
resources

adding to pages, 312–317
custom resources, 126–127
declarative vs. programmatic,

306
defined, 304
embedding, 195
forbidden, preventing access

to, 143
global resources, 304–305, 307
lifetime of, 648
localizable, 304–308
local resources, 304–305, 308
mapping to handlers, 171–172
retrieving, 659–660
served by IIS, 128

$Resources expression builder,
307

$Resources expressions, 359
ResourceUICultures property, 315
response bodies, sending, 33
response filters, 651, 666–667
Response.Redirect method, 275,

663
REST, 879–897

consuming, 893
HTTP verbs and, 879
JavaScript proxy for, 893–895
webHttpBinding model, 883

RESX files, 304
culture information in, 308
editing, 306
site map information in,

359–360
ReturnUrl parameter, 799

RewritePath method, 104, 158,
658–659

Rich Internet Application (RIA)
services, 20

rigid software, 567–568
Rijndael encryption, 799
role management, 97, 817–821

LoginView control, 830–832
role management API, 108,

817–819
role manager HTTP module, 820
role manager providers, 300
<roleManager> section, 97
RoleProvider class, 820–821
role providers, 820–821

built-in, 821
custom, 821
role management, 97

roles
defined, 817
login templates based on,

831–832
securing access with, 358

Roles class, 806, 807, 819–820
methods of, 819
properties of, 820

Route class, 160
route handlers, 159

tasks of, 156
route parameters, 159

accessing programmatically,
162

RouteData property, 162
routes, 158–159

default values, 162
defining, 160
HTTP handler for, 155
processing order, 162
storing, 160
structure of, 163–164

RouteTable class, 160
RouteValueDictionary type, 163
routing API, 104
RowUpdating event, 443, 455
RSA-based protection provider,

107, 115
runAllManagedModulesForAll-

Requests attribute, 109
runat attribute, 7, 197, 217
runat=”server” attribute, 200

for HTML controls, 235
for Web controls, 253

runManagedModulesForWebDav-
Requests attribute, 109

runtime compilation, 52
runtime environment, 27

ASP.NET MVC, 22–24

asynchronous handlers, dealing
with, 146–147

configuration settings for,
71–73, 85–87, 89–92

of early ASP.NET, 28–29
of early IIS, 29
of IIS, 30
IIS 5.0, 28
Windows 2000, 28

runtime errors, 269. See also error
handling

runtime event handling, 119. See
also HTTP handlers

runtime page processing
modules, 170–173

S
Same Origin Policy (SOP), 850,

881, 929
sandboxing, 789
SaveAs method, 251
SaveControlState method, 719
SavePageStateToPersistence-

Medium method, 215
SaveViewState method, 214

overriding, 539
saving posted files, 250
scalability, 744. See

also distributed cache
ScaleOut StateServer, 755
scavenging, 731
schema-less storage, 614
scope

application scope, 119
machine scope, 119

script code
emitting in client pages, 198
for page postbacks, 213

script files
aggregating, 315
embedded vs. inline, 316–317
linking to pages, 312–314
localized, 314–315
minifying, 314
moving to bottom of page,

312–313
script interceptors, 20
script maps, 127
script resource management, 852
<script> tags, 312, 858, 929–930

defer attribute, 313
scriptable services, 880–889
scripting engines, 901–902
script-led requests, JSON for,

890–893

request life cycle

 957

ScriptManager control, 315, 851,
852–860

events of, 856
on master pages, 865
methods of, 854–855
properties of, 852–854

ScriptManagerProxy control, 852,
857–858, 865

ScriptModule HTTP module, 897
ScriptReference class, 859
ScriptResource.axd HTTP handler,

859
scriptResourceHandler element,

107
scripts

composite, 859
debug files, 859–860
globalization, 860
loading, 858–859
Page class methods related to,

197–198
postbacks via, 374
release files, 859–860

Scripts collection, 858
ScriptService attribute, 886
search

for files, 130
on input forms, 368–369

search engine optimization.
See SEO

search engines, expressive URLs
and, 156

<section> element, 67
section handlers, specifying, 116
<sectionGroup> element, 67–68
SectionInformation object

ProtectSection method, 114
UnprotectSection method, 114

Secure Sockets Layer (SSL), 782
authentication tickets, securing

with, 803–804
secured sockets, authentication

over, 803–804
security

application trust levels and,
786–789

ASP.NET pipeline level, 781, 784
ASP.NET security context,

781–791
authentication methods,

789–791
claims-based identity, 821–825
cookieless sessions and,

690–691
default ASP.NET account,

changing, 784–786
error handling, 81

filtering user input, 135
Forms authentication, 791–806
HTTP error handling and, 281
HttpOnly attribute and, 85
IIS level, 781–783
input validation, 674
JavaScript callers and, 880
membership API, 806–821
planning for, 779
role management, 817–821
server controls for, 825–835
of session state data, 699
threats, types of, 779–780
trust level and policy file

mappings, 97–98
of view state, 192–193, 712–713
worker process level, 781,

783–784
Security Token Service (STS), 824
security trimming, 358

implementing, 354
security zones, 786
<securityPolicy> section, 97–98
Select buttons, 505–506
selected item templates, 505–507
SelectedIndexChanged event, 425
SelectedItem property, 424
SelectedItemTemplate property,

505
selection in ListView control,

505–507
selective updates, 19–20
selectors, 909–911

compound, 910–911
SelectParameters collection, 462
Selenium, 363
self-logging exceptions, 284
semi-dynamic content, caching,

58
sendCacheControlHeader

attribute, 79
sensitive data, securing, 780
SEO, 348–351

ASP.NET Web Forms and,
350–351

cookieless sessions and, 691
measuring, 351–352
meta tags, 349
page titles, 348
query strings, 349
redirects, 349
Server.Transfer and, 275
subdomains, 349

separation of concerns (SoC). See
SoC

serialization
of session state, 695–697, 710

XML format, 890
server attacks, 779
server caching, 761

post-cache substitution and,
776

server controls, 4–5, 7–8. See
also Control class; controls

adaptive rendering, 230–232
in AJAX, 267–268, 851
browser-sensitive rendering,

234–235
control containers, 226–227
control state, 214, 718–719
CSS-friendly markup, 232–234
ctIXX string IDs, 223
custom controls, 513–562
data-bound, 411. See also data

binding
data source controls, 456–468
HTML and CSS friendly, 337
HTML server controls, 217,

235–252
identifying, 220–226
instances of, 172
literal controls, 252
name conflicts, avoiding, 221
naming containers, 221
programming, 7
RAD designer data bindings,

218
role of, 217
security-related, 825–835
skins for, 220, 340–342
Static option, 224
template definitions for, 340
themes, 220, 235, 337, 340–341
validation of, 381–382
view state, 227–228
view state, enabling or

disabling for, 715–717
visibility of, 228
Web controls, 217, 253–268

server forms, 365
Server object, 660–663
server processes, memory limits,

94
server transfers, 378–379
server variables, 673
ServerChange event, 245, 248–249
ServerClick event, 247
servers

machinewide settings, 70
view state, storing on, 719–720

server-side controls
runat=server attribute, 200
view state information, 200

server-side events, 212–213

server-side events

958

server-side expressions, syntax,
690

server-side forms, 240
server-side <form> tags, single,

200
server-side handlers, 6
server-side programming, 839
server-side redirection, 663
server-side validation, 387–388

in wizards, 405
Server.Transfer method, 275, 378
ServerValidate event, 384
service layer

defined, 602
methods in, 604
presenter, connecting to,

629–630
Service Layer pattern, 602
Service Locator pattern, 582
services, scriptable, 880–889
session cookies, 687–688. See

also cookies
session hijacking, 690, 780
session ID, 687–692

custom, 708–710
default generation behavior,

708
encrypting, 690
generating, 687

session ID managers, 708–710
Session object, 680–681

behavior and implementation,
98

removal of values from,
694–695

session providers, out-of-process,
753

session state, 680–704. See
also HttpSessionState class

access to, 680, 699
best practices for, 710
concurrent access, 684
configuring, 98–100, 691–692
customizing management of,

704–710
errors on page and, 695
expiration of, 706
extensibility model for, 680
HTTP handler access to, 141
InProc mode issues, 694–695
lifetime of, 693–695
loss of, 694–695
management timeline, 683
persisting data to remote

servers, 695–699
persisting data to SQL Server,

699–704

remote, 695–699
serialization and deserialization,

695–697
Session_End event, 693–694
session ID, assigning, 687–692
Session_Start event, 693
session-state HTTP module,

680–684
state client manager, 681–682
synchronizing access to,

683–686
Web farm/garden scenarios,

703
session state store, 705. See

also state providers
Session_End event, 686, 693–694
SessionIDManager class, 708

deriving from, 709
sessions

abandoning, 686
cookieless, 688–691
identifying, 687–692
lifetime of, 693
out-of-process, 695–697

Session_Start event, 693
<sessionState> section, 98–100,

691–692
attributes of, 692
SQL Server, setting as state

provider, 700–701
SessionStateModule, 119, 680–684
SessionStateStoreData class, 707
SessionStateStoreProviderBase

class, 705–706
SessionStateUtility class, 707
SetAuthCookie method, 798
SetCacheability method, 666
SetExpires method, 666
SetPropertyValue property, 290
settings

inheritance, 63, 90
packaging, 43–51

SetVaryByCustom method, 768
shadow-copy feature, 84
shadowCopyBinAssemblies

attribute, 84
sharding, 612
Shared attribute, 773
SharedCache, 754
ShouldHook helper function, 153
show function, 915–917
shutdownTimeout attribute, 84
SignOut method, 795
sign-outs, 795–796
Silverlight

compatibility with other
applications, 632

WCF service configuration in,
885

SimpleGaugeBar control, 522–527
color support, 526–527
extending, 533–543
object model definition, 523
object model implementation,

523–526
output of, 529
properties of, 523
rendering, 527–533
ruler, 526, 530–531
using, 532–533

SimpleHandlerFactory class, 142,
144

Single Responsibility Principle
(SRP), 573–574

single-form model, 365–366, 368.
See also input forms

site map providers, 100, 354–355
default, 352

<siteMap> section, 100
site maps

configuring, 357–360
defining, 352–353
localizing, 359–361
multiple, 357–358
securing access with roles, 358

site navigation API, 352–358
configuration settings, 100

site precompilation, 52–55
benefits of, 52
deployment precompilation,

53–55
in-place precompilation, 53
target directory support, 53, 54

site replication tools, advantages
of, 42

site-level configuration settings,
108–110

SiteMap class, 355–356
<siteMapNode> elements, 353
SiteMapPath controls, 356–358
SiteMapProvider class, 354
SkinID property, 342
skins, 338–341

applying, 341–342
for server controls, 220

sliding expirations, 723, 726,
731–732

SoC, 10, 571–573
in ASP.NET MVC, 23
favoring, 14
layers and, 593
MVC pattern and, 617

Socket class, 102
software, rigid, 567–568

server-side expressions, syntax

 959

software dependencies, 568
software design, 565

abstraction, 575–576
big ball of mud, 566–567
cohesion and coupling,

569–571
mainatainability, 565
methodologies, 595
object-oriented design, 599
principles of, 569–572
requirements churn, 567
security planning, 779
separation of concerns,

571–573
SOLID principles, 573–583
structured writing, 615
symptoms of deterioration,

567–569
test-driven development, 638
three-tiered architecture,

593–595
from use-case, 624

software design team
limited skills, 566–567
member turnover, 567

software modules
cohesion of, 570
coupling of, 570–571
low coupling between, 575

software reuse, 568
software workarounds, 568–569
SOLID principles, 573–583

Dependency Inversion
principle, 580–583

Interface Segregation principle,
579–580

Liskov’s principle, 576–578
Open/Closed Principle, 575–576
Single Responsibility Principle,

573–574
Sort buttons, 511
sorting

data, 453–454
expressions, 453
lists, 511

source code
of content pages, 325
deploying, 40
for derived classes, generating,

172
parsing, 170

source files
dynamic compilation of, 189
generating, 611

 tags, 388
sprites, 315–316
SQL Azure, 613

SQL Express, 286
SQL injection, 780
SQL Server

cache dependency, 743–745,
762

hosting identity access, 703
persisting session state to,

699–704
session state data store,

creating, 701–703
SqlCacheDependency class, 80,

743–745
SqlCommand object, 744
SqlDependency attribute, 762
SqlRoleProvider, 821
SQLServer mode, 99
SQLServer provider, 695, 705
src attribute, 858
SRP, 573–574

canonical example, 574
SSL, 782

authentication tickets, securing
with, 803–804

StackOverflow site, 267
startMode attribute, 60
state client managers, 681–682
state information. See also view

state
detecting changes, 212–213,

248–249
persisting, 33
releasing, 33
retrieving, 32

state management . See also view
state

application state, 676–679
best practices, 710
cookies, 675
levels of, 675
session state, 680–710
view state, 710–720

state providers
ASP.NET, 697–699
custom, 704–708
expiration callback support, 706
expiration mechanisms, 706
locking mechanisms, 706
out-of-process, 695–699
partition resolvers, 704
registering, 707
SQL Server, 700–704
writing, 707

StateBag class, 711–712
methods of, 711–712
properties of, 711

stateful behavior
postbacks for, 6

view state and, 6–7
StateServer mode, 100
StateServer provider, 695, 705
static files, IIS serving of, 128
Static option, 224
static properties in global.asax

file, 655
static requests, processing, 29
static resources

behavior of, 757–758
images, 133

StaticSiteMapProvider class, 354
statusCode attribute, 81
S3, 613
StopRoutingHandler class, 164
storage

of HTTP requests, 673
intermediate, 721
local, 923
of output caching, 776–777
schema-less storage, 614

store providers, 692
for session-state settings, 99

stored procedures, 612
stream classes, creating, 666–667
strings, lengths of, 696
stubs, 640
Style class, 254–255
style information

adding to pages, 337–345
themes, 337

style properties, 357
of Web controls, 254–255

style sheet files, external, linking
to, 242

style sheets, 339. See also CSS
defined, 338

style sheet themes, 338, 340
StyleSheetTheme attribute, 340,

341
styling pages, 336–344
submit buttons, 213, 247
SubSonic, 600
Substitution control, 775–776
.svc resources, 881–882
swapText function, 921
synchronization

of application state operations,
678–679

of cache, 736
with Copy Web Site feature, 42

synchronous handlers, 121–127.
See also HTTP handlers

SYSTEM account, 781
system classes, 12
System.ApplicationException class,

272

System.ApplicationException class

960

System.Configuration namespace,
63

configuration management
classes in, 110

<system.diagnostics> section, 101
System.Drawing namespace, use

of classes in, 140
<system.serviceModel> section,

67
<system.web.extensions> section,

107–108
<system.web> section, 71–105

<Caching> subgroup, 73
HTTP handlers, registering in,

124
important sections in, 71–73

<system.webServer> section,
108–110

HTTP handlers, registering in,
125

reading and writing in, 112
System.Web.UI.HtmlControls

namespace, 237
System.Web.UI.Page class, 12, 36,

172
ProcessRequest method, 36

System.Web.UI.WebControls
namespace, 253

T
T4 templates, 600
Table Module pattern, 597, 598

DAL and, 606
<table> tag, 232
table-based interfaces, 480–485
tables, for multicolumn layouts,

485
tabular layouts, 480–485

alternate item rendering,
483–484

HTML tables, 484–485
item template, 481–483
layout template, 480–481

tag-based selectors, 910
<tagMapping> section, 91–92
tasks, asynchronous execution,

201
TDD, 23, 638
Telerik JustCode, 270
template containers, defining,

558–559
template definitions, for controls,

340
template properties

attributes, 557–558
defining, 557–558

setting, 559–560
TemplateControl class, 190

Eval method, 438
templated fields, 450–451
templates

for custom controls, 556–561
defined, 434
insulating in separate file, 557
ListView support of, 473
login templates, 831
rendering, 560–561
role-based, 831–832
T4 templates, 600
for wizards, 400

temporary ASP.NET files folder,
786

permissions on, 784
test doubles, 640
test harnesses, 638
testability of Web Forms,

636–642
test-driven development (TDD),

638
with ASP.NET MVC, 23

testing
CacheDependency objects, 742
code-behind classes, 361
DAL interfacing and, 609
presenter classes, 639–642
test names, 639
unit testing, 637–638
for usability, 361–364
writing tests, 637

text
inserting as literals, 260
localized text, 306–307

text boxes, multiline, 245
text controls, 260–261
TextBox class, interfaces of, 260
theme attribute, 340
Theme attribute, 341
Themeable attribute, 235
ThemeList controls, 343
themes, 319, 337–341

applying, 340–341
changing, 209
vs. CSS, 357
customization themes, 338
defined, 337
enabling and disabling,

342–343
loading dynamically, 343
precedence of, 341
for server controls, 220, 235
skins, 341–342
structure of, 339–340
style sheet themes, 338

thread pool, free threads in, 86
threads

asynchronous handlers and,
147–148

impersonation and, 784–785
minimum settings for, 94–95

three-tiered architecture,
593–595

business logic layer, 596–605
design model, 595

tickets, authentication, 792–793
getting and setting, 798
securiing, 803–804
storage in cookies, 799–800

tiled layouts, 487–493
grouping items, 487–489
group item count, 489–491
group separators, 489
populating dynamically,

491–493
Timer control, 878–879
ToInt32 method, 131
topology of distributed cache,

746
<trace> section, 100–101
Trace.axd handler, 129
tracing, 100–101
Transaction Script (TS) pattern,

597–598
Transfer method, 663
Transform attribute, 50
transformation files, 50–51
transition events, defined, 404
TransmitFile method, 669
tree of controls

building, 209
unique names in, 190

trigger function, 918
Triggers collection, 869
triggers of postbacks, 868–869
trust levels, 786–789

configuration settings, 101–104
and policy files, mappings

between, 97–98
<trust> section, 101–104

code access security
permissions, 787

<trustLevel> elements, 97
try/catch/finally blocks, 270

wrapping code in, 278
typed attributes, 180–181
TypeName attribute, 376

U
UICulture property, 315
unbind function, 918–919

System.Configuration namespace

 961

UniqueID property, 211, 220
unit testing, 637–638

base classes and, 656
unit test classes, 639

Unity, 587–592
declarative configuration,

589–590
dependencies, resolving,

588–589
lifetime managers, 590–592
types and instances,

registering, 587–588
Unload event, 215
unobtrusive JavaScript, 918
UnprotectSection method, 114
update callbacks, 726
Update method

exceptions thrown in, 868
signature, 868

update operations, 466–468
in ListView control, 499–501
modifying objects, 468
parameters for, 466

UpdateMode property, 866–867
UpdatePanel control, 851,

860–865
conditional refreshes, 866–870
contents of, 865
example of, 861
feedback during updates,

870–876
full postbacks from, 869–870
in master pages, 864–865
vs. panel controls, 860–861
populating, 863–864
postbacks, triggering, 868–869
properties of, 862
UpdateProgress control for, 871

UpdateProgress control, 870–872
events of, 872–873

UpdateRequestCache event, 33,
651

updating
concurrent calls, 877–878
conditional refreshes, 866–870
pending operations, aborting,

876
progress screen, 871–872
refresh conditions, 866
user interface, disabling,

874–875
Updating event, 468
uploading files control, 261–262
Uri class, 673
url attribute, 104
URL authorization, 791
URL encoding, 661
URL Rewrite Module, 37

URL rewriting, 155, 157–158, 349,
658–659

drawback of, 158
vs. URL routing, 159

URL routing, 155–165
constraints on, 162, 164
vs. HTTP handlers, 165
preventing for defined URLs,

164–165
vs. URL rewriting, 159
in Web Forms, 36, 160–165

URL routing engine, 119–120,
155, 157–159

URLAuthorizationModule HTTP
module, 791

<urlMappings> section, 104
urlMetadataSlidingExpiration

attribute, 84
UrlRoutingModule class, 155
URLs

for advertisements, 262–263
derived classes, linking to, 172
for embedded resources, 195
and endpoints, mappings

between, 104
expressive URLs, 156–157
for hyperlinks, 447
for images, 133, 259
logic and parameters in, 156
mangling, 690
mapping to ASPX pages, 36
navigating to, 243–244
preventing routing for, 164–165
resolving, methods for, 195–197
route data in, 156

usability, 344–364
cross-browser rendering,

344–348
navigation system, 351–357
SEO, 348–351
site map configuration, 357–360
testing for, 361–364

UseDeviceProfile, 691, 801
useHostingIdentity attribute, 703
user account management, 806
user authentication, 784, 794–795

configuration settings, 74–76
user controls

cacheability of, 770
caching in cacheable pages,

773–774
caching output of, 770
vs. custom controls, 513
description of, 768–769
dynamically loading, 557
inserting into pages, 769
master pages, 329. See

also master pages

pages, linking to, 189–190
sharing output of, 772–773
Static option, 224
strongly typed instances of, 189

user credentials, collecting, 794
user input

filtering, 135
validation of, 379–396

user interface
disabling, 874–875
dynamic, 18–19
iterative controls for, 427–432
table-based interfaces,

480–485
for Web pages, 3

user profiles
in action, 296–298
for anonymous users, 294–295,

299–300
automatically saving, 97
configuration settings, 96–97
creating, 285–292
grouping properties, 290
interaction with page, 292–300
profile database, creating,

292–294
profile providers, 300–303
properties, accessing, 295–296
storage of data, 286
user-specific information in,

299
for Web Application Projects,

defining, 286
for Web site projects, 285

UserControl class, 321
user-defined code, invoking, 245
userIsOnlineTimeWindow

attribute, 88
UserIsOnlineTimeWindow

property, 808
user-mode caching, 58
users

adding and creating, 806, 809–
810, 834–835

anonymous identification
feature and, 73–74

authenticating, 793, 810–811.
See also authentication

authentication state, 829
authorization of, 76–77
feedback for, 870–876
information about, storing, 106
managing, 811–812
reauthorization of, 663
roles, 817

UseSubmitBehavior property, 213,
258

users

962

V
val function, 923
Validate method, 379, 388
ValidateRequest attribute, 674
ValidateUser function, 810–811
validation

of input fields, 248
of new records, 504–505
of cached pages, 764–765

validation attribute, 87
validation controls, 379–396

BaseValidator class, 380–381
client-side validation, 393–394
CompareValidator control,

382–383
cross-page posting and,

395–396
CustomValidator control,

383–385
error information, displaying,

388–389
ForeColor property, 381
generalities of, 379–382
and input controls, linking,

381–382
multiple controls, 380
multiple validators, 390–391
properties of, 380–381
RangeValidator control, 386
RegularExpressionValidator

control, 385
RequiredFieldValidator control,

386–387
server-side validation, 387–388
validation groups, 394–395
validation summary, 391–393

<validation> element, 109
ValidationGroup property,

394–395
validationKey attribute, 87
[ValidationProperty] attribute, 385
ValidationSummary control, 380,

391–393
Validators collection, 379
value, cached item, 725
VaryByControl attribute, 770–772
VaryByCustom attribute, 767
VaryByHeader attribute, 767
VaryByHeaders property, 767
VaryByParam attribute, 759–760,

765
VaryByParams property, 765
verbs attribute, 76
VerifyRenderingInServerForm

method, 195, 365
view

abstracting, 624–626

in ASP.NET MVC, 21–22
autonomous views, 616
defined, 616
role in MVC, 618
role in MVP, 620
XAML-based, 623

view controls, 266–268, 411,
432–434

DataKeyNames property, 421
DetailsView control, 432
FormView control, 433
GridView control, 433
ListView control, 433–434
programmatic control in, 476

view state, 4–7, 710–720
authentication checks for, 713
of controls, 227–228
control state, 718–719
cross-page posting and,

374–375
disabling, 715–717
encrypting, 712–713
encryption and decryption

keys, 87
functionality of, 716
information stored in, 710
issues with, 712–715
methods of, 711–712
page performance and,

713–715
persisting, 200
programming, 715–720
properties of, 711
restoring, 210
saving to storage medium, 214
security of, 192–193, 712–713
SEO and, 350
on server, 719–720
size of, 7, 10, 227, 713–715
StateBag class, 711–712
tracking, 210
truncation of, 90–91
when to use, 717
writing, 711

ViewState class, 676
ViewState container

classes, saving in, 539
control proeprties in, 536–538
property values, storing, 539

__VIEWSTATE hidden field, 215,
712

restoring contents of, 210
ViewState property, 710–712
ViewStateEncryptionMode

property, 713
ViewStateMode property, 227–

228, 716

ViewStateUserKey property,
192–193, 713

Virtual Accounts, 39
virtual directories, configuring

properties, 43
virtual folders for running

applications, 645
virtual members, safe use of, 578
VirtualPath attribute, 376
viscosity, 569
visibility operators, 915–917
Visual Basic, 3
Visual Studio

Add Config Transform option,
51

adding content pages to
projects, 324

Build|ASP.NET Configuration
menu item, 302

deploy packages, building,
45–46

designers, 615
exception handling, 270
Mark As IIS Application On

Destination check box, 47
MSUnit, 638
Package/Publish SQL tab, 46
Package/Publish Web tab,

45–46
resources files, adding, 304
site precompilation, 52, 55
T4 templates, 600
Table Module pattern and, 598
web.config transformations,

49–51
Web Deployment Tool, 44–45
Web project deployment, 40
Web setup applications,

creating, 42–43
Web Site Administration Tool

(WSAT), 809
XCopy capabilities, 40–41

Visual Studio Development
Server, 48

Visual Studio Publish Wizard, 48
Visual Studio 2010, 20
Visual Studio 2010 Coded UI

Tests, 363
Visual Studio 2010 Ultimate, 615
Vlissides, John, 575
VSDOC file, 904

W
WAPs, 40

data model definition, 290–292
personalization data in,

295–296

val function

 963

WAPs (continued)
user profiles, building, 286
web.config transformations, 49

warm-up. See application
warm-up

WatiN, 362–364
WCF services, 882

in AJAX pages, 881–885
ASP.NET compatibility mode,

887, 889
DataContract attribute,

891–892
method execution requests,

887
WDT, 44–45

building, 45–47
capabilities of, 45
contents of, 47
installing, 44

Web application folders,
configuring, 43

Web Application Projects.
See WAPs

Web applications. See also
applications

autostarting, 38–39
grouping, 29
IIS settings, specifying, 48
initialization tasks, 38
installing, 39
machinewide settings, 69, 70
per-directory settings, 68
presentation layer, 269. See

also pages
publishing in Visual Studio,

46–47
responsiveness of, 8
root web.config file, 69

Web attacks
common types of, 779–780
fending off, 779. See

also security
Web browsers. See browsers
Web cache, 755–756
Web controls, 217, 253–268. See

also controls
AdRotator controls, 262–263
AJAX and, 267–268
base class, 253
button controls, 257–258
Calendar controls, 263–264
check box controls, 259–260
core controls, 256–257
correct rendering of, 195
file upload control, 261–262
hidden field control, 261–262
hyperlink controls, 258–259
image button controls, 259
image controls, 259

methods of, 255–256
PlaceHolder control, 265–266
properties of, 253–254
radio button controls, 259–260
runat=”server” attribute for, 253
styling, 254–255
text controls, 260–261
user interface, 527
view controls, 266–267
Xml control, 264–265

Web deployment, 40. See
also application deployment

Web Deployment Tool or Web
Deploy (WDT), 44–47

Web development
ASP.NET for, 3
ASP.NET MVC for, 4
tools for, 19

Web farms/gardens, session state
and, 703

Web Forms, 3–14
in action, 5
alternatives to, 21–26
base class, 36
code testability, 636–642
vs. Data-for-Data model, 17
effectiveness of, 11, 14
HTTP handlers, determining, 35
moving away from, 15–19
MVC pattern and, 618
MVP pattern and, 621
MVVM pattern and, 622
navigation in, 634–636
opting out of built-in features,

25
Page Controller pattern, 11–14,

618
page postbacks, 4–5
page weights, 10
postback events, 5
presentation layer patterns,

615–623
abstraction layer, 14
runtime environment, 27
runtime stack, 23
Selective Updates model, 20
server controls, 4–5
strengths of, 4–8
testability of, 10
UI focus, 26,
usability of, 11
view state, 4–5
weaknesses of, 8–10

Web frameworks, 18–19
AJAX built into, 19–20

Web methods, defining, 896
Web pages. See also ASP.NET

pages
image references, 133

markup mix, 3
Web Platform Installer, 44
Web servers, 27. See also IIS

extensions of, 120
functionality of, 27
redesign of, 29
uploading files to, 249–251

Web Setup Projects
creating, 42–43
Web application folders, 43

Web Site Administration Tool
(WSAT), 292–293, 809

for role management, 818
Web site projects (WSPs), 40

Copy Web Site function, 40–41
data model definition, 286–287
personalization data in,

295–296
user profiles, defining, 285

Web site root folder, 786
Web sites

development skill set for, 3
integration testing, 49
interface elements, 319
JSONP-enabled, 930
navigation system, 351–357
page composition, 319–345
rich client sides, 839
root web.config file, 69
testing for usability, 361–364
usability, 344–364
visual idea for, 319

Web user controls, use of, 557
web.config file. See also individual

section names
additional files, 64
assemblies, editing, 186
centralized files, 69
for classic and integrated IIS 7

working modes, 109
for configuration, 63
current environment settings

in, 49
custom build configurations, 51
debug, release, and test

versions, 49–51
editing, 50, 116–117, 170
global settings, replicating in,

70
<identity> section, encrypting,

87
<location> section, 68
numRecompilesBeforeAppRestart

attribute, 56

<outputCacheProfiles> section,
774

processing of, 64–65

web.config file

964

web.config file (continued)
remote session state, enabling in, 698
root file, 64
sections in, declaring, 68
writing to, 65

WebConfigurationManager class, 110, 111
WebControl class, 253, 514

vs. Control class, 519
deriving controls from, 513

<webControls> section, 104–105
web.debug.config file, 49–50
WebGet attribute, 882
@WebHandler directive, 141–142
webHttpBinding model, 883
WebInvoke attribute, 883
WebMatrix IDE, 25
WebMethod attribute, 886, 895
web.release.config file, 49–50, 51
WebRequest class, 102
WebResource.axd handler, 859
web.sitemap file, 352
WIF, 76

claims and, 822
downloading, 824

Windows authentication, 76, 782, 790–791
limitations of, 791

Windows CardSpace, 791
Windows Communication Foundation (WCF), 603
Windows event log, logging exceptions in, 277
Windows Identity Foundation, (WIF), 76, 822, 824
Windows Server AppFabric, 747–753
Windows service always running, 38
Windows System folder, 786
WindowsTokenRoleProvider, 821
Wizard control, 266, 374, 397–402

events of, 401
main properties, 400
style properties, 399–400
suffixes, 400–401
templates for, 400

WizardNavigationEventArgs structure, 406, 407
WizardNavigationEventHandler delegate, 406
wizards, 397–409

adding steps to, 402–405
canceling navigation events, 407–408
finalizing, 408–409
headers, 398
input steps, 403–404
input validation, 404
jumping to steps, 401
navigating through, 405–409
navigation bar, 398
programming interface, 400–402
server-side validation, 405
sidebar, 398, 404–405
steps, types of, 402–403
structure of, 397–399
style of, 399–400
templates, 400

view, 398
WizardStep class, 402
WizardStepType enumeration, 402
workarounds, 568–569
worker process

ASP.NET standalone, 28–29
identity of, 781, 783
identity of, changing, 784–786
IIS native, 29
incoming requests, fielding, 149
recycling, 55, 59

worker properties, of Page class, 191–193
worker threads, number of, 94–95
World Wide Web Consortium (W3C), 339

proxy component standard, 842
updatable DOM standard, 842

wrapped sets, 905, 908–914
CSS classes, working with, 917
enumerating content, 908–909
operating on, 908–909, 915–919
visibility operators, 915–917

WriteFile method, 669
WriteSubstitution method, 776
WSPs, 40–41, 286–287, 295–296
w3wp.exe, 29
WWW publishing service, 29

X
XCopy, 40–43

Visual Studio capabilities, 40–41
xdt elements, 50
XHTML, ASP.NET support for, 3
XHTML rendering mode, designating, 105
<xhtmlConformance> section, 105
XML

advertisement files, 262–263
data, cache dependency for, 739–742
vs. JSON, 892–893
as serialization format, 890

Xml controls, 264
XML documents, embedding in pages, 264–265
XML encryption, 107

for <identity> section, 87
XmlDataCacheDependency class, 739–740

implementing, 740–741
XmlHttpRequest object, 16, 840–843

Same Origin Policy, 850
using, 844–845

XmlSiteMapProvider class, 352, 358
XslTransform class, 264, 265

Y
Yooder, Joseph, 566
YSlow, 317
YSOD (yellow screen of death), 272

WebConfigurationManager class

 965

About the Author
Dino Esposito is a software architect and trainer
 living near Rome and working all around the world.
Having started as a C/C++ developer, Dino has
 embraced the ASP.NET world since its beginning
and has contributed many books and articles on
the subject, helping a generation of developers and
 architects to grow and thrive.

More recently, Dino shifted his main focus to
 principles and patterns of software design as

the typical level of complexity of applications—most of which were, are, and will be Web
 applications—increased beyond a critical threshold. Developers and architects won’t go
far today without creating rock-solid designs and architectures that span from the browser
presentation all the way down to the data store, through layers and tiers of services and
workflows. Another area of growing interest for Dino is mobile software, specifically cross-
platform mobile software that can accommodate Android and iPhone, as well as Microsoft
Windows Phone 7.

Every month, at least five different magazines and Web sites in one part of the world or
another publish Dino’s articles, which cover topics ranging from Web development to
data access and from software best practices to Android, Ajax, Silverlight, and JavaScript.
A prolific author, Dino writes the monthly “Cutting Edge” column for MSDN Magazine,
the “CoreCoder” columns for DevConnectionsPro Magazine, and the Windows news-
letter for Dr.Dobb’s Journal. He also regularly contributes to popular Web sites such as
DotNetSlackers—http://www.dotnetslackers.com.

Dino has written an array of books, most of which are considered state-of-the-art in their
respective areas. His more recent books are Programming ASP.NET MVC 3 (Microsoft Press,
2011) and Microsoft .NET: Architecting Applications for the Enterprise (Microsoft Press, 2008),
which is slated for an update in 2011.

Dino regularly speaks at industry conferences worldwide (such as Microsoft TechEd,
Microsoft DevDays, DevConnections, DevWeek, and Basta) and local technical conferences
and meetings in Europe and the United States.

In his spare time (so to speak), Dino manages software development and training activities at
Crionet and is the brains behind some software applications for live scores and sporting clubs.

If you would like to get in touch with Dino for whatever reason (for example, you’re running
a user group, company, community, portal, or play tennis), you can tweet him at @despos or
reach him via Facebook.

http://www.dotnetslackers.com

For Visual Basic Developers
Microsoft®
Visual Basic® 2010
Step by Step
Michael Halvorson
ISBN 9780735626690

Teach yourself the essential tools and techniques for
Visual Basic 2010—one step at a time. No matter what
your skill level, you’ll fi nd the practical guidance and
examples you need to start building applications for
Windows and the Web.

Microsoft Visual Studio® Tips
251 Ways to Improve Your
Productivity
Sara Ford
ISBN 9780735626409

This book packs proven tips that any developer,
regardless of skill or preferred development language,
can use to help shave hours off everyday development
activities with Visual Studio.

Programming Windows®
Services with Microsoft
Visual Basic 2008
Michael Gernaey
ISBN 9780735624337

The essential guide for developing powerful,
customized Windows services with Visual Basic
2008. Whether you’re looking to perform network
monitoring or design a complex enterprise solution,
you’ll fi nd the expert advice and practical examples
to accelerate your productivity.

Inside the Microsoft Build
Engine: Using MSBuild and
Team Foundation Build,
Second Edition
Sayed Ibrahim Hashimi,
William Bartholomew
ISBN 9780735645240

Your practical guide to using, customizing, and
extending the build engine in Visual Studio 2010.

Parallel Programming
with Microsoft
Visual Studio 2010
Donis Marshall
ISBN 9780735640603

The roadmap for developers wanting to maximize
their applications for multicore architecture using
Visual Studio 2010.

microsoft.com/mspress

Dev Visual Basic_ResPg_eVer_02.indd 1 8/23/10 9:19 PM

Collaborative Technologies—
Resources for Developers

Programming for
Unifi ed Communications
with Microsoft Offi ce
Communications
Server 2007 R2
Rui Maximo, Kurt De Ding,
Vishwa Ranjan, Chris Mayo,
Oscar Newkerk, and the
Microsoft OCS Team
ISBN 9780735626232

Direct from the Microsoft Offi ce Communications
Server product team, get the hands-on guidance
you need to streamline your organization’s real-time,
remote communication and collaboration solutions
across the enterprise and across time zones.

Inside Microsoft®
SharePoint® 2010
Ted Pattison, Andrew Connell,
and Scot Hillier
ISBN 9780735627468

Get the in-depth architectural insights, task-
oriented guidance, and extensive code samples
you need to build robust, enterprise content-
management solutions.

Programming
Microsoft
Dynamics® CRM 4.0
Jim Steger, Mike Snyder,
Brad Bosak, Corey O’Brien,
and Philip Richardson
ISBN 9780735625945

Apply the design and coding practices that
leading CRM consultants use to customize,
integrate, and extend Microsoft Dynamics
CRM 4.0 for specifi c business needs.

Microsoft
.NET and SAP
Juergen Daiberl,
Steve Fox, Scott Adams,
and Thomas Reimer
ISBN 9780735625686

Develop integrated, .NET-SAP solutions—
and deliver better connectivity, collaboration,
and business intelligence.

microsoft.com/mspress

Dev CollabTech_ResPg_eVer_02.indd 1 8/23/10 9:16 PM

microsoft.com/mspress

Best Practices for Software Engineering

ALSO SEE

Code Complete,
Second Edition
Steve McConnell
ISBN 9780735619678

Widely considered one of the best practical guides to
programming—fully updated. Drawing from research,
academia, and everyday commercial practice, McConnell
synthesizes must-know principles and techniques into
clear, pragmatic guidance. Rethink your approach—and
deliver the highest quality code.

Software Estimation:
Demystifying the Black Art
Steve McConnell
ISBN 9780735605350

Amazon.com’s pick for “Best Computer Book of 2006”!
Generating accurate software estimates is fairly straight-
forward—once you understand the art of creating them.
Acclaimed author Steve McConnell demystifi es the
process—illuminating the practical procedures, formulas,
and heuristics you can apply right away.

Agile Portfolio Management
Jochen Krebs
ISBN 9780735625679

Agile processes foster better collaboration, innovation,
and results. So why limit their use to software projects—
when you can transform your entire business? This book
illuminates the opportunities—and rewards—of applying
agile processes to your overall IT portfolio, with best
practices for optimizing results.

The Enterprise and Scrum
Ken Schwaber
ISBN 9780735623378

Extend Scrum’s benefi ts—greater agility, higher-quality
products, and lower costs—beyond individual teams to
the entire enterprise. Scrum cofounder Ken Schwaber
describes proven practices for adopting Scrum principles
across your organization, including that all-critical
component—managing change.

Simple Architectures for
Complex Enterprises
Roger Sessions
ISBN 9780735625785

Why do so many IT projects fail? Enterprise consultant
Roger Sessions believes complex problems require
simple solutions. And in this book, he shows how to
make simplicity a core architectural requirement—as
critical as performance, reliability, or security—to achieve
better, more reliable results for your organization.

Software Requirements,
Second Edition
Karl E. Wiegers
ISBN 9780735618794

More About Software
Requirements:
Thorny Issues and
Practical Advice
Karl E. Wiegers
ISBN 9780735622678

Software Requirement
Patterns
Stephen Withall
ISBN 9780735623989

Agile Project
Management
with Scrum
Ken Schwaber
ISBN 9780735619937

Solid Code
Donis Marshall, John Bruno
ISBN 9780735625921

Dev BestPrac_ResPg_eVer_03.indd 1 8/23/10 9:11 PM

Microsoft® ASP.NET 4
Step by Step
George Shepherd
ISBN 9780735627017
George Shepherd

Ideal for developers with fundamental programming
skills—but new to ASP.NET—who want hands-on
guidance for developing Web applications in the
Microsoft Visual Studio® 2010 environment.

For C# Developers
Microsoft®
Visual C#® 2010
Step by Step
John Sharp
ISBN 9780735626706

Teach yourself Visual C# 2010—one step at a time.
Ideal for developers with fundamental programming
skills, this practical tutorial delivers hands-on guidance
for creating C# components and Windows–based
applications. CD features practice exercises, code
samples, and a fully searchable eBook.

Microsoft
XNA® Game Studio 3.0:
Learn Programming Now!
Rob Miles
ISBN 9780735626584

Now you can create your own games for Xbox 360®
and Windows—as you learn the underlying skills and
concepts for computer programming. Dive right into
your fi rst project, adding new tools and tricks to your
arsenal as you go. Master the fundamentals of XNA
Game Studio and Visual C#—no experience required!

Programming Windows®
Identity Foundation
Vittorio Bertocci
ISBN 9780735627185

Get practical, hands-on guidance for using WIF to
solve authentication, authorization, and customization
issues in Web applications and services.

Windows via C/C++,
Fifth Edition
Jeffrey Richter, Christophe Nasarre
ISBN 9780735624245

Get the classic book for programming Windows at
the API level in Microsoft Visual C++®—now in its
fi fth edition and covering Windows Vista®.

CLR via C#,
Third Edition
Jeffrey Richter
ISBN 9780735627048

Dig deep and master the intricacies of the common
language runtime (CLR) and the .NET Framework.
Written by programming expert Jeffrey Richter, this
guide is ideal for developers building any kind of
application—ASP.NET, Windows Forms, Microsoft
SQL Server®, Web services, console apps—and
features extensive C# code samples.

microsoft.com/mspress

Dev C#_ResPg_eVer_02.indd 1 8/23/10 9:13 PM

Stay in touch!
To subscribe to the Microsoft Press® Book Connection Newsletter—for news on upcoming
books, events, and special offers—please visit:

What do
you think of
this book?
We want to hear from you!
To participate in a brief online survey, please visit:

Tell us how well this book meets your needs —what works effectively, and what we can
do better. Your feedback will help us continually improve our books and learning
resources for you.

Thank you in advance for your input!

microsoft.com/learning/booksurvey

microsoft.com/learning/books/newsletter

	Cover
	Title page
	Copyright
	Contents at a Glance
	Table of Contents
	Acknowledgments
	Introduction
	Who Should Read This Book?
	System Requirements
	Code Samples
	Errata & Book Support
	We Want to Hear from You
	Stay in Touch

	Part I:The ASP.NET Runtime Environment
	Chapter 1:ASP.NET Web Forms Today
	The Age of Reason of ASP.NET Web Forms
	The Original Strengths
	Today’s Perceived Weaknesses
	How Much Is the Framework and How Much Is It You?

	The AJAX Revolution
	Moving Away from Classic ASP.NET
	AJAX as a Built-in Feature of the Web

	ASP.NET of the Future
	ASP.NET MVC
	ASP.NET Web Pages

	Summary

	Chapter 2:ASP.NET and IIS
	The Web Server Environment
	A Brief History of ASP.NET and IIS
	The Journey of an HTTP Request in IIS
	Some New Features in IIS 7.5

	Deploying ASP.NET Applications
	XCopy Deployment for Web Sites
	Packaging Files and Settings
	Site Precompilation
	Configuring IIS for ASP.NET Applications
	Application Warm-up and Preloading

	Summary

	Chapter 3:ASP.NET Configuration
	The ASP.NET Configuration Hierarchy
	Configuration Files
	The <location> Section
	The <system.web> Section
	Other Top-Level Sections

	Managing Configuration Data
	Using the Configuration API
	Encrypting a Section

	Summary

	Chapter 4:HTTP Handlers, Modules, and Routing
	Writing HTTP Handlers
	The IHttpHandler Interface
	The Picture Viewer Handler
	Serving Images More Effectively
	Advanced HTTP Handler Programming

	Writing HTTP Modules
	The IHttpModule Interface
	A Custom HTTP Module
	Examining a Real-World HTTP Module

	URL Routing
	The URL Routing Engine
	Routing in Web Forms

	Summary

	Part II: ASP.NET Pages and Server Controls
	Chapter 5:Anatomy of an ASP.NET Page
	Invoking a Page
	The Runtime Machinery
	Processing the Request
	The Processing Directives of a Page

	The Page Class
	Properties of the Page Class
	Methods of the Page Class
	Events of the Page Class
	The Eventing Model
	Asynchronous Pages

	The Page Life Cycle
	Page Setup
	Handling the Postback
	Page Finalization

	Summary

	Chapter 6:ASP.NET Core Server Controls
	Generalities of ASP.NET Server Controls
	Properties of the Control Class
	Methods of the Control Class
	Events of the Control Class
	Other Features

	HTML Controls
	Generalities of HTML Controls
	HTML Container Controls
	HTML Input Controls
	The HtmlImage Control

	Web Controls
	Generalities of Web Controls
	Core Web Controls
	Miscellaneous Web Controls

	Summary

	Chapter 7:Working with the Page
	Dealing with Errors in ASP.NET Pages
	Basics of Exception Handling
	Basics of Page Error Handling
	Mapping Errors to Pages
	Error Reporting

	Page Personalization
	Creating the User Profile
	Interacting with the Page
	Profile Providers

	Page Localization
	Making Resources Localizable
	Resources and Cultures

	Adding Resources to Pages
	Using Script Files
	Using Cascading Style Sheets and Images

	Summary

	Chapter 8:Page Composition and Usability
	Page Composition Checklist
	Working with Master Pages
	Writing a Content Page
	Processing Master and Content Pages
	Programming the Master Page
	Styling ASP.NET Pages

	Page Usability Checklist
	Cross-Browser Rendering
	Search Engine Optimization
	Site Navigation
	Configuring the Site Map
	Testing the Page

	Summary

	Chapter 9:ASP.NET Input Forms
	Programming with Forms
	The HtmlForm Class
	Multiple Forms
	Cross-Page Postings

	Validation Controls
	Generalities of Validation Controls
	Gallery of Controls
	Special Capabilities

	Working with Wizards
	An Overview of the Wizard Control
	Adding Steps to a Wizard
	Navigating Through the Wizard

	Summary

	Chapter 10:Data Binding
	Foundation of the Data Binding Model
	Feasible Data Sources
	Data-Binding Properties

	Data-Bound Controls
	List Controls
	Iterative Controls
	View Controls

	Data-Binding Expressions
	Simple Data Binding
	The DataBinder Class

	Managing Tables of Data
	The GridView’s Object Model
	Binding Data to the Grid
	Working with the GridView

	Data Source Components
	Internals of Data Source Controls
	The ObjectDataSource Control

	Summary

	Chapter 11:The ListView Control
	The ListView Control
	The ListView Object Model
	Defining the Layout of the List
	Building a Tabular Layout
	Building a Flow Layout
	Building a Tiled Layout
	Styling the List

	Working with the ListView Control
	In-Place Editing
	Conducting the Update
	Inserting New Data Items
	Selecting an Item
	Paging the List of Items

	Summary

	Chapter 12:Custom Controls
	Extending Existing Controls
	Choosing a Base Class
	A Richer HyperLink Control

	Building Controls from Scratch
	Base Class and Interfaces
	Choosing a Rendering Style
	The SimpleGaugeBar Control
	Rendering the SimpleGaugeBar Control

	Building a Data-Bound Control
	Key Features
	The GaugeBar Control

	Building a Composite Templated Control
	Generalities of Composite Data-Bound Controls
	The BarChart Control
	Adding Template Support

	Summary

	Part III:Design of the Application
	Chapter 13:Principles of Software Design
	The Big Ball of Mud
	Reasons for the Mud
	Alarming Symptoms

	Universal Software Principles
	Cohesion and Coupling
	Separation of Concerns

	SOLID Principles
	The Single Responsibility Principle
	The Open/Closed Principle
	Liskov’s Substitution Principle
	The Interface Segregation Principle
	The Dependency Inversion Principle

	Tools for Dependency Injection
	Managed Extensibility Framework at a Glance
	Unity at a Glance

	Summary

	Chapter 14:Layers of an Application
	A Multitiered Architecture
	The Overall Design
	Methodologies

	The Business Layer
	Design Patterns for the BLL
	The Application Logic

	The Data Access Layer
	Implementation of a DAL
	Interfacing the DAL
	Using an Object/Relational Mapper
	Beyond Classic Databases

	Summary

	Chapter 15:The Model-View-Presenter Pattern
	Patterns for the Presentation Layer
	The MVC Pattern
	The MVP Pattern
	The MVVM Pattern

	Implementing Model View Presenter
	Abstracting the View
	Creating the Presenter
	Navigation

	Testability in Web Forms with MVP
	Writing Testable Code
	Testing a Presenter Class

	Summary

	Part IV: Infrastructure of the Application
	Chapter 16:The HTTP Request Context
	Initialization of the Application
	Properties of the HttpApplication Class
	Application Modules
	Methods of the HttpApplication Class
	Events of the HttpApplication Class

	The global.asax File
	Compiling global.asax
	Syntax of global.asax

	The HttpContext Class
	Properties of the HttpContext Class
	Methods of the HttpContext Class

	The Server Object
	Properties of the HttpServerUtility Class
	Methods of the HttpServerUtility Class

	The HttpResponse Object
	Properties of the HttpResponse Class
	Methods of the HttpResponse Class

	The HttpRequest Object
	Properties of the HttpRequest Class
	Methods of the HttpRequest Class

	Summary

	Chapter 17:ASP.NET State Management
	The Application’s State
	Properties of the HttpApplicationState Class
	Methods of the HttpApplicationState Class
	State Synchronization
	Tradeoffs of Application State

	The Session’s State
	The Session-State HTTP Module
	Properties of the HttpSessionState Class
	Methods of the HttpSessionState Class

	Working with a Session’s State
	Identifying a Session
	Lifetime of a Session
	Persist Session Data to Remote Servers
	Persist Session Data to SQL Server

	Customizing Session State Management
	Building a Custom Session State Provider
	Generating a Custom Session ID

	The View State of a Page
	The StateBag Class
	Common Issues with View State
	Programming the View State

	Summary

	Chapter 18:ASP.NET Caching
	Caching Application Data
	The Cache Class
	Working with the ASP.NET Cache
	Practical Issues
	Designing a Custom Dependency
	A Cache Dependency for XML Data
	SQL Server Cache Dependency

	Distributed Cache
	Features of a Distributed Cache
	AppFabric Caching Services
	Other Solutions

	Caching ASP.NET Pages
	ASP.NET and the Browser Cache
	Making ASP.NET Pages Cacheable
	The HttpCachePolicy Class
	Caching Multiple Versions of a Page
	Caching Portions of ASP.NET Pages
	Advanced Caching Features

	Summary

	Chapter 19:ASP.NET Security
	 Where the Threats Come From
	The ASP.NET Security Context
	Who Really Runs My ASP.NET Application?
	Changing the Identity of the ASP.NET Process
	The Trust Level of ASP.NET Applications
	ASP.NET Authentication Methods

	Using Forms Authentication
	Forms Authentication Control Flow
	The FormsAuthentication Class
	Configuration of Forms Authentication
	Advanced Forms Authentication Features

	The Membership and Role Management API
	The Membership Class
	The Membership Provider
	Managing Roles

	Quick Tour of Claims-Based Identity
	Claims-Based Identity
	Using Claims in ASP.NET Applications

	Security-Related Controls
	The Login Control
	The LoginName Control
	The LoginStatus Control
	The LoginView Control
	The PasswordRecovery Control
	The ChangePassword Control
	The CreateUserWizard Control

	Summary

	Part V: The Client Side
	Chapter 20:Ajax Programming
	The Ajax Infrastructure
	The Hidden Engine of Ajax
	JavaScript and Ajax

	Partial Rendering in ASP.NET
	The ScriptManager Control
	The UpdatePanel Control

	Considerations Regarding Partial Rendering
	Configuring for Conditional Refresh
	Giving Feedback to the User
	The Ins and Outs of Partial Rendering

	REST and Ajax
	Scriptable Services
	JSON Payloads
	JavaScript Client Code

	Summary

	Chapter 21:jQuery Programming
	Power to the Client
	Programming within the Browser
	The Gist of jQuery

	Working with jQuery
	Detecting DOM Readiness
	Wrapped Sets
	Operating on a Wrapped Set
	Manipulating the DOM
	The jQuery Cache
	Ajax Capabilities
	Cross-Domain Calls

	Summary

	Index
	About the Author
	Survey page

